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Shape oscillations of a viscoelastic droplet suspended
in a viscoelastic host liquid
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A study on the small-amplitude oscillation of a viscoelastic droplet suspended in an
immiscible viscoelastic host liquid is carried out. The viscoelasticity of the inner and outer
liquids is described by Jeffreys constitutive equation. The analytical characteristic equation
is derived and the complex frequency is solved numerically. The effect of the outer host
liquid on the oscillation of the droplet is examined for the fundamental mode n = 2. It is
found that the damping rate and the frequency of oscillation of the droplet are decreased as
the host liquid gets denser in the inviscid case. The boundaries between periodic oscillation
and aperiodic decay in the parametric plane of the Ohnesorge number and the relative
stress relaxation time are captured. The viscosity of the outer liquid makes the supercritical
and subcritical bifurcation phenomena disappear and leads to periodic oscillations of the
droplet all the time. Moreover, the viscosity of the outer liquid exhibits a dual effect on the
decay of the amplitude of oscillation. The elasticity of the outer liquid affects the oscillation
of the droplet monotonically: the stress relaxation time decreases the damping rate and the
frequency of oscillation of the droplet, whereas the strain retardation time increases them
limitedly.
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I. INTRODUCTION

Shape oscillations of liquid droplets occur in diverse applications, including emulsion, extraction,
spraying, ink-jet printing, interfacial and rheological property measurement, mass and heat transfer,
biological systems, and so on. Since the pioneer work of Rayleigh [1], Kelvin [2], and Lamb [3],
linear oscillations of Newtonian viscous/inviscid droplets have been extensively studied by many
researchers, e.g., Chandrasekhar [4], Reid [5], Prosperetti [6], Arcidiacono et al. [7], among others.
More recently, the rheological properties of liquid have been taken into account in the study of
small-amplitude oscillations of droplets. It has been found that bulk viscoelasticity may influence
the oscillation behavior of a droplet significantly. Bauer [8] and Bauer and Eidel [9] explored
the surface and interface vibrational behavior of spherical viscoelastic systems. Khismatullin and
Nadim [10] revealed that there exists a type of shape oscillation induced by elasticity, which
does not depend on surface tension. Brenn and Teichtmeister [11] proposed a proof-of-concept
experiment to determine the deformation retardation time of a viscoelastic liquid through linear
shape oscillations of the droplet. The method was later tested by Brenn and Plohl [12]. Hoath et al.
[13] carried out an experimental study on the oscillation behavior of a non-Newtonian liquid droplet
in drop-on-demand ink-jet printing.

Beyond the linear scope, large-amplitude oscillations of droplets are of practical importance.
The experimental investigation showed that when the amplitude of oscillation exceeds 10% of
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the drop radius the nonlinear effect cannot be neglected [14]. In addition to the axisymmetric
quadrupole mode n = 2, large-amplitude oscillations of the multilobed and polyhedral modes were
also observed in experiments [15]. Trinh et al. [16] found in the experiment the resonant coupling
between higher- and lower-order modes. The nonlinear oscillation behavior of viscous droplets was
numerically studied by Basaran [17], Shi and Apfel [18], Rush and Nadim [19], etc. Smith [20]
derived the modulation equations for nonlinear oscillations of a viscous drop and found that the
liquid in the drop may undergo abrupt changes in comparison to the small-amplitude case if the
amplitude of oscillation exceeds 20% of the drop radius.

Two-fluid systems have also been considered by some researchers. Miller and Scriven [21]
derived for the first time a general characteristic equation describing small-amplitude oscillations
of a viscous droplet immersed in an immiscible viscous host liquid. Prosperetti [22] calculated
numerically the damping rate and the angular frequency of oscillation of a viscous drop in an
immiscible viscous liquid. Marston [23] investigated the forced shape deformation of a two-fluid
spherical system in the presence of the interface stresses produced by superimposed acoustic waves.
Basaran et al. [24] carried out a relevant experimental investigation and found that linear theory
agrees well with the experimental results as long as the drop radius is smaller than a critical
value. Bayazitoglu and Suryanarayana [25] solved the oscillation frequency and the damping rate
for a liquid-liquid system using a more accurate numerical method and compared the theoretical
predictions with the existing experimental data. Whitaker et al. [26] took into account evaporation
in the small-amplitude shape oscillation of a superfluid helium drop surrounded by saturated
helium vapor. Chrispell et al. [27] developed a two-dimensional Navier-Stokes immersed boundary
algorithm to simulate the dynamics of a viscoelastic droplet suspended in a viscoelastic matrix.
There are also a number of studies of Newtonian/non-Newtonian drops suspended in a shear,
extensional or rotating flow of Newtonian/non-Newtonian liquid. Interested readers are referred
to, among others, the references [28–33].

In the present paper, we extend the work of the former researchers [10,11,21,22] to the case
of a non-Newtonian viscoelastic liquid droplet immersed in an immiscible viscoelastic host liquid.
A general characteristic equation is derived for the complex frequency. The damping rate and the
angular frequency describing the shape oscillation of the viscoelastic droplet are solved numerically.
The effect of the density, viscosity and elasticity of the outer host liquid on the oscillation behavior
of the viscoelastic droplet is highlighted. In Sec. II the theoretical model is formulated; in Sec. III
the numerical results are presented and discussed; in Sec. IV the main conclusion is drawn.

II. THEORETICAL MODEL

An isolate spherical liquid droplet is stationarily suspended in an unbounded host liquid.
Naturally, the spherical coordinate system (r, θ, ϕ) with the origin located at the center of the
droplet is adopted to describe the problem, where r, θ , and ϕ are the radius, the polar angle, and
the azimuthal angle, respectively. The droplet and the outer host liquid are immiscible. The effect
of the gravity and buoyancy forces is considered to be negligible. There is no relative motion
between the droplet and the host liquid. Before the system is perturbed, the pressure difference at
the liquid-liquid interface is balanced by the interfacial tension, i.e., Pi − Po = 2γ /R, where P is the
basic pressure, γ is the interfacial tension coefficient, and R is the radius of the droplet. Hereafter,
the subscripts i and o are used to denote the quantities pertaining to the inner droplet and the outer
host liquid, respectively.

