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When two drops are slowly brought together and first touch, a microscopic liquid neck
or a bridge forms between them. The expansion of the neck is controlled by the capillary
(Laplace) pressure which diverges when the curvature of the interface is infinite at the
point where the drops first touch. The change in topology and the flows that ensue as time
advances and the bridge grows from microscopic to macroscopic scales, and the two drops
merge into one, are intimately coupled to this singularity in the dynamics. Despite the large
volume of work dedicated to this problem, currently experiment, theory, and computation
are not in complete agreement with respect to the earliest times following the initial contact
of the two drops. Experiments, supported by simulations, report an initial regime where
the radius of the connecting bridge grows linearly in time before a transition to either a
Stokes regime or an inertial regime where either viscous or inertial force balances capillary
(surface tension) force. In the initial linear regime, referred to as the inertially limited
viscous (ILV) regime, all three forces are thought to be important. This is in contrast
to theory which predicts that all coalescence events begin in the Stokes regime where
inertia is negligible. Here we use high-accuracy numerical simulations to show that the
ILV regime is only realized when the two coalescing drops are initially separated by a finite
distance. Moreover, for two drops that initially just touch at a point, coalescence always
begins in the Stokes regime. It is demonstrated that the linear ILV regime is more akin to a
Taylor-Culick-type regime whose existence and duration are purely consequences of the
use of an initial bridge of finite size that poorly approximates the point contact condition
that is a cardinal feature of the coalescence singularity.

DOI: 10.1103/PhysRevFluids.5.033608

I. INTRODUCTION

Drop coalescence plays a central role in a variety of industrial and natural processes involving
emulsions or dispersions of small drops of one fluid in a second, immiscible fluid [1,2]. In many
processes encountered in the petroleum and the chemical industries, it is necessary to remove a
dispersed water phase from a continuous oil phase. In the petroleum industry, water-in-oil emulsions
are formed during the production of crude oil. If the oil is not dehydrated or demulsified, the
presence of water in the oil can result in corrosion of pipes and other equipment, deactivation
of catalysts, and increased costs in transporting the unwanted water by pipeline or tanker among
other things [3]. In the petroleum industry, the application of electric fields to cause flocculation
and coalescence of dispersed water drops has been widely adopted [4,5]. Also in both oilfield and
refinery operations, electric fields are used first to atomize and then to coalesce water drops in
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the desalting of oil [3]. While both electrically driven dehydration and desalting have been known
for a century and are widely practiced but incompletely understood operations, electric fields have
more recently been proposed for use in solvent extraction where the process of drop formation for
generating increased surface area for mass transfer is followed by the operation of drop coalescence
for affecting phase separation [6,7]. Similarly, the process in which electric fields are used to induce
breakup followed by coalescence albeit while chemical reactions are occurring within microreactors
composed of liquid drops has also been receiving increasing attention in diverse applications
including the production of fine particles and powders [8].

Coalescence is also important in numerous other applications ranging from the food, agriculture,
and consumer products industries to the manufacturing of advanced materials. For example, coales-
cence is a dominant process in determining the appearance as well as the shelf life of emulsion-based
products including salad dressing and mayonnaise [9]. Drop collision and coalescence occur in
dense spray systems and in particular in applications involving combustion [10]. In fuel injector
systems, the competition between drop breakup and drop coalescence can have an impact on
engine performance [11]. In the production of many solid-state materials including ceramics and
metals, loose powders are fused together or sintered to form an interconnected solid [12]. At the
particle scale, sintering of initially two spherical particles closely resembles the coalescence of
two dispersion drops in an emulsion [13]. In polymer dispersions, the tendency of polymers to
agglomerate is controlled by the introduction of stabilizer which seeks to limit droplet coalescence
[14]. More recently, the controlled coalescence of drops in microfluidic devices has started to attract
attention due to a host of potential applications in chemistry, biochemistry, and materials science
[15].

In nature, the collision, bouncing, and coalescence of drops are central to raindrop growth and
the development of thunderstorms and have captivated the attention of the atmospheric science
community since the early studies of Benjamin Franklin and Lord Rayleigh [16,17]. Recently, Stone
and coworkers [18] have reported that oppositely charged drops may not coalesce in strong electric
fields. Also quite recently, researchers in the life sciences arena have studied and demonstrated the
remarkable parallels between the coalescence of liquid drops and the fusion of membranes, vesicles,
and nucleoli [19,20].

Consequently, due to its widespread prevalence in nature and use in industrial processes, there has
been considerable amount of work done to understand the fundamentals of the coalescence of two
drops (see below). The major goal of this paper is to advance the understanding of the dynamics
of the coalescence of two drops in a dynamically passive exterior fluid during the earliest times
following the instant when two drops have just touched and began to merge into one.

