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Three-dimensional (3D) boundary layers are common flows in aircraft but present
many problems to instability analysis and transition prediction. The difficulties of 3D
boundary layers are reviewed and a method is proposed to predict the linear evolution
of infinitesimal perturbations in 3D boundary layers, named as RTPSE, in which the
line-marching parabolized stability equation (PSE) is improved by applying the ray tracing
(RT) theory. Two major improvements are achieved. One is that the marching line is
predefined along the direction of group velocity, which is related to both the characteristic
line of local dispersion relation and the direction of energy propagation. Another is that
the variation of the real part of the spanwise wave number is predicted by RT theory,
while its imaginary part is determined based on the conservation relation of generalized
growth rate. The implementation of RTPSE for 3D boundary layers is given in detail and
involves linear stability theory, the PSE, and RT theory. Both the tracing ray and spanwise
wave number are calculated in the real number space, only leading to a second-order error.
Direct numerical simulation is performed to verify and validate the prediction by RTPSE
in a 3D supersonic boundary layer on a blunt cone with a half angle of 7◦ and an angle
of attack of 9◦. Results show that RTPSE can accurately predict the variation of spanwise
wave number and linear evolution of disturbances for the whole wave packet, for stationary
crossflow waves and for traveling crossflow waves, while the traditional PSE cannot. The
application condition of RT theory is investigated numerically, and the caustic does not
occur for unstable disturbances, implying that RTPSE is fully applicable to predict the
linear evolution of disturbances in 3D boundary layers.
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I. INTRODUCTION

Instabilities of laminar flows and the transition of boundary layers have been frequently studied
in modern aerodynamic design because of their significant role in drag reduction and thermal
protection [1]. Most of the instability theories and their analysis methods are based on two-
dimensional (2D) or axisymmetric boundary layers, such as the linear stability theory (LST) [2],
parabolized stability equation (PSE) approach [3], and transition prediction eN method [2]. These
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theories and methods have been major successes in both theoretical research and engineering
applications.

In LST, under the local-parallel-flow assumption, the basic flow Q̄ of 2D boundary layers is only
a function of y in the Cartesian system (x, y, z), where x, y, and z are the streamwise, wall-normal,
and spanwise directions, respectively. However, it can be perturbed by a small three-dimensional
(3D) unsteady disturbance Q′(x, y, z, t ), which can be written in the form of a normal mode [4] as

Q′(x, y, z, t ) = q(y) exp[i(αx + βz − ωt )] + c.c., (1)

where ω, α, and β denote the frequency, streamwise wave number, and spanwise wave number,
respectively. The vector q characterizes its shape, i2 = −1, c.c. stands for the complex conjugate,
and t stands for the time variable. Because both the basic flow Q̄ and total instantaneous flow
Q = Q̄ + Q′ separately satisfy the Navier-Stokes (NS) equations, the linearized NS equations are
derived for Q′, which can be written in the following form:

L(α, β, ω; x)q = 0, (2)

where the operator L contains differentiation with respect to y only and the dependence of x
is parametric. Equation (2) forms, along with homogenous boundary conditions at the wall and
infinity, an eigenvalue problem. In a spatial stability problem, the frequency ω and the spanwise
wave number β are usually defined as real values, but the streamwise wave number α = αr + iαi

is a complex value, where σ = −αi(ω, β; x) represents the spatial growth rate in the x direction.
Once σ (ω, β; x) is obtained by solving the eigenvalue problem at each location x, the so-called N
factor, which measures the accumulated growth of an instability wave with a given ω and β, can
be calculated by integrating the growth rate with respect to x along the streamwise direction. Then,
transition is deemed to occur when N reaches some critical value Nc in the transition prediction eN

method.
Even for 2D boundary layers, the thickness of the boundary layer increases gradually along

the flow direction, leading to the nonparallelism of basic flow. Non-parallel-flow effects on linear
instability have often been explained by a perturbative approach suggested by Gaster [5], which
is applicable only when nonparallelism causes a small correction to the growth rate, and a
nonperturbative approach, free from this restriction, was proposed by Huang and Wu [6]. An
alternative and now popular method for studying instabilities in weakly nonparallel flows is the PSE
method [3]. For strong nonparallel flows, Huang and Wu [7] proposed a local scattering approach to
quantitatively characterize the effect of abrupt changes on instability and transition by a transmission
coefficient.

However, most boundary layers are 3D, producing problems for instability analysis and transition
prediction. The nonparallelism of basic flow appears both in the streamwise and spanwise directions,
while it only exists in the streamwise direction for 2D flows. The nonparallelism of basic flow in the
spanwise direction leads to the three dimensionality of flow, which is reflected in three aspects.

(1) The propagation direction of the disturbance is a curve on the wall surface, while it is a
straight line for 2D flows.

(2) The perturbation increases in the streamwise direction and in the spanwise direction, namely,
β is also a complex value and its imaginary part has the same contribution to the growth rate as that
of α, while it is a real value for 2D flows.

(3) β varies along the direction of the disturbance, while the wave number in the spanwise
direction can be treated as a constant through an appropriate definition for 2D flows.

For example, the typical wave number β ≡ 2π/λ is defined by the wavelength λ for a 2D flow
on a flat plate, and the azimuthal wave number n ≡ 2π/φ is defined by the azimuthal angle φ for an
axisymmetric flow on a circular cone, even though the typical wave number β = n × r varies with
the variation of the cone radius r.