Both the inner and outer liquids are assumed to be non-Newtonian viscoelastic. Their viscoelas-
ticity is modeled by the linear Jeffreys constitutive equation,

τ + λ1
∂τ

∂t
= 2η0

(
D + λ2

∂D
∂t

)
, (1)

where τ is the deviatoric stress tensor, t is the time, D (= 1
2 [∇v + (∇v)T ] with v the velocity and

the superscript T denoting the transpose) is the rate-of-strain tensor, η0 is the zero-shear viscosity,
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λ1 is the stress relaxation time, and λ2 is the strain retardation time. For brevity, the subscripts i and
o are dropped in the equations applicable to both liquids.

After being disturbed by an infinitesimal perturbation, the system is governed by the following
linearized equations:

∇ · v = 0, (2)

ρ
∂v

∂t
= −∇p + ∇ · τ, (3)

where ρ is the density and p is the pressure perturbation.
At the deformed liquid-liquid interface r = R + ξ , where ξ is the displacement of the interface

deviating from its equilibrium position, the linearized kinematic boundary condition requires that

vr = ∂ξ

∂t
, (4)

where vr is the velocity component in the radial direction, the no-slip condition requires that

vθ,i = vθ,o, vϕ,i = vϕ,o, (5)

where vθ and vϕ are, respectively, the velocity components in the polar and azimuthal directions,
the balance of the tangential stresses is formulated as

τrθ,i = τrθ,o, τrϕ,i = τrϕ,o, (6)

where τrθ and τrϕ are, respectively, the rθ - and rϕ-components of the stress tensor τ, and the balance
of the forces in the normal direction is

−po + τrr,o + pi − τrr,i = γ∇ · n, (7)

where τrr is the rr-component of τ, n is the outward unit normal vector, and ∇ · n is twice the
surface curvature.

In linear analysis, the perturbation is supposed to be of normal mode form, that is,

(ξ, v, p, τ ) = [ξ̂ , v̂(r), p̂(r), τ̂(r)]Pm
n (cosθ )eimϕe−σ t , (8)

where the hat denotes the initial amplitude of the perturbation, Pm
n (cosθ ) is the associated Legendre

polynomial with the indices n and m (integers, 0 � m � n, and n � 2), the superscript i is the
imaginary unit, and σ is the complex frequency whose real part and imaginary part are the so-called
damping rate and the angular frequency of oscillation, respectively.

Substituting the normal mode decomposition Eq. (8) into the constitutive Eq. (1), the governing
Eqs. (2) and (3), and the boundary condition Eqs. (4)–(7), a characteristic equation can be derived
for the complex frequency σ . The details of the derivation process can be found in the Appendix.

Choosing the density ρi, the zero-shear viscosity η0,i, the radius R, the capillary time tc,i =√
ρiR3/γ , and the capillary force γ /R as the scales, the characteristic equation is nondimension-

alized as

ω2
0

ω2
=

[
(2n + 1)Pn+ 1

2
(zi ) + 2n(n + 2)

(
η0r

ζo

ζi
− 1

)][
(2n + 1)η0r

ζo

ζi
Qn+ 1

2
(zo) − 2(n − 1)(n + 1)

(
η0r

ζo

ζi
− 1

)]
z2

i (nρr + n + 1)
[
Pn+ 1

2
(zi ) + η0r

ζo

ζi
Qn+ 1

2
(zo) + 2

(
η0r

ζo

ζi
− 1

)] − 1,

(9)
where ω is the nondimensional counterpart of the complex frequency σ , ω0 is the nondimensional
complex frequency of the inviscid problem,

ω2
0 = (n − 1)n(n + 1)(n + 2)

nρr + n + 1
, (10)

ζi = 1 − λ2r,iω

1 − λ1r,iω
, ζo = 1 − λ2r,oω

1 − λ1r,oω
, (11)
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zi =
√

ω

Ohζi
, zo =

√
ρrω

η0rOhζo
, (12)

Pn+ 1
2
(zi ) = zi

Jn+ 1
2
(zi )

Jn+ 3
2
(zi )

, Qn+ 1
2
(zo) = zo

H (1)
n+ 1

2

(zo)

H (1)
n− 1

2

(zo)
, (13)

Jn+ 1
2

and H (1)
n+ 1

2

are the Bessel and Hankel functions of the first kind, respectively.

The dimensionless parameters appearing in the characteristic Eq. (9) are: the density ratio of
the outer to inner liquid ρr = ρo/ρi, the viscosity ratio of the outer to inner liquid η0r = η0,o/η0,i,
the Ohnesorge number of the inner liquid Oh = η0,i/

√
ρiγ R, the relative stress relaxation time of

the inner liquid λ1r,i = λ1,i/tc,i, the relative strain retardation time of the inner liquid λ2r,i = λ2,i/tc,i,
the relative stress relaxation time of the outer liquid λ1r,o = λ1,o/tc,i, and the relative strain
retardation time of the outer liquid λ2r,o = λ2,o/tc,i.

Some limit cases can be obtained from Eq. (9):
(1) A viscoelastic liquid droplet suspended in a vacuum.
Let the dimensionless parameters ρr , η0r , λ1r,o, and λ2r,o be zero, and the characteristic Eq. (9)

reduces to that for a viscoelastic liquid droplet suspended in a vacuum, i.e.,

ω2
0

ω2
=

2(n − 1)[(2n + 1)Pn+ 1
2
(zi ) − 2n(n + 2)]

z2
i (Pn+ 1

2
(zi) − 2)

− 1, (14)

where ω2
0 = (n − 1)n(n + 2) with ω0 the dimensionless complex frequency in the inviscid case.

Equation (14) is the same with the characteristic equations presented by Khismatullin and Nadim
[10] and Brenn and Teichtmeister [11].