When two drops are slowly brought together and first touch, a microscopic liquid neck or a
bridge forms between them. The expansion of the neck is controlled by the capillary (Laplace)
pressure which diverges when the curvature of the interface is infinite at the point where the drops
first touch. The change in topology and the flows that ensue as time advances and the bridge grows
from microscopic to macroscopic scales, and the two drops merge into one, are intimately coupled
to this singularity in the dynamics.

One of the earliest significant studies into how such a connecting bridge would grow and evolve
in time was performed by Hopper [21,22] who obtained an exact analytical solution in the closely
related problem of the coalescence of two infinitely long cylinders, i.e., two circles, in the creeping
flow or Stokes limit. This two-dimensional (2D) analysis was extended to fully three-dimensional
(3D) drops by Eggers et al. [23] who showed that the initial dynamics or the asymptotic behavior of
two coalescing spheres (3D drops) is identical to that of two coalescing circles (its 2D counterpart).
This regime of coalescence has come to be known as the Stokes regime where the growth of the
connecting bridge follows a scaling law where the minimum radius of the neck R̃min grows linearly
in time t̃ albeit with a logarithmic correction, viz. R̃min ∼ −t̃ ln t̃ . The landmark paper by Eggers and
coworkers has led to a flurry of numerical and experimental studies in the field [24–36].

However, some recent studies have called into question whether the Stokes or the viscous regime,
where viscous and capillary (surface tension) forces alone are in balance while inertia is negligible,
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is the initial regime of coalescence. Indeed, recent studies [29,31] suggest that an alternative regime
wherein both viscous and inertial forces balance capillary force must be the initial regime of drop
coalescence. This regime is referred to as the inertially limited viscous (ILV) regime in which the
minimum bridge radius grows linearly with time without any logarithmic correction, viz. R̃min ∼ t̃ .
That the ILV regime is the initial or asymptotic regime of coalescence has been demonstrated in both
experiments [29,31] and simulations [29]. The lack of agreement between theory, which attests that
the Stokes regime is the initial regime of coalescence, and experiment (supported by simulation)
which instead purports that the ILV regime is the initial regime of coalescence, makes plain that a
careful investigation of the possible reasons for this discrepancy and its resolution are worthy goals
of research in drop coalescence and are the subjects of this paper.

The situation in which two drops of an inviscid fluid coalesce in a dynamically passive outer
fluid has also received much attention. Scaling arguments in this limit predict a power law scaling
in which the minimum radius of the connecting bridge depends on time to the one-half power
[23,37], viz. R̃min ∼ t̃1/2. This behavior was shown to hold even with the occurrence of the creation
of successive entrapped toroidal bubbles which had already been observed in previous numerical
simulations [38] albeit with a modification to the prefactor in the scaling law. The existence of
this inertial t̃1/2 regime has been extensively validated through both experiments and simulations
[24,26–29,31,34,35,37,39–41]. It is also noteworthy that during the coalescence of drops of liquids
of small but finite viscosity, the dynamics will transition or crossover into this inviscid regime when
the gap between the two drops, i.e., the axial separation between them, has grown sufficiently large
so that it is comparable to the viscous length scale [28].

The paper is organized as follows. Section II describes the mathematical formulation of the
problem along with the numerical method used in its solution. Section III uses simulations to analyze
the initial regime of drop coalescence and determines whether the ILV or the Stokes regime is
the true initial regime of coalescence. Section IV studies the dynamical transitions and/or regime
changes that arise from the initial, or asymptotic, regime of coalescence to the inviscid regime. The
paper ends in Sec. V with concluding remarks and a summary of possible areas in the field that can
benefit from further study.