For the first aspect, the results show that group velocity is the propagation velocity of the
disturbance energy, so the direction of group velocity is often selected to be the propagation
direction of the disturbance for 3D flows. For the second aspect, the growth rate of the disturbance
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in 3D flows must be considered. For a disturbance with a specified ω and βr , the solution of the
eigenvalue problem is not unique unless the spanwise growth rate −βi is previously established.
Cebeci and Stewartson [8] proposed using a saddle-point condition, i.e., (∂α/∂β )i = 0, to compute
βi by iterative calculation, which is termed as the SPM and has been widely used to predict
the transition of 3D flows [9–11]. However, the SPM overpredicts the amplification ratio of
perturbation, because it picks up the local maximum growth rate belonging to different unstable
waves instead of a single unstable wave. To eliminate this defect, by using the method of multiple
scales, Nayfeh [12] derived a series of partial differential equations to the evolution of amplitude and
wave number of the disturbance in a 3D inhomogeneous boundary layer. However, this methodology
is too complicated to apply to practical calculations. Song, Zhao, and Huang [13] introduced the
concept of generalized growth rate (GGR) and proved that GGR is conservative, and as a result
they proposed a more convenient method to calculate GGR by setting βi = 0 directly. For the
third aspect, the ray tracing (RT) theory [14] in a real number space can well describe the linear
evolution of an infinitesimal perturbation in a conservative system. However, boundary layers are not
conservative. Therefore, RT theory in a complex number space is required to predict the evolution of
wave parameters in 3D boundary layers, leading to a complicated calculation [15]. Zhao et al. [16]
applied RT theory to the eN method to predict the evolution of spanwise wave number and the
amplitude of a single wave instead of the most unstable wave by the SPM. Although they ignored
the imaginary part and applied RT theory only in the real number space directly beyond reason,
good improvement can be seen between their results and those by the SPM.

New requirements for the prediction tool of the disturbance evolution are put forward by the three
dimensionality. Because of its ability to consider nonparallelism, the PSE has been an excellent
tool in predicting the evolution of infinitesimal perturbation in 2D or axisymmetric boundary
layers [17–19]. However, the extension of the PSE to 3D boundary layers is not straightforward.
Generally, there are three strategies according to different marching methods [20]: (i) the line-
marching strategy [21], in which the shape function and α are calculated along a predefined
marching line with a given β; (ii) the plane-marching strategy [22,23], in which the 2D shape
function and α are solved by marching along the direction in which the basic flow varies slowly
(in addition, the basic flow should be periodic in another direction in the 2D cross plane); and
(iii) the surface-marching strategy [24], in which the shape function and α are calculated along
two adjacent marching lines iteratively and β is determined according to the compatibility relation
∂βr/∂x = ∂αr/∂z. A more detailed description of these strategies can be found in the report by
Chang [20].

Among the above three strategies, the line-marching PSE is the most frequently applied to
3D inhomogeneous boundary layers. However, two issues still need to be settled: (i) how to
predefine the marching line in 3D flows and (ii) how to predetermine the variation of spanwise
wave number caused by the inhomogeneity of flow. For a cone with an angle of attack (AoA),
Kocian et al. [25] proposed the vortex-axis line as the marching line, which is only valid for the
stationary crossflow instability and not suitable for traveling crossflow instability or Mack mode
instability. For an elliptic cone, Dinzl and Candler [26] used the same strategy to analyze stationary
crossflow vortices. In addition, for stationary crossflow instability, Kocian et al. [25] determined
the variation of spanwise wave number according to the divergence of two adjacent streamlines.
Based on an intuitive assumption, they concluded that the variation of spanwise wave number is
approximately inversely proportional to the variation of the interval of two streamlines. However,
some of their PSE results could not satisfy the DNS results by Balakumar and Owens [27].

In the present paper, by focusing on the difficulties in 3D boundary layers, we improve the
line-marching PSE by applying RT theory to predict the linear evolution of different instabilities,
e.g., the stationary or traveling crossflow instabilities and/or the Mack mode instability, for 3D
boundary layers. The method is denoted as RTPSE for short. The rest of the paper is organized as
follows. In Sec. II, we give a general description of stability methods including LST and the PSE,
while the improvement method RTPSE is given in detail. In addition, the application condition of
RT is also discussed. A brief summary of flow configuration of our interest is given in Sec. III, which
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also describes the analysis code used in this paper. In Sec. IV, the evolution of small disturbances
performed by DNS is shown, and the validations of the RTPSE results against the DNS results
are also presented. Moreover, the application condition of RT is validated numerically. Lastly, we
summarize the main conclusions in Sec. V.

II. METHODOLOGY

A. Governing equations for 3D compressible flows

In the present paper, we only focus on the linear evolution of an infinitesimal perturbation which
can be described by local (LST) and/or nonlocal (PSE) stability methods for 3D compressible
flows. In classical stability methods, the instantaneous flow quantities Q = [ρ, u, v,w, T ] can be
decomposed into the steady basic flow and the perturbation quantities in the form of Q = Q̄ + Q′,
where ρ is the density; T is the temperature; and u, v, and w represent the velocity components in
the streamwise, wall-normal, and spanwise directions, respectively. The overbar and prime represent
the basic flow and the perturbation quantities, respectively. Under the assumption of infinitesimal
perturbation, linearized disturbance equations in the orthogonal curvilinear coordinate system can
be derived from NS equations and be presented in the compact form

T
∂Q′

∂t
+ A

∂Q′

∂ξ
+ B

∂Q′

∂η
+ C

∂Q′

∂ζ
+ DQ′

+ Vξξ

∂2Q′

∂ξ 2
+ Vηη

∂2Q′

∂η2
+ Vζ ζ

∂2Q′

∂ζ 2
(3)

+ Vξη

∂2Q′

∂ξη
+ Vξζ

∂2Q′

∂ξζ
+ Vηζ

∂2Q′

∂ηζ
= 0,

where ξ , η, and ζ represent the streamwise, wall-normal, and spanwise coordinates, respectively.
Coefficient matrices T, A, B, C, D, Vξξ , Vηη, Vζ ζ , Vξη, Vξζ , and Vηζ are functions of basic flow
quantities and can be found in a study by Oliviero [28]. The streamwise and spanwise curvatures
are determined by Eq. (3). In 3D boundary layers, the solution of Eq. (3) can be presented in the
following form:

Q′(ξ, η, ζ , t ) = A0(ξ0, ζ0)q(ξ, η, ζ ) exp[i�(ξ, ζ , t )] + c.c., (4)

where A0 is the amplitude of q at an initial location (ξ0, ζ0) and q represents the shape function
normalized by A0. � represents the complex phase, by which the local wave parameters of an
unstable wave can be defined:

ω = −∂�

∂t
, α = ∂�

∂ξ
, β = ∂�

∂ζ
, (5)

where ω is the radiant frequency and α and β represent the streamwise and spanwise wave numbers,
respectively. The boundary layer belongs to a nonconservative system. Therefore, generally, the
wave parameters are complex values, and their imaginary parts represent the temporal and spatial
growth rates. In addition, the wave parameters ω, α, and β are not independent, but they connect
with each other by the following compatibility relation:

∂ω

∂ξ
= −∂α

∂t
,

∂ω

∂ζ
= −∂β

∂t
,

∂α

∂ζ
= ∂β

∂ξ
. (6)

By substituting Eqs. (4) and (5) into Eq. (3) with the quasiparallel hypothesis, one can derive
the dispersion relation of perturbations with homogeneous boundary conditions without any loss of
generality, as

D(ξ, ζ , t, α, β, ω) = 0, (7)
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where D represents the discretized dispersion relation. By substituting the definition of wave
parameters in Eq. (5), a first-order partial differential equation for the complex phase function �

can be presented as

D

(
ξ, ζ , t,

∂�

∂ξ
,
∂�

∂ζ
,−∂�

∂t

)
= 0. (8)

B. LST for 3D flows

In LST, under the local-parallel-flow assumption, the disturbance can be written in a normal
mode as

Q′(ξ, η, ζ , t ) = q(η) exp[i(αξ + βζ − ωt )] + c.c., (9)

where the shape function q is just a function of η. Substituting Eq. (9) into Eq. (3) yields the
governing equation for the shape function, which can be written as

L(α, β, ω; ξ, ζ )q(η) = 0, (10)

while both the shape function q(η) and the streamwise wave number α can be solved locally at each
location (ξ, ζ ) with homogenous boundary conditions for a given ω and β.

C. PSE for 3D flows

Unlike LST, in which the solution can be solved locally, PSE needs to be solved by marching
downstream. Here, we only present the basic idea of the line-marching PSE, in which the marching
line has been selected to be the ξ direction and the flow is homogenous in the ζ direction. By
introducing a small parameter ε related to the slow variation of a boundary layer and a slow variable
ξ̂ = εξ , the perturbation Q′ can be written as [18]

Q′(ξ, η, ζ , t ) = A0(ξ0, ζ0)q(ξ̂ , η) exp

{
i

[∫ ξ

ξ0

α(s)ds + βζ − ωt

]}
+ c.c., (11)

where q(ξ̂ , η) is the shape function that varies slowly along ξ . Substitution of Eq. (11) into Eq. (3)
yields, up to and including O(ε), the equation

Â
∂q
∂ξ

+ B̂
∂q
∂η

+ D̂q + V̂ηη

∂2q
∂η2

= 0, (12)

through which the shape function q and wave number α can be solved numerically by a marching
process along ξ with homogeneous boundary conditions for a given ω and β. Different from the
usual PSE, which is derived in the Cartesian coordinate system, the current PSE is derived in the
orthogonal curvilinear coordinate system and the curvature is considered. A more comprehensive
description of the coefficient matrices and the numerical method can be found in the report by
Oliviero [28].

D. RT theory for 3D flows

According to the method of characteristics, the dispersion relation Eq. (8) can be solved by
introducing a free parameter σ , as follows [29]:

dξ

dσ
= ∂D

∂α
,

dζ

dσ
= ∂D

∂β
,

dt

dσ
= −∂D

∂ω
,

dα

dσ
= ∂D

∂ξ

dβ

dσ
= ∂D

∂ζ
,

dω

dσ
= ∂D

∂t
,

d�

dσ
= ∂D

∂α
α + ∂D

∂β
β + ∂D

∂ω
ω, (13)

where the solution is a curve in the six-dimensional space (ξ, ζ , t, α, β, ω), which is presented as
functions of the free parameter σ . If an initial condition (ξ0, ζ0, t0, α0, β0, ω0) is given, the solution
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of an initial value problem (IVP) can be solved. If the boundary conditions at the initial position
(ξ0, ζ0, t0) and the final position (ξ1, ζ1, t1) are given, the solutions of a boundary value problem
(BVP) can be also solved.

Based on the solution in Eq. (13) and the dispersion relation in Eq. (8), it is easy to obtain

dξ

dt
= dξ

dσ

/
dt

dσ
= −∂D

∂α

/
∂D

∂ω
= ∂ω

∂α
≡ ugξ

dζ

dt
= dζ

dσ

/
dt

dσ
= −∂D

∂β

/
∂D

∂ω
= ∂ω

∂β
≡ ugζ

tan(θ ) ≡ dζ

dξ
= dζ

dσ

/
dξ

dσ
= ∂D

∂β

/
∂D

∂α
= −∂α

∂β
= ugζ

ugξ
, (14)

where ug = (ugξ , ugζ ) ≡ (∂ω/∂α, ∂ω/∂β ) is defined as the local group velocity of the wave and θ

is the direction angle of group velocity. Equation (14) implies that the group velocity is related to
the characteristic line, and the integral result of this equation constitutes a ray the tangent direction
of which at each position is the same as that of the group velocity. Because the local group velocity
is the propagation velocity of the perturbation energy in physics [30], the direction of the group
velocity represents the propagation direction of perturbation, and the ray can be treated as the
marching line in the line-marching PSE.

Generally, the rays are complex for 3D flows, so the integration in Eq. (14) should be in the
complex number space, producing many inconveniences. For example, the calculation requires the
basic flow to be known in the complex number space [15]. These inconveniences can be avoided at
the cost of an additional approximation by moving the whole path from the complex number space
to the real number space.