(2) A gas bubble suspended in a viscoelastic host liquid.
Assume that the hydrodynamic effect of the gas is negligible. In the dimensional characteristic

Eq. (A34), if we set all the parameters of the inner liquid to zero, we can get a characteristic
equation describing the oscillation of a gas bubble in a viscoelastic liquid, which is expressed in
nondimensional form as

ω2
0

ω2
=

2(n + 2)[(2n + 1)Qn+ 1
2
(zo) − 2(n − 1)(n + 1)]

z2
o(Qn+ 1

2
(zo) + 2)

− 1, (15)

where ω2
0 = (n − 1)(n + 1)(n + 2) with ω0 the complex frequency in the corresponding inviscid

case, and zo = √
ω/Ohζo. The other symbols are the same as defined previously. Note that in the

bubble case the capillary time of the outer liquid, tc,o =
√

ρoR3/γ , is used as the time scale instead.
As a consequence, the definition of the relevant dimensionless parameters are Oh = η0,o/

√
ρoγ R,

λ1r,o = λ1,o/tc,o, and λ2r,o = λ2,o/tc,o. It is proved that Eq. (15) is in accordance in form with the
characteristic equation derived by Miller and Scriven [21] for a gas bubble in a viscous liquid.

(3) A viscous droplet suspended in a viscous host liquid.
If all the dimensionless parameters related to elasticity, i.e., λ1r,i, λ2r,i, λ1r,o, and λ2r,o, are taken

to be zero, then the characteristic Eq. (9) will be reduced to the one for small-amplitude oscillations
of a purely viscous droplet in a purely viscous liquid. For the viscous case, different forms of
characteristic equation were presented by Miller and Scriven [21], Prosperetti [22], and Basaran
et al. [24], although they are in effect the same. In comparison, Prosperetti’s expression is more
simplified. Our derivation follows the work of Prosperetti [22].

III. NUMERICAL RESULTS

The dimensionless complex frequency ω is obtained by solving numerically the transcendental
Eq. (9) using the Muller method in IMSL [34]. The code was checked by comparing with the results
in Refs. [11,22]. It should be stressed that Eq. (9) has infinite discrete roots due to liquid viscosity.
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The root having the smallest real part determines the oscillation characteristics of the droplet. Hence,
we focus on this root most of time and just call it the least damped mode. Moreover, we consider
only the quadrupole mode n = 2, since it is usually less damped than those higher-order modes.
Note that the azimuthal wavenumber m does not appear in Eq. (9), which can be simply set to zero
at the beginning [10,11]. The strain retardation time is basically one order of magnitude smaller than
the stress relaxation time [11]. Without loss of generality, we take λ2r = λ1r/10 in the calculation,
unless specified otherwise.

A. Effect of the density of the outer liquid on the oscillation of the viscoelastic droplet

The effect of the density of the outer liquid is studied by assuming that the outer host liquid is a
Newtonian inviscid liquid. Thus the characteristic Eq. (9) reduces to

ω2
0

ω2
=

2(n − 1)(n + 1)[(2n + 1)Pn+ 1
2
(zi) − 2n(n + 2)]

z2
i (nρr + n + 1)[Pn+ 1

2
(zi) − 2]

− 1. (16)

Only one dimensionless parameter related to the outer liquid, i.e., the density ratio ρr , appears in
Eq. (16).

Figure 1 shows the variation of the damping rate Re(ω) and the angular frequency Im(ω) with
the Ohnesorge number of the inner liquid Oh for different values of the density ratio ρr , where
the elasticity of the inner liquid is assumed to be large. In the absence of the outer host liquid
(ρr = 0), the damping rate Re(ω) grows almost linearly with the Ohnesorge number Oh from zero,
as shown in Fig. 1(a). When Oh exceeds a critical value Ohcr, a supercritical bifurcation takes place
and the curve is divided into two branches, which are in effect two different modes. The damping
rate of the upper branch increases rapidly with Oh, whereas the lower branch decreases gradually
and behaves asymptotically as Oh goes to infinity. When Oh < Ohcr, the droplet undergoes periodic
oscillations, since it possesses nonzero angular frequency Im(ω), as shown in Fig. 1(b). When Oh >

Ohcr, the angular frequency is zero, implying that the droplet is overdamped and returns to its
original spherical shape aperiodically. Apparently the critical Ohnesorge number Ohcr gives not
only the maximum damping rate but also the transition point from periodic to aperiodic decay of
the least damped mode. In the case of periodic oscillation, viscosity induces energy dissipation
and accelerates the damping of the perturbation. However, in the case of aperiodic decay, viscosity
slows down the damping of the perturbation, resulting from vorticity diffusion in the liquid bulk that
decreases velocity gradients and attenuates viscous dissipation of energy.

The density of the outer host liquid affects the behavior of the droplet greatly. As shown in
Fig. 1, with ρr increasing, the critical Ohnesorge number Ohcr gets larger, and the interval of Oh
within which periodic oscillations take place is widened. It is possibly because that the existence
of the outer inviscid liquid reduces the level of energy dissipation of the system and hence makes
the transition from periodic to aperiodic decay occur at a larger viscosity of the inner liquid. For the
same reason, the damping rate in the periodic oscillation case is decreased with ρr increasing. In
Fig. 1(b), at Oh = 0, the oscillation frequency Im(ω) decreases as ρr increases, a fact that can be
seen directly from Eq. (10). As a consequence, at small values of Oh, the denser the outer liquid,
the smaller the frequency of oscillation. But the trend is reversed at moderate Oh’s near Ohcr . In
the aperiodic decay case, the density ratio increases the damping rate of the least damped mode
limitedly.