For a steady 3D boundary layer, which is the focus of attention in this paper, the phase function
� can be presented by two given locations (ξ0, ζ0, t0) and (ξ1, ζ1, t1), as

� =
∫ ξ1

ξ0

αdξ +
∫ ζ1

ζ0

βdζ −
∫ t1

t0

ωdt =
∫ ξ1

ξ0

(
α + β

dζ

dξ

)
dξ − const, (15)

in which the last term is a constant because the frequency ω of the disturbance is a real constant
when the disturbance evolves in a steady 3D boundary layer. If the two locations (ξ0, ζ0, t0) and
(ξ1, ζ1, t1) are located in a ray that is determined by Eq. (14), we consider a variation of the path of
the form ζ → ζ + δζ and β → β + δβ, where δζ (ξ0) = δζ (ξ1) = 0 without any loss of generality.
Then the first variation of Eq. (15) can be written as

δ� =
∫ ξ1

ξ0

[
∂α

∂β
δβ + ∂α

∂ζ
δζ + δβ

dζ

dξ
+ βδ

(
dζ

dξ

)]
dξ . (16)

For the last term in Eq.(16), integration by parts can be performed to obtain

δ� =
∫ ξ1

ξ0

[(
∂α

∂ζ
− ∂β

∂ξ

)
δζ +

(
∂α

∂β
+ dζ

dξ

)
δβ

]
dξ + (βδζ )ξ1

ξ0
= 0, (17)

in which the first variation is zero according to Eqs. (6) and (14), and the last term is also zero
because the variation of ζ is zero at the bounds of the integral. In optics, this result is known
as Fermat’s principle, which states that the optical path passing through two given points is an
extremum.

This property allows us to replace the complex path with a real path by taking δζ = −iζi in
Eq. (16), which only leads to a second-order error on the phase function �. The results show that
using real rays only introduces an error of 0.1% but greatly improves computational efficiency [15].
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The analysis of the modified ray is

dζ

dξ
= ugζ

ugξ
=

(
ugζ

ugξ

)
r

{1 + O[(ugξ )i(ugη )i]} ≈
(

ugζ

ugξ

)
r

, (18)

where the imaginary parts of the group velocity ug are omitted because they are much smaller than
their real parts. Then, by integrating Eq. (14) and omitting the imaginary parts, we can obtain the
governing equation of rays in the real number space, as

ξ1 = ξ0 +
∫ t1

t0

(ugξ )rdt

ζ1 = ζ0 +
∫ t1

t0

(ugζ )rdt

t1 = t0 + dt

θ = arctan

[(
ugζ

ugξ

)
r

]
. (19)

Except for the predefinition of marching rays in Eq. (19), the predetermination of β is also
required by the line-marching PSE. Fortunately, the method of characteristics is also applicable
for β.

On the one hand, the solution in Eq. (13) also implies that the variation of β is governed by

dβ

dt
= dβ

dσ

/
dt

dσ
= −∂D

∂ζ
/
∂D

∂ω
. (20)

On the other hand, according to the definition of the total differential, we have

dβ

dσ
= ∂β

∂ξ

dξ

dσ
+ ∂β

∂ζ

dζ

dσ
+ ∂β

∂t

dt

dσ
. (21)

Substitution Eqs. (21) and (14) into Eq. (20) yields

dβ

dt
= ∂β

∂t
+ ugξ

∂β

∂ξ
+ ugζ

∂β

∂ζ
= −∂D

∂ζ

/
∂D

∂ω
, (22)

where d/dt = ∂/∂t + ugξ ∂/∂ξ + ugζ ∂/∂ζ is the material derivative along the group velocity,
indicating that the variation of β governed by Eq. (22) is also along the direction of group velocity.
Similarly, β can be obtained by integrating Eq. (22) along a ray in the real number space, as

(β1)r = (β0)r −
∫ t1

t0

(
∂D

∂ζ

/
∂D

∂ω

)
r

dt . (23)

As mentioned previously, both the IVP and BVP can be solved numerically. If the wave
parameters of the disturbance in the initial position are given, the variation of βr can be predicted
by solving Eq. (23), while the imaginary part βi can be set to be zero according to the conservation
relation of GGR [13].

E. Application condition of RT for 3D flows

The only application condition of RT theory is away from caustics with the caustics condition

� =
[(

∂2ω

∂α∂β

)2

− ∂2ω

∂α2

∂2ω

∂β2

]1/2

= 0. (24)

While the RT theory breaks down near caustics, this situation can be addressed mathematically
by using the concept of the Airy integral [14]. However, this process is very complicated for 3D
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TABLE I. Review of the difficulties of 3D boundary layers and their strategies.

Classification Difficulty Strategy Remark

Nonparallelism Nonparallelism effect PSE Line-marching PSE [21]
Propagation direction θ by Eq. (19) RT theory

Three dimensionality Determination of βi βi = 0 GGR conservation [13]
Variation of βr βr by Eq. (23) RT theory

Line-marching PSE Definition of marching path Ray by Eq. (19) RT theory
Prediction of βr βr by Eq. (23) RT theory

boundary layers, and it is unnecessary if a caustic does not occur. The existence of caustics is
usually checked numerically. For incompressible boundary layers, caustics are not found because
the condition � = 0 does not occur [31–33]. For 3D compressible boundary layers when the Mach
number is high, the existence or absence of caustics is still uncertain. Therefore, a conservative
option is to validate the condition for whole locations and wave parameters, leading to a huge
calculation. Fortunately, most disturbances considered in this paper are unstable, so we only validate
this condition for unstable disturbances in Sec. IV.

F. RTPSE for 3D flows

As mentioned in Sec. I, the difficulty in extending the PSE to 3D flows includes two aspects:
predefining the marching path and predicting the variation of the spanwise wave number. By
introducing RT theory, these two difficulties have been overcome, in which the former is predefined
by Eq. (19) and the latter is determined by Eq. (23) in the real number space.

Based on the RT theory, we improve the line-marching PSE to predict the linear evolution of
the disturbance in 3D boundary layers, which is denoted as RTPSE. Its computation strategy is as
follows:

(i) Specify ω0 and β0 at an initial location (ξ0, ζ0, t0), and obtain the corresponding α0 by solving
Eq. (10) through LST.