The effect of the outer inviscid liquid on the oscillation characteristics of the droplet at a small
elasticity of the inner liquid is shown in Fig. 2. Compared with the large elasticity case shown in
Fig. 1, the critical value of Ohnesorge number Ohcr at which the supercritical bifurcation takes place
is decreased to around 1 and the interval of Ohnesorge number for periodic oscillations is greatly
narrowed down. Moreover, a subcritical bifurcation appears at a relatively large critical value of
Ohnesorge number denoted by Oh′

cr. The lower branch of the subcritical bifurcation is exactly the
upper branch of the supercritical bifurcation, as shown in Fig. 2(a). The damping rate of the upper
branch of the subcritical bifurcation is large and is decreased as Oh increases. Beyond Oh′

cr, the
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FIG. 1. (a) The damping rate Re(ω) and (b) the angular frequency Im(ω) versus the Ohnesorge number of
the inner liquid Oh for different values of the density ratio ρr . The case of relatively large elasticity of the inner
liquid, λ1r,i = 30, λ2r,i = 3.

upper and lower branches coalesce and the damping rate ascends linearly with Oh; meanwhile,
the angular frequency is increased, see Fig. 2(b). As illustrated in the figure, increasing ρr impels
both supercritical and subcritical bifurcation points, especially the latter, to move towards large
Ohnesorge numbers. Within the periodic oscillation interval of Oh to the left of the supercritical
bifurcation point, the influence of the outer liquid is analogous to that in the large elasticity case
in Fig. 1. Within the oscillation interval to the right of the subcritical bifurcation point, both the
damping rate and the angular frequency are decreased by the outer inviscid liquid.

For a viscoelastic liquid droplet, the case of large viscosity is of particular interest. As is
well known, when viscosity is sufficiently large, a purely viscous liquid droplet is overdamped
and experiences no periodic oscillation. However, if one adds some polymer into the liquid, then
the droplet may oscillate again. It was deduced that this kind of oscillation is due to elasticity
[10,11]. The release of elastic potential energy overcomes viscous resistances and induces periodic
oscillations of the droplet. However, elasticity cannot be infinitely large. If the stress relaxation time
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FIG. 2. (a) The damping rate Re(ω) and (b) the angular frequency Im(ω) versus the Ohnesorge number of
the inner liquid Oh for different values of the density ratio ρr . The case of relatively small elasticity of the inner
liquid, λ1r,i = 0.018, λ2r,i = 0.0018.

is too large, then storing and releasing of elastic energy within every oscillation period gets hard,
which does not favor periodic oscillations. Li et al. [35] highlighted the range of stress relaxation
time for the occurrence of elasticity-induced periodic oscillation. Similar result is represented in
Figs. 3(a) and 3(b), where the Ohnesorge number is fixed to 10. At such a large viscosity, the
angular frequency for the corresponding purely viscous liquid (λ1r,i = 0) is zero, implying that
the droplet undergoes no periodic oscillations. When the relative stress relaxation time λ1r,i is
located between 0.001 and 0.01, an abrupt increase in the angular frequency arises. Soon, the
angular frequency reaches its maximum. As λ1r,i increases further, the frequency is decreased.
Ultimately, at a certain value of λ1r,i (normally larger than 10), the angular frequency drops down
to zero. For a periodically oscillatory droplet, elasticity diminishes its damping rate slightly. The
transition from periodic oscillation to aperiodic decay at small elasticities is accomplished through
a subcritical bifurcation, and the transition from periodic to aperiodic at large elasticities occurs at a
supercritical bifurcation point. As the density ratio ρr increases, both the bifurcations, especially the
supercritical one, are directed towards large values of λ1r,i. The range of λ1r,i for periodic oscillations
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FIG. 3. (a) The damping rate Re(ω) and (b) the angular frequency Im(ω) versus the relative stress
relaxation time of the inner liquid λ1r,i for different values of the density ratio ρr . The case of relatively large
viscosity of the inner liquid, Oh = 10.

is greatly broadened by increasing ρr . Particularly, when ρr becomes sufficiently large (see the line
for ρr = 2 in Fig. 3), the supercritical bifurcation phenomenon disappears, and the droplet maintains
periodically oscillatory no matter how large the elasticity is. The mechanism in it may be that an
inviscid host liquid can help fast storage and release of elastic energy at large elasticities.

The boundary between periodic oscillation and overdamped decay in the parametric plane of
the relative stress relaxation time λ1r,i and the Ohnesorge number Oh is illustrated in Fig. 4 for
different values of the density ratio ρr . As shown in the figure, the left boundary consists of a straight
oblique line (which is in practice a collection of subcritical bifurcation points like the one presented
in Fig. 3) and an almost horizontal line (which is a collection of supercritical bifurcation points
like the one shown in Fig. 2). The ends of the two lines form a sharp angle. The right boundary,
which is practically a collection of supercritical bifurcation points like that illustrated in Fig. 1 or
Fig. 3, is initially a straight oblique line, but bends slowly and becomes horizontal at large values
of λ1r,i. Between the left and right boundaries is the region in which the droplet undergoes periodic
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FIG. 4. The boundaries in the λ1r,i-Oh plane.

oscillations with decreasing amplitude; in the other regions, the droplet experiences no oscillation
and the perturbation is damped monotonically. Brenn and Teichtmeister [11] detected, in the plane
of the Ohnesorge number Oh and the Deborah number De1 defined there, the boundary between
surface tension-induced oscillation and aperiodic decay as well as the boundary between elasticity-
induced oscillation and aperiodic decay, which are analogous in shape to the left boundary in Fig. 4.
However, they did not examine large values of Oh and De1 and missed the right boundary between
elasticity-induced oscillation and aperiodic decay as depicted in Fig. 4. It is of interest to note
that the oblique straight lines of the left and right boundaries possess nearly the same slope (about
−300) in the log-log plot. It implies that as the viscosity of the inner liquid increases the range of
λ1r,i within which periodic oscillations occur is narrowed down. However, varying the density ratio
ρr has no discernible influence on the slope. With the increase in ρr , the oblique lines move towards
large values of λ1r,i, and the Ohnesorge number at which the supercritical bifurcation vanishes is
increased, in accordance with the trend illuminated in Fig. 3. The left horizontal boundary ascends as
ρr increases, in accordance with the result illustrated in Fig. 2. Also note that when liquid viscosity
is sufficiently small (the Ohnesorge number is smaller than a certain value, e.g., approximately 0.6
for ρr = 0), as shown in Fig. 4, the droplet remains periodically oscillatory over the wide range of
λ1r,i. As ρr increases, this value of Ohnesorge number is increased to some extent.

The small viscosity case is shown in Fig. 5, where the Ohnesorge number of the inner liquid is
taken to be 0.1. As shown in the figure, at such a small viscosity the droplet oscillates periodically
over the whole range of λ1r,i, in agreement with the result in Fig. 4. The effect of the density ratio
ρr on the damping rate and the angular frequency is monotonic. As ρr increases, both are decreased
visibly. That is, the existence of the outer inviscid liquid slows down the damping of the perturbation
and prolongs the period of oscillation. As outlined previously, an inviscid host liquid lowers down
the level of energy dissipation in a periodically oscillating system and in this way decreases the
damping rate of the system. Moreover, the outer host liquid makes the liquid-liquid interface less
free and diminishes the frequency of oscillation.
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FIG. 5. (a) The damping rate Re(ω) and (b) the angular frequency Im(ω) versus the relative stress
relaxation time of the inner liquid λ1r,i for different values of the density ratio ρr . The case of relatively small
viscosity of the inner liquid, Oh = 0.1.

B. Effect of the viscosity of the outer liquid on the oscillation of the viscoelastic droplet

To study the effect of the viscosity of the outer liquid, we assume that the outer liquid is purely
Newtonian viscous. The corresponding characteristic equation can be obtained by simply setting
the parameter ζo in Eq. (9) to 1. In such a case, there are two dimensionless parameters related to
the outer liquid, i.e., the density ratio ρr and the viscosity ratio η0r . As a matter of fact, the viscosity
ratio η0r is not an appropriate parameter representing the viscosity of the outer liquid, for in its
definition the viscosity of the inner liquid η0,i is used as the scale and varying η0,i results in the
change in η0r . Here we introduce an alternative parameter, i.e., the Ohnesorge number of the outer
liquid defined as C = η0,o/

√
ρoγ R, to reflect the relative importance of the viscosity of the outer

liquid. The relationship of C and η0r is C = η0rOh/
√

ρr .
Figure 6 shows the effect of the Ohnesorge number of the outer liquid C on the variation of the

damping rate and the angular frequency with the Ohnesorge number of the inner liquid Oh, where
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FIG. 6. (a) The damping rate Re(ω) and (b) the angular frequency Im(ω) versus the Ohnesorge number of
the inner liquid Oh for different values of the Ohnesorge number of the outer liquid C. The case of relatively
large elasticity of the inner liquid, λ1r,i = 30, λ2r,i = 3. ρr = 1.

the elasticity of the inner liquid is supposed to be large and the density ratio ρr is fixed to 1. It can be
seen from the figure that the viscosity of the outer liquid affects greatly the oscillation characteristics
of the droplet. Most intriguingly, when the outer liquid is viscous, the supercritical bifurcation
phenomenon disappears. There are aperiodic branches no more. The droplet oscillates periodically
over all values of Oh, only that its angular frequency Im(ω) approaches zero asymptotically at large
Oh’s. This behavior of the droplet is more similar to the case of a bubble in a viscous liquid than
the case of a viscous droplet in a vacuum [22]. Probably the unboundedness of the host liquid and
the concavity geometry of the free surface in the bubble case has a more profound effect than a
confined liquid drop. From a mathematic point of view, the Hankel function in the characteristic
Eq. (9) or Eq. (15) is always complex even when its argument is real. In such a case, the roots
of the characteristic equations cannot be real, that is, the angular frequency is always nonzero, no
matter how large the viscosity of the droplet or the outer liquid is. Physically, the infinite extent of
the outer viscous liquid together with the no-slip boundary condition at the liquid-liquid interface
smooths out large velocity gradients and diminishes viscous stresses in the bulk of the liquids.
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As a result, energy dissipation due to viscosity is reduced and periodic oscillations takes place at
larger viscosities. Differently, when its viscosity is small, the outer liquid indeed enhances energy
dissipation and increases the damping rate. Generally, from the variation of the damping rate with
Oh and C in Fig. 6(a), we see that the viscosity of the inner or outer liquid plays a dual role in
the oscillation of the droplet: on one hand, viscosity dissipates energy and increases the damping
rate; on the other hand, viscosity generates and diffuses vorticities, suppresses loss of energy, and
tries to decrease the damping rate. Two mechanisms competes with each other: at small viscosities,
the former prevails, whereas at large viscosities, the latter dominates. The balance between them is
obtained at some critical value of Oh or C, at which the damping rate reaches its maximum. This
critical Oh or C can be estimated by equaling the length of vorticity diffusion to the radius of the
drop [6,22]. The angular frequency is decreased significantly by increasing C at relatively small
values of Oh. At relatively large values of Oh, the angular frequency is first increased and then
decreased with C increasing. When C is sufficiently large [see the line for C = 3 in Fig. 6(b)], the
angular frequency is nearly zero over the range of Oh, indicating that large viscosities do not benefit
the periodic oscillation of the droplet.

The effect of the viscosity of the outer liquid on the damping rate and the angular frequency of
the viscoelastic droplet when the elasticity of the inner liquid is small is shown in Fig. 7. Similar
to the large elasticity case illustrated in Fig. 6, the bifurcations disappear when the outer liquid is
viscous. The droplet is periodically oscillatory all the time. In Fig. 7(a), it appears that the upper and
lower branches beyond the supercritical bifurcation point are separated and the lower branch joins
the least damped mode. Similar to the large elasticity case, the viscosity of the inner or outer liquid
exhibits a dual effect on the oscillation of the droplet. In Fig. 7(b), at small values of Oh, the angular
frequency is greatly decreased by increasing the viscosity of the outer liquid. When C is increased
to 2, the angular frequency is nearly zero for all Oh’s. At large values of Oh, the angular frequency
is nonzero but quite small for all C’s.