(ii) Solve Eq. (10) by LST to calculate the local group velocity ug = (ugξ , ugζ ), and obtain
the partial derivatives ∂D/∂ζ and ∂D/∂ω for a given (α0, β0, ω0) at location (ξ0, ζ0, t0) with the
assistance of Eq. (7).

(iii) Solve Eq. (19) by RT to obtain the next position (ξ1, ζ1, t1) with a proper dt = ct ×
min(�ξ/ugξ ,�ζ/ugζ ) in the real number space, and obtain β1 by Eq. (23), while ω1 = ω0 because
of the steady characteristics of basic flow, where �ξ and �ζ are the mesh spacings in the ξ and ζ

directions, respectively, and ct ∈ (0, 1) is the coefficient.
(iv) Extract the basic flow at the next position (ξ1, ζ1, t1) on the ray started from (ξ0, ζ0, t0) and

adjust the streamwise velocity ū pointing to the direction of group velocity and adapt the spanwise
velocity w̄ perpendicular to it.

(v) Perform the line-marching PSE by solving Eq. (12) at two positions (ξ0, ζ0, t0) and (ξ1, ζ1, t1)
to calculate the shape function, amplitude ratio, and modified streamwise wave number at location
(ξ1, ζ1, t1), where the marching line is along the ray and β is updated in advance.

(vi) Replace position (ξ1, ζ1, t1) to be (ξ0, ζ0, t0) and repeat steps (ii) to (v) to obtain the solution
for all positions in the rays.

Now, we review the difficulties of 3D boundary layers mentioned in Sec. I. The difficulties
and their corresponding strategies are summarized in Table I, and the table shows that all of the
difficulties have been addressed with our method based on RT theory, the line-marching PSE [21],
and GGR conservation [13], implying that the evolution of the disturbance in 3D boundary layers
can be predicted by the method.

The results also show that there are no restrictions (except for the caustics that would not
occur), implying that the method, RTPSE, can be applied to predict the linear evolution for various
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FIG. 1. Schematic of a blunt cone with an AoA.

instabilities, such as the stationary or traveling crossflow instability and the first or second Mack
mode instability for 3D and/or 2D compressible and/or incompressible steady flows.

III. NUMERICAL METHOD

A. Basic flow simulation and code validation

To verify and validate the reliability of RTPSE, we select the model and free-stream conditions
from Ref. [34], which is suitable to study the stationary and traveling crossflow instabilities.
Figure 1 shows the computational model for hypersonic flow over a blunt cone, which has a
nose radius rn = 1.6 mm, length L = 0.704 m, half angle θ = 7◦, and AoA = 9◦. The free-stream
conditions correspond to a free-stream Mach number Ma = 7.07, unit Reynolds number Re∞ =
9.5 × 106 m−1, and free-stream temperature T∞ = 54.56 K, while the temperature at the wall is
Tw = 310 K.

The basic flow is obtained by using an in-house NS solver developed and used by Zhao
et al. [35,36]. The convection terms are split by using a Steger-Warming splitting method and
discretized with a third-order weighted essentially nonoscillatory scheme [37], whereas the viscous
terms are discretized with a fourth-order center finite difference scheme. A third-order Runge-Kutta
method with total variation diminishing characteristics is used for time advance.

To validate our code, we simulated the steady flow over a blunt cone without and with an AoA.
The 2D flow with zero AoA was simulated by Zhong and Ma [38] using their high-order shock-fit
method and the 3D flow with 6◦ AoA was given by Balakumar and Owens [27]. Figure 2 shows the
comparison of basic flows between our DNS results and others. The results show that there is good
agreement between our result and Zhong and Ma’s and Balakumar and Owens’s results, implying
the validation of our code.

To check the grid independence, five kinds of mesh distribution are used to simulate the basic flow
over a blunt cone with 9◦ AoA, as shown in Table II, in which the middle grid has an equivalence
mesh count with other researchers who performed simulations on a cone with an AoA [21,39].
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FIG. 2. Validation of DNS: (a) pressure at the wall for 2D flow compared with Zhong and Ma [38] and
(b) density along the wall-normal direction for 3D flow compared with Balakumar and Owens [27].
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TABLE II. Different density meshes for the validation of grid independence.

Grid Mesh size (×106) ξ η ζ

Tiny 8 301 141 181
Coarse 11 301 181 201
Medium 29 601 201 241
Fine 51 601 281 301
Extra fine 130 801 361 451

Because of the azimuthal symmetry of the boundary layer about the windward and leeward planes,
only half of a cone is selected in the computation of basic flow. Figure 3(a) shows the effect of grid
resolution on the basic flow, and the the figure shows that the profiles of streamwise velocity and
temperature are overlapped among the medium, fine, and extra fine grids, while the profiles of the
coarse and tiny grids near the outer edge of the boundary layer begin to deviate. The difference of
basic flow leads to the variation of flow instability characteristics, so the effect of grid resolution
on the growth rate of most unstable stationary crossflow waves is also considered. As shown in
Fig. 3(b), the growth rate converges to a constant as the number of grids increases, and the relative
errors of growth rate compared with those of the extra fine grid are 5.92% (tiny), 2.59% (coarse),
0.66% (medium), and 0.21% (fine), respectively, implying that the mesh size of the medium and
fine grids is sufficient within a certain range of accuracy.