The dependence of the damping rate and the angular frequency on the relative stress relaxation
time of the inner liquid λ1r,i is presented in Fig. 8 for different values of C, where the viscosity of
the inner liquid is large. The inviscid case of the outer liquid (C = 0) is also plotted in the figure for
comparison. Clearly, when the outer liquid is viscous, the subcritical and supercritical bifurcations
do not exist any more. The lower branch of the subcritical bifurcation and the upper branch of the
supercritical bifurcation appear to become parts of an integrated mode. Meanwhile, the upper branch
of the subcritical bifurcation and the lower branch of the supercritical bifurcation are integrated into
a second mode, as depicted in Fig. 8(a). For a fixed value of C, the lines of the two modes intersect
at some point. That is, the least damped mode shifts from one to the other. As illustrated in Fig. 8(b),
both the modes are periodically oscillatory with nonzero angular frequency for all values of λ1r,i.
With an unbounded domain, the viscous host liquid removes the possibility of aperiodic decay of
the perturbation. At small values of λ1r,i close to zero, the viscosity of the outer liquid increases
the damping rate and the angular frequency of the least damped mode slightly, whereas at large
values of λ1r,i, both the damping rate and the angular frequency of the mode are generally decreased
by increasing C. These trends confirm the dual role the viscosity of the outer liquid plays in the
oscillation behavior of the droplet.

The case of small viscosity of the inner liquid is also examined. The corresponding result is
illustrated in Fig. 9, where the line for the inviscid case C = 0 is plotted for comparison. In
the figure, as C increases from zero to 0.03, the damping rate is increased, whereas the angular
frequency is decreased. When C is further increased to 0.1, starting from λ1r,i � 0.1, the angular
frequency is decreased rapidly as λ1r,i increases. When λ1r,i is around 80, the angular frequency
almost falls to zero. In the figure, in addition to the least damped mode, the second least damped
mode that possesses the second smallest damping rate is plotted for C = 0.1. (Note that around
C = 0.1 the viscosity of the outer liquid is comparable to the viscosity of the inner liquid.) It is
demonstrated in Fig. 9(a) that the curves of the two modes encounter each other at λ1r,i � 80 and
form an analogy to supercritical bifurcation. Beyond the bifurcation point they seem to become two
aperiodic branches. This scenario remains when C is increased to 0.2. However, when C becomes
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FIG. 7. (a) The damping rate Re(ω) and (b) the angular frequency Im(ω) versus the Ohnesorge number of
the inner liquid Oh for different values of the Ohnesorge number of the outer liquid C. The case of relatively
small elasticity of the inner liquid, λ1r,i = 0.018, λ2r,i = 0.0018. ρr = 1.

larger, see the line for C = 1, the bifurcation phenomenon vanishes. As C further increases, both
the damping rate and the angular frequency are decreased greatly. Particularly, when C is equal to
2, the angular frequency of the least damped mode is decreased nearly to zero for all values of λ1r,i.

C. Effect of the elasticity of the outer liquid on the oscillation of the viscoelastic droplet

When the outer host liquid is non-Newtonian viscoelastic, four dimensionless parameters, i.e.,
ρr , η0r , λ1r,o, and λ2r,o, are needed to describe its properties. Note that in the calculation we use C
instead of η0r to represent the magnitude of the viscosity of the outer liquid, as performed previously.
Owing to the presence of the unknown ω in both the Bessel and Hankel functions, the transcendental
characteristic Eq. (9) becomes extremely difficult to solve. It is hard as well to get a whole picture,
for there are so many parameters involved. In the following, we simply fix the density ratio ρr and
the Ohnesorge number of the outer liquid C to 1 and examine the effect of the elasticity of the outer
liquid on the oscillation of the droplet by varying the value of λ1r,o or λ2r,o.
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FIG. 8. (a) The damping rate Re(ω) and (b) the angular frequency Im(ω) versus the relative stress
relaxation time of the inner liquid λ1r,i for different values of the Ohnesorge number of the outer liquid C.
The case of relatively large viscosity of the inner liquid, Oh = 10. ρr = 1.

The effect of the relative stress relaxation time of the outer liquid λ1r,o on the damping rate and
the angular frequency of the viscoelastic droplet is shown in Fig. 10 for the case of large elasticity
of the inner liquid. Without loss of generality, in the figure the ratio of λ2r,o to λ1r,o is taken to be 0.1.
As can be seen in Fig. 10, with the increase in λ1r,o from zero, both the damping rate and the angular
frequency of the least damped mode are suppressed, particularly at small values of Oh. When λ1r,o

is increased to 1, the angular frequency is decreased almost to zero, indicating that large elasticities
of the outer liquid do not favor periodic oscillations of the droplet. For λ1r,o = 100, the line of the
second least damped mode is also plotted in the figure. Clearly, for such a large value of λ1r,o, the
second least damped mode comes into play with its damping rate comparable to that of the least
damped mode and its nonzero angular frequency. Presumably, the elasticity of the outer liquid may
lead to a multimode dominant situation in which two or more modes are of nearly equal importance
in determining the oscillation characteristics of the droplet.
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FIG. 9. (a) The damping rate Re(ω) and (b) the angular frequency Im(ω) versus the relative stress
relaxation time of the inner liquid λ1r,i for different values of the Ohnesorge number of the outer liquid C.
The case of relatively small viscosity of the inner liquid, Oh = 0.1. ρr = 1.

The small elasticity case of the inner liquid is shown in Fig. 11, which turns out to be similar
to the large elasticity case in Fig. 10. In the small elasticity case, both the damping rate and the
angular frequency decreases with the increase in λ1r,o. When λ1r,o is as large as 2, the angular
frequency approaches zero, indicating that the decay of the least damped mode becomes almost
aperiodic.

The effect of the relative strain retardation time of the outer host liquid λ2r,o on the oscillation
of the viscoelastic droplet is shown in Fig. 12, where the large elasticity case of the inner liquid is
considered and the relative stress relaxation time of the outer liquid λ1r,o is fixed to 1. As shown in
the figure, as the ratio of λ2r,o to λ1r,o increases, both the damping rate and the angular frequency
are increased. However, the effect of λ2r,o is quite limited. We predict that compared with the other
properties of the outer liquid the strain retardation time is a secondary factor in the oscillation of the
droplet.
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FIG. 10. (a) The damping rate Re(ω) and (b) the angular frequency Im(ω) versus the Ohnesorge number
of the inner liquid Oh for different values of the relative stress relaxation time of the outer liquid λ1r,o. The case
of relatively large elasticity of the inner liquid, λ1r,i = 30, λ2r,i = 3. ρr = 1, C = 1.

IV. CONCLUSIONS

The small-amplitude oscillation of a viscoelastic liquid droplet suspended in an immiscible
viscoelastic host liquid is studied. The damping rate and the angular frequency determining the
oscillation behavior of the viscoelastic droplet are obtained by solving numerically the characteristic
equation derived. The effect of the density, viscosity and elasticity of the outer host liquid on the
oscillation of the viscoelastic droplet is explored. It is found that within the interval of Ohnesorge
number in which the droplet is periodically oscillatory, increasing the density of the outer liquid
leads to a general decrease in the damping rate and in the frequency of oscillation. The region in the
parametric plane of Oh and λ1r,i, where the droplet undergoes periodic oscillations, can be enlarged
to some extent by making the outer liquid denser. The viscosity of the outer liquid may lead to
the disappearance of supercritical and subcritical bifurcation phenomena existing in the inviscid
case of the outer liquid. When the outer liquid is viscous, the transition from periodic oscillation
to aperiodic decay is absent and the droplet oscillates periodically. In addition, the viscosity of
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FIG. 11. (a) The damping rate Re(ω) and (b) the angular frequency Im(ω) versus the Ohnesorge number
of the inner liquid Oh for different values of the relative stress relaxation time of the outer liquid λ1r,o. The case
of relatively small elasticity of the inner liquid, λ1r,i = 0.018, λ2r,i = 0.0018. ρr = 1, C = 1.

the inner or outer liquid is found to play a dual role in the oscillation of the droplet. Depending
on the magnitude of viscosity, it enhances/retards the damping of a perturbation by dissipating
energy/diffusing vorticities. The elasticity of the outer host liquid may result in a decrease in both
the damping rate and the angular frequency of the least damped mode.
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APPENDIX: DERIVATION OF THE CHARACTERISTIC EQUATION

Substitution of the decomposition Eq. (8) into the Jeffreys Eq. (1) yields

τ = 2ηeffD, (A1)
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FIG. 12. (a) The damping rate Re(ω) and (b) the angular frequency Im(ω) versus the Ohnesorge number
of the inner liquid Oh for different values of the relative strain retardation time of the outer liquid λ2r,o/λ1r,o.
The case of relatively large elasticity of the inner liquid, λ1r,i = 30, λ2r,i = 3. ρr = 1, C = 1, λ1r,o = 1.

where ηeff = η0(1 − λ2σ )/(1 − λ1σ ) is the so-called effective viscosity [10,11].
Then the momentum Eq. (3) is expressed as

ρ
∂v

∂t
= −∇p + ηeff∇2v. (A2)

Taking the curl of Eq. (A2), we have

ρ
∂�

∂t
= −ηeff∇ × ∇ × �, (A3)

where � = ∇ × v is the vorticity.
As is known, the vorticity field is solenoidal, which can be decomposed into a toroidal and a

poloidal field [21,22], i.e.,

� = ∇ × A + ∇ × ∇ × B, (A4)

033610-18



SHAPE OSCILLATIONS OF A VISCOELASTIC DROPLET …

where the vectors A and B only have a nonzero component in the radial direction. Thus, the velocity
field consists of three components,

v = A + ∇ × B + ∇φ, (A5)

where φ is the velocity potential. The second component, ∇ × B, is a tangential part of the velocity,
corresponding to the purely rotational motion of the liquids. Because there is no restoring force for
this motion, it will be aperiodically damped ultimately [22,26]. One can also find that the governing
equations and boundary conditions in which B is involved are decoupled with those equations of A
and φ. As a consequence, the component B is of little interest and can be omitted appropriately.

Impose the normal mode decomposition

A = T (r)Pm
n (cosθ )eimϕe−σ t er, (A6)

where er is the unit vector in the radial direction, and substitute it into Eq. (A3), we get an equation
for T ,

d2T

dr2
− n(n + 1)

r2
T + ρσ

ηeff
T = 0. (A7)

Considering the boundedness at r = 0 and r → ∞, the solutions to Eq. (A7) are

Ti(r) =
( r

R

) 1
2
Ti(R)

Jn+ 1
2
(xi )

Jn+ 1
2
(Xi )

, (A8)

To(r) =
( r

R

) 1
2
To(R)

H (1)
n+ 1

2

(xo)

H (1)
n+ 1

2

(Xo)
, (A9)

where

x =
√

ρσ

ηeff
r, X =

√
ρσ

ηeff
R. (A10)

However, from the continuity Eq. (2), we get an equation for the velocity potential φ,

∇2φ = −∇ · A = − 1

r2

d

dr
(r2T )Pm

n (cosθ )eimϕe−σ t . (A11)

Similarly, substituting the normal mode decomposition

φ = �(r)Pm
n (cosθ )eimϕe−σ t (A12)

into Eq. (A11) yields

d2�

dr2
+ 2

r

d�

dr
− n(n + 1)

r2
� = − 1

r2

d

dr
(r2T ). (A13)

The general solution to Eq. (A13) is

� =
[
α − n + 1

2n + 1

∫ r

R
s−nT (s)ds

]
rn +

[
β − n

2n + 1

∫ r

R
sn+1T (s)ds

]
r−(n+1), (A14)

where α and β are integration constants. The boundedness at r = 0 and r → ∞ requires that