B. Disturbance simulation and boundary conditions

To verify and validate the reliability of RTPSE, DNS was also performed. Different from the
DNS of basic flow, in which the nose and head shock are included in the computation domain and
only a half model was simulated, we selected the computation domain as one part of the basic flow
but selected a full model to perform DNS to predict the linear evolution of the disturbances. As
shown in Fig. 4(a), the computation domain started at x = 93 mm where it is near the neutral curve
for the crossflow instability. To avoid the interaction of unstable waves with the stream vortex on
the leeward of the cone, the computational domain was set to end at x = 270 mm. The length of
computation domain in the axial direction is relatively short, but there are about ten wavelengths of
disturbances, which is long enough to study in this paper. For a stationary crossflow, the streamwise
wavelength along the vortex direction approaches infinity. But the axial direction does not align with
the vortex direction for the flow on a cone with an AoA, which manifests as the alternate appearance
of high-speed and low-speed streaks in the axial direction, leading to the wave form of the stationary
crossflow in the axial direction, as shown in Fig. 5.
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FIG. 3. Effect of grid resolution on (a) the basic flow and (b) the growth rate of the most unstable stationary
crossflow wave at x = 187 mm, φ = 90◦, where φ denotes the azimuthal angle. The relative error is defined as
δ = (σe − σ )/σe × 100, where σe is the growth rate of the extra fine grid.
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FIG. 4. Sketch map of the (a) computation domain and (b) computation mesh in the x-φ plane for
disturbance simulation.

The upper boundary of the computation domain is chosen to exclude the head shock in order to
apply high-order finite difference schemes. Specifically, the convection terms are discretized with a
fifth-order upwind finite difference scheme, and the viscous terms are discretized with a sixth-order
center finite difference scheme.

At the inlet, a small disturbance is introduced as

Q′(η, φ, t ) = A0q(η) exp[i(n0φ − ωt )] + c.c., (25)

where A0 is the initial amplitude of 10−8, n0 = β0 × r0 is the azimuthal wave number (number of
waves), r0 is the local radius of the blunt cone at the inlet, β is the local spanwise wave number, and
q represents the shape function obtained by LST at the inlet with a given φc = 25◦. Based on the
prediction of β in Eq. (23), it is easy to obtain the prediction of n, as

(n1)r = (n0)r −
∫ t1

t0

(
∂D

∂φ

/
∂D

∂ω

)
r

dt, (26)

where n = β × r and r is the local radius of the blunt cone. At the outlet, an artificial boundary
condition is specified by introducing a fringe sponge region [40,41] to dampen the disturbance
from x = 240 to 270 mm. A nonslip isothermal boundary condition is applied at the wall, and a
nonreflecting boundary condition is adapted at the upper region.

The total grid point for disturbance DNS is up to 60 × 106. The computation domain in the
circumferential direction is selected to be a full model but with a nonuniform distributed mesh with
1001 points. Because the crossflow instability mainly exists in the area of φ = 20◦–160◦, the mesh in
this area is refined to ensure that each unstable wave has more than 30 points in one wavelength, but
in the other region the mesh is gradually coarsened, as shown in Fig. 4(b), which helps to minimize
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FIG. 5. Wave form of the stationary crossflow wave in the axial direction. (a) Contours of u′. (b) Value of
u′ (dashed line) and its amplitude (solid line) at φ = 120◦.
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FIG. 6. Instability analysis and N-factor distribution: (a) growth rate distribution in the n-ω plane at x =
195 mm, φ = 105◦; (b) growth rate distribution for the second Mack mode instability with high frequency
ω = 2.9; (c) N-factor distribution for the traveling crossflow instability with low frequency ω = 0.1; and (d) N-
factor distribution for the stationary crossflow instability with zero frequency ω = 0. The line in (b)–(d) is the
integral line or marching line the direction of which is in the direction of the group velocity.

the computation cost. The mesh in the axial direction is uniform and there are at least 30 points per
wavelength of unstable disturbances. The mesh in the wall-normal direction is nonuniform to match
the distribution of the boundary layer and there are more than 100 points in the boundary layer. The
convergence study of the disturbance DNS has been performed by doubling the grid number in each
direction separately and the results are in good agreement with each other.

IV. RESULTS AND DISCUSSION

In this section, the linear evolution of disturbances, including stationary and traveling crossflow
waves, is calculated by DNS and RTPSE, and the results are compared to verify and validate
the reliability of RTPSE. Then, a short discussion regarding the application condition of RT is
performed.

A. Instability analysis of basic flow

Figure 6 shows the result of the instability analysis of basic flow. Figure 6(a), which presents
the growth rate distribution in the n-ω plane at x = 195 mm and φ = 105◦, shows there are two
typical unstable areas indicating the growth rate is larger than zero. Disturbances in the unstable
area with a high frequency belong to the second Mack mode instability, the most unstable wave
of which is marked as label A near ω = 2.9, while perturbations in the unstable area with a low
frequency are classified as the first Mack mode instability. Because of the existence of crossflow,
the unstable areas are no longer symmetric with respect to the axis n = 0. The unstable area with a
low frequency intersects with the axis ω = 0, leading to the appearance of crossflow instability. The
most unstable wave is marked as label B near ω = 0.1, which is called the traveling crossflow wave,
while the most unstable wave with ω = 0, which is marked as label C, belongs to the stationary
crossflow wave. As shown in Fig. 6(b), while the growth rates belonging to the second Mack mode
instability with a high frequency ω = 2.9 are bigger, its unstable area on the cone is narrow and
intersects with the integral line or the marching line in a short distance, leading to an integral result
N that is less than 2. Therefore, the second Mack mode instability is not important in this case.
However, the unstable areas for the stationary crossflow instability with zero frequency ω = 0 and
for the traveling crossflow instability with low frequency ω = 0.1 intersect with the integral line
after traveling for a long distance, resulting in a very large N , as shown in Figs. 6(c) and 6(d).
Therefore, both the stationary and traveling crossflow instabilities play a key role in the transition
process, and they are selected to verify and validate the reliability of RTPSE.
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FIG. 7. DNS result of the stationary crossflow wave: (a) contour of the peak value in the wall-normal
direction of u′ and (b) contour of the amplitude of u′. The symbols represent the location of the hump of the
amplitude in the spanwise direction.

B. Stationary crossflow instability

The linear evolution of the stationary crossflow wave with ω = 0, n = 65, and A0 = 10−8 is
simulated by DNS. Figure 7(a) shows the contour of the peak value in the wall-normal direction
of u′, and the figure shows that disturbances grow gradually from upstream to downstream within
a certain range of φ and there are obvious ribbon structures manifesting that positive u′ appears
alternately with negative u′. Because of the stationary characteristics, the amplitude in each location
needs to be extracted by interpolation among the peaks of the disturbance, which is shown in
Fig. 7(b). The figure shows that most of the energy mainly exists in a certain region of φ and
that the peak value in the azimuthal direction shifts gradually from the windward to the leeward as
disturbances propagate from upstream to downstream.

Figure 8 shows the distribution of u′ at four locations. At inlet x = 93 mm, a disturbance with
uniform amplitude A0 = 10−8 is set along the circumferential direction in the form of Eq. (25).
Because crossflow near the windward and the leeward is weak, stationary crossflow waves are stable
near the windward φ = 0◦ and the leeward φ = 180◦, and are only unstable within a certain range
of φ. The amplitude of the imposed disturbance decays rapidly near the windward and the leeward
but increases gradually within a certain range of φ as it propagates from upstream to downstream,
leading to a wave packet, in which the location φp of the wave crest shifts and the azimuthal wave
number n varies. However, because the frequency of the initial disturbance imposed at the inlet is
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FIG. 8. Distribution of u′ at different locations obtained by DNS: (a) x = 93 mm, (b) x = 140 mm, (c) x =
190 mm, and (d) x = 240 mm. φp is the location of the hump of the wave packet.
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FIG. 9. Comparison of the disturbance evolution paths between DNS, RT, and the outer streamline for
stationary crossflow waves. Circle symbols: position of the wave crest in the spanwise direction. Triangle
symbols: the outer streamline. Dashed lines: tracing rays starting from different points at the inlet.

zero, u′ in the spanwise direction at each location does not change as it propagates from upstream
to downstream, leading to a stationary wave packet.

Figure 9 presents the evolution path of the stationary crossflow wave obtained by DNS and RT.
Based on DNS, because the amplitude of the disturbance in each wave packet reaches its maximum
value in the spanwise direction at the φp location, the curve constituted by the points of φp at
different x values usually represents the evolution path of the disturbance. Because of the stationary
characteristics of the wave packet, the value of φp obtained by the hump location of each wave
would be slightly different for different interpolation schemes, so the error bar for each location is
also given in Fig. 9. The tracing ray can be obtained by Eq. (19) for a given start point (ξ0, ζ0) at
the inlet, which presents the evolution path of the disturbance according to RT theory. Four tracing
rays along the group velocity direction are shown in Fig. 9, in which good agreement can be seen
between the tracing ray 2 by RT and the evolution path by DNS, indicating that it is reliable to
select the tracing ray along the group velocity to analyze the evolution of the disturbance. The outer
streamline is also given in Fig. 9, and the streamline is close to the evolution path by DNS, indicating
that the outer streamline is a good approximation.

It should be noted that most people only verify or validate the result along the evolution path
by DNS in Fig. 9. However, as shown in Fig. 8, disturbances propagate downward in the form of a
wave packet in the spanwise direction. In addition, the evolution path by DNS may be treated as the
most dangerous evolution path of the wave packet but does represent all waves in the wave packet.
To verify and validate the reliability of RTPSE for the whole wave packet, four tracing rays were
considered. Ray 2 is along the location of the peak value of the wave packet, ray 1 is on the steep
slope of the wave packet closest to the leeward side, while rays 3 and 4 are on the gentle slope of the
wave packet closest to the windward side. These results along four tracing rays reflect the evolution
of the whole wave packet.

Figure 10 shows the comparison of the azimuthal wave number n obtained by DNS with that
by RT along four tracing rays for the stationary crossflow wave. The azimuthal wave number n of
DNS is calculated according to the hump location of each wave in the wave packet, and error bars
exist because of the stationary characteristic of the wave packet, which is also presented in Fig. 10.
The azimuthal wave number n is predicted by RT by Eq. (26); however, it remains a constant in the
traditional PSE. Figure 10 shows that the azimuthal wave number n does vary and that its variation
can be satisfactorily predicted by RTPSE and DNS.
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FIG. 10. Comparison of the azimuthal wave number n among RTPSE, PSE, and DNS for stationary
crossflow waves: (a) ray 1, (b) ray 2, (c) ray 3, and (d) ray 4.

Figure 11 shows the comparison of the amplitude ratio among RTPSE, PSE, and DNS along
four tracing rays for stationary crossflow waves. At the inlet, the shape function q in Eq. (25)
is obtained by LST with a given φc but imposed at the inlet for all φ. Because of the nonlocal
characteristics, disturbances introduced at the inlet undergo a modulation process before they
grow or decay exponentially, so we compared the amplitude ratios starting at x = 110 mm after
the modulation instead of at the inlet x = 93 mm. The amplitude ratio by DNS is interpolated
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FIG. 11. Comparison of the amplitude ratio N = ln(A/Ax=110) among RTPSE, PSE, and DNS for stationary
crossflow waves: (a) ray 1, (b) ray 2, (c) ray 3, and (d) ray 4.
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FIG. 12. DNS result of traveling crossflow waves: (a) transient contour of the peak value in the wall-normal
direction of u′ and (b) contour of the amplitude of u′. The symbols represent the location of the hump of
amplitude in the spanwise direction.

according to the hump amplitude of each wave in the wave packet, which may produce some
errors in the amplitude evolution. The results show that the amplitude predicted by RTPSE presents
satisfactory prediction results, while the PSE is obviously deviated from DNS. It is worth noting
that, because the axial direction does not align with the vortex direction, crossflow waves manifest
as the alternately high-speed and low-speed streaks in the axial direction. Figure 5(b) shows that the
short distance �x = 147 mm contains no more than eight wavelengths in the axial direction, and
the computational domain is close to the head of the blunt cone, so the deviation of the amplitudes
between the PSE and RTPSE would be large and could not be accepted any more for a long distance
downstream.