βi = − n

2n + 1

∫ R

0
rn+1T (r)dr (A15)

and

αo = n + 1

2n + 1

∫ ∞

R
r−nT (r)dr. (A16)
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From the momentum Eq. (A2) we express the pressure as

p̂(r) = ρσ� − ηeff
dT

dr
. (A17)

Plugging T in Eqs. (A8) and (A9), � in Eq. (A14), and p̂ in Eq. (A17) into the boundary condition
Eqs. (4)–(7), we have

Ti(R) + d�i

dr

∣∣∣∣
r=R

= −σ ξ̂ , (A18)

To(R) + d�o

dr

∣∣∣∣
r=R

= −σ ξ̂ , (A19)

�i(R) = �o(R), (A20)

2R
d

dr

[
1

r
(ηeff,o�o − ηeff,i�i )

]∣∣∣∣
r=R

+ ηeff,oTo(R) − ηeff,iTi(R) = 0, (A21)

−p̂o(R) + 2ηeff,o

(
dTo

dr
+ d2�o

dr2

)∣∣∣∣
r=R

+ p̂i(R) − 2ηeff,i

(
dTi

dr
+ d2�i

dr2

)∣∣∣∣
r=R

= γ
(n − 1)(n + 2)

R2
ξ̂ .

(A22)

Substituting Eq. (A14) into the kinematic boundary condition Eqs. (A18) and (A19) yields

αi = n + 1

n
R−(2n+1)βi − σ

n
R−(n−1)ξ̂ , (A23)

βo = n

n + 1
R2n+1αo + σ

n + 1
Rn+2ξ̂ . (A24)

Substituting Eq. (A14) as well as Eqs. (A23) and (A24) into the no-slip boundary condition
Eq. (A20) and the continuity of the tangential stresses Eq. (A21) yields

nRn−1αo − (n + 1)R−(n+2)βi = −σ ξ̂ , (A25)

and

2n(2n + 1)ηeff,oRn−1αo − 2(n + 1)(2n + 1)ηeff,iR
−(n+2)βi + n(n + 1)[ηeff,oTo(R) − ηeff,iTi(R)]

= −2[n(n + 2)ηeff,o − (n − 1)(n + 1)ηeff,i]σ ξ̂ . (A26)

Substitution of the solutions of T , i.e., Eqs. (A8) and (A9), into Eqs. (A15) and (A16) yields

βi = − n

2n + 1

Ti(R)Rn+2

XiJn+ 1
2
(Xi )/Jn+ 3

2
(Xi )

(A27)

and

αo = n + 1

2n + 1

To(R)R−(n−1)

XoH (1)
n+ 1

2

(Xo)/H (1)
n− 1

2

(Xo)
. (A28)

Now substituting Eqs. (A27) and (A28) into Eqs. (A25) and (A26), we obtain the following
expressions of Ti(R) and To(R):

Ti(R) =
(2n + 1)ηeff,oXo

H (1)

n+ 1
2

(Xo)

H (1)

n− 1
2

(Xo)
− 2(n − 1)(n + 1)(ηeff,o − ηeff,i )

n(n + 1)
[
2(ηeff,i − ηeff,o) − ηeff,iXi

J
n+ 1

2
(Xi )

J
n+ 3

2
(Xi )

− ηeff,oXo

H (1)

n+ 1
2

(Xo)

H (1)

n− 1
2

(Xo)

]Xi

Jn+ 1
2
(Xi )

Jn+ 3
2
(Xi )

σ ξ̂ , (A29)
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To(R) =
(2n + 1)ηeff,iXi

J
n+ 1

2
(Xi )

J
n+ 3

2
(Xi )

+ 2n(n + 2)(ηeff,o − ηeff,i )

n(n + 1)
[
2(ηeff,i − ηeff,o) − ηeff,iXi

J
n+ 1

2
(Xi )

J
n+ 3

2
(Xi )

− ηeff,oXo

H (1)

n+ 1
2

(Xo)

H (1)

n− 1
2

(Xo)

]Xo

H (1)
n+ 1

2

(Xo)

H (1)
n− 1

2

(Xo)
σ ξ̂ . (A30)

The pressures at the interface can be obtained by substituting Eqs. (A14), (A23), (A24), (A27),
and (A28) into Eq. (A17),

p̂i(R) = −(n + 1)ηeff,i
Ti(R)

R
− ρiRσ 2 ξ̂

n
, (A31)

p̂o(R) = nηeff,o
To(R)

R
+ ρoRσ 2 ξ̂

n + 1
. (A32)

Then substituting Eqs. (A31) and (A32) into the normal force balance Eq. (A22) yields[(
ρo

n + 1
+ ρi

n

)
σ 2R + 2(n − 1)(n + 2)(ηeff,o − ηeff,i )

σ

R
+ (n − 1)(n + 2)

γ

R2

]
ξ̂

+ n(n + 2)ηeff,o
To(R)

R
− (n − 1)(n + 1)ηeff,i

Ti(R)

R
= 0. (A33)

Finally substituting Eqs. (A29) and (A30) into Eq. (A33), we obtain the following characteristic
equation:

σ 2
0

σ 2
= −1 +

[
(2n + 1)ηeff,iXi

J
n+ 1

2
(Xi )

J
n+ 3

2
(Xi )

+ 2n(n + 2)(ηeff,o − ηeff,i )
][

(2n + 1)ηeff,oXo

H (1)

n+ 1
2

(Xo)

H (1)

n− 1
2

(Xo)
− 2(n − 1)(n + 1)(ηeff,o − ηe f f ,i )

]

σR2[nρo + (n + 1)ρi]
[
ηeff,iXi

J
n+ 1

2
(Xi )

J
n+ 3

2
(Xi )

+ ηeff,oXo

H (1)

n+ 1
2

(Xo)

H (1)

n− 1
2

(Xo)
+ 2(ηeff,o − ηeff,i )

] ,

(A34)

where

σ 2
0 = (n − 1)n(n + 1)(n + 2)

nρo + (n + 1)ρi

γ

R3
. (A35)

Recall that σ0 is the frequency of oscillation of the inviscid problem [21,22].
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