Differing from the method proposed by Dinzl and Candler [26] in which the vortex-axis line is
selected as the marching line and stationary crossflow waves along it can be satisfactorily predicted,
RTPSE can predict both the spanwise wave number and linear amplification ratio of stationary
crossflow waves for all tracing lines. Furthermore, the next subsection shows that the method can
also predict the evolution of traveling crossflow waves, while the former cannot.

C. Traveling crossflow instability

The simulation of linear evolution for a traveling crossflow wave by DNS was similar to that
for a stationary crossflow wave except for the frequency in which the frequency for the former
is ω = 0.1 (or f = 16.66 kHz). In the same way, the disturbance distribution, evolution path
prediction, spanwise number variation, and amplitude comparison of traveling crossflow waves
are analyzed in detail. Although the envelope of the wave packet does not change, the hump of
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FIG. 13. Comparison of the disturbance evolution path between DNS and RT for traveling crossflow waves.
Circle symbols: position of the wave crest in the spanwise direction. Dashed lines: path along group velocity
from different starts.
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FIG. 14. Comparison of the azimuthal wave number n among RTPSE, PSE, and DNS for traveling
crossflow waves: (a) ray 1, (b) ray 2, (c) ray 3, and (d) ray 4.

each wave in the wave packet shifts in the spanwise direction because of a nonzero frequency of
initial disturbances imposed at the inlet, resulting in the evolution path, spanwise wave number, and
amplitude of traveling crossflow waves being precisely obtained by DNS. However, an interpolation
operation is required for stationary crossflow waves.

Figure 12 shows the transient contour of the peak value in the wall-normal direction of u′ and
the contour of the amplitude of u′ for traveling crossflow waves obtained by DNS. Its distribution
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FIG. 15. Comparison of the amplitude ratio N = ln(A/Ax=110) among RTPSE, PSE, and DNS for traveling
crossflow waves: (a) ray 1, (b) ray 2, (c) ray 3, and (d) ray 4.
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FIG. 16. Analysis of the caustics condition by contours of lg|�| at x = 200 mm for different φ: (a) φ = 0◦,
(b) φ = 30◦, (c) φ = 60◦, (d) φ = 90◦, (e) φ = 120◦, and (f) φ = 150◦.

characteristics is similar to that of stationary crossflow waves, except that the inclination angle of
the ribbon is large and the maximum amplitude is about twice that of the latter.

Figure 13 presents the evolution path of traveling crossflow waves obtained by DNS and RT.
Compared with the result of stationary crossflow waves, a better agreement between the tracing
ray 2 by RT and the evolution path by DNS is obtained, indicating that the tracing ray is a good
option to analyze the disturbance evolution in 3D boundary layers for traveling crossflow waves.
Furthermore, the angle φp of traveling crossflow waves is smaller than that of stationary crossflow
waves, implying that the location of the beginning transition for traveling crossflow waves is farther
from the leeward of the blunt cone than for the stationary crossflow waves.

Figures 14 and 15 show the comparison of the azimuthal wave number n and the amplitude
ratio obtained by RTPSE, PSE, and DNS along four tracing rays for traveling crossflow waves,
respectively. The results show that the symbols for both the azimuthal wave number and the
amplitude ratio obtained by DNS are overlapped with the lines predicted by RTPSE, while there
is a clear gap between the results by DNS and by PSE, indicating that the evolution of traveling
crossflow waves can be predicted by RTPSE very well and that the traditional PSE could not
predict this evolution well. Compared with the result for stationary crossflow waves, RTPSE has
a better prediction for traveling crossflow waves. Furthermore, the traditional PSE overpredicts the
amplitude of traveling crossflow waves for all four tracing rays, while the relationship between the
amplitude of stationary crossflow waves predicted by the traditional PSE and that by DNS depends
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on the tracing ray, which may cause a false impression that the traditional PSE can predict the
amplitude of stationary crossflow waves for a special tracing ray.

D. Validation of the application condition for RT

As mentioned in Sec. II, RT is invalid near a caustic with the caustic condition � = 0 in Eq. (24).
Hence, this condition needs to be validated for the blunt cone model. Because � is a complex
number due to the complex dispersion relation in Eq. (8), we check the module of �, namely, |�|,
for all unstable waves at different positions φ with a given x = 200 mm, and the results of only six
positions are shown in Fig. 16. As shown in Fig. 16(a), the unstable area of the second Mack mode
instability (upper branch) and the first Mack mode instability (lower branch) is symmetric with the
symmetry axis β = 0 because the basic flow profile in this position has no crossflow velocity and
has the same characteristic as the basic flow profile on a flat plate. As φ increases, as shown in
Figs. 16(b)–16(f), the symmetry is broken down, and the unstable area of the second Mack mode
instability decreases and disappears at φ = 120◦, while the stationary crossflow instability begins
to appear at φ = 30◦. In all positions, the minimum value of |�| is about 0.02, which is in the same
order as the growth rate of the disturbance, implying that the caustic condition does not occur at
x = 200 mm for all unstable waves. Because the basic flow profiles are similar in most areas of the
model except the area near the leeward and the nose tip [19], the caustics condition also does not
occur for all unstable waves on the blunt cone with an AoA, and as a result the caustics condition
would not exist for 3D compressible boundary layers.

V. SUMMARY AND CONCLUSIONS

In this paper, we propose a method, namely, RTPSE, to predict the linear evolution of distur-
bances in 3D boundary layers. The presented method contains two major improvements compared
with the conventional PSE: (1) the marching line is along the group velocity direction, and (2) the
variation of the spanwise wave number is predicted by RT. Compared with the previous methods,
RTPSE can address stationary crossflow waves and traveling crossflow waves. To validate our
method, the linear evolution of stationary and traveling crossflow disturbances is performed by
DNS. The spanwise wave number predicted by RT coincides with that by DNS, and the amplitude
ratio calculated by RTPSE is in good agreement with that by DNS for the whole wave packet.
In addition, the application condition of RT is investigated numerically, and the caustics do not
occur for unstable disturbances, implying that RT is valid. Therefore, RTPSE makes it possible to
accurately predict the linear evolution of disturbances in 3D boundary layers.
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