II. MATHEMATICAL FORMULATION AND NUMERICAL METHOD

A. Problem statement and mathematical formulation

The system consists of two identical liquid drops each of radius R̃ of an incompressible
Newtonian fluid of constant density ρ and constant viscosity μ. Initially, the drops just touch at
a point which, in the continuum mechanical analysis to be carried out in this paper, is replaced by
that where the drops are connected by a microscopic bridge that is a cylinder of vanishingly small
radius R̃0 and vanishingly small height 2Z̃0 (see Fig. 1 and below). The drops are surrounded by
a dynamically passive or inert exterior fluid, here taken to be a gas, e.g., air, that exerts a constant
pressure on the drops. The surface tension γ of the liquid-air interface separating the drop and the
exterior fluid S(t̃ ) is spatially uniform and constant in time t̃ . Initially, the fluid within the drops
is quiescent so that the fluid velocity ṽ = 0 at time t̃ = 0. In what follows, it proves convenient
to adopt a cylindrical coordinate system (r̃, θ , z̃) whose origin is located at the point where the
drops initially just touch. Here r̃ and z̃ stand for the radial and axial coordinates and θ is the angle
measured around the z̃ axis, with the z̃ axis running along the line connecting the centers of the two
drops. Owing to the nature of the physical system that has just been described, the dynamics is taken
to be axisymmetric about the z̃ axis or r̃ = 0 and to be symmetric about the plane z̃ = 0. Therefore,
the problem domain, which is hereafter referred to as �(t̃ ), is reduced to the single quadrant of the
cross section of the interior of one drop or the 2D region that is bounded by the axis of symmetry
r̃ = 0, the plane of symmetry z̃ = 0, and the liquid-air interface S(t̃ ).

Following earlier studies [29,42], the problem is nondimensionalized by taking the radius of the
undisturbed drops as the characteristic length, lc ≡ R̃, and the inertial-capillary time tIC ≡

√
ρR̃3/γ
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FIG. 1. The onset of the coalescence of two equal-sized drops in a dynamically passive exterior fluid, e.g.,
a gas such as air: definition sketch and initial conditions. At the initial instant t̃ = 0, two spherical drops, each
of radius R̃, are connected by a microscopic neck or bridge of radius R̃0 and half height Z̃0, a zoomed-in view
of which is also shown (zoomed-in view not to scale). The fluid within the drops is quiescent at t̃ = 0.

as the characteristic timescale, tc ≡ tIC . The ratio of these two scales is then used as the characteristic
velocity, vc ≡ lc/tc, and a scale based on the capillary pressure is taken to be the characteristic
pressure/stress scale, pc ≡ γ /R̃. Introduction of these scales into the problem reduces the number
of governing parameters to just three dimensionless groups. The first is the Ohnesorge number,
Oh ≡ μ/

√
ρR̃γ , which is the ratio of the viscous force to the square root of the product of inertial

and surface tension forces and is solely based on the physical properties and the radii of the drops.
The other two dimensionless parameters arise because of the existence of a microscopic but finite-
sized bridge that initially connects the two drops. These are the dimensionless bridge radius and
height which are given by R0 ≡ R̃0/R̃ and 2Z0 ≡ ˜2Z0/R̃. Henceforward, all variables without tildes
over them are taken as the dimensionless counterparts of those with tildes, e.g., r ≡ r̃/R̃ is the
dimensionless counterpart of r̃.

When two spheres just touch at a point, the equation locally describing the profiles of the two
spheres is given by

z ≈ ± 1
2 r2 + · · · . (1)

Therefore, locally, the surfaces of the two spheres resemble two kissing parabolas [35] and the
distance between their surfaces varies as r2. [Equation (1) is not used in the simulations carried out
in this paper.] The point contact condition is replaced in the simulations by using an initial bridge
of radius R0 and height 2Z0 such that the equation of the surface of the bridge is given by

[r − (R0 + Z0)]2 + z2 = Z2
0 . (2)

The point contact condition is well approximated by setting 2Z0 = R2
0 and letting R0 → 0, which is

hereafter referred to as the approximate point contact condition. In the following section, the effect
of the size and aspect ratio of this finite connecting bridge, that is the value of R0 and values of 2Z0

that do not necessarily equal R2
0, on the coalescence dynamics is investigated.

The dynamics of drop coalescence, and the flow within the region �(t ), is governed by the
Navier-Stokes and continuity equations which in dimensionless form are

∂v
∂t

+ v · ∇v = ∇ · T, (3a)

∇ · v = 0, (3b)

where T ≡ T̃/pc = −pI + Oh[∇v + (∇v)T ] is the dimensionless stress tensor, with v ≡ ṽ/vc

denoting the dimensionless fluid velocity, p ≡ p̃/pc is the dimensionless pressure, t ≡ t̃/tc is
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dimensionless time, and ∇ ≡ R̃∇̃ is the dimensionless gradient operator. The pressure exterior to
the drops is taken to be uniform in space and constant in time, and set to be the pressure datum.

The domain �(t ) over which Eqs. (3a) and (3b) are solved consists of the region enclosed by the
free surface S(t ), the shape and location of which are unknown a priori, the axis of symmetry r = 0,
and the plane of symmetry z = 0. Symmetry boundary conditions are imposed along the latter two
boundaries. Along the free surface S(t ), the kinematic and traction boundary conditions are applied
to determine the unknown shape of the interface and to account for the discontinuity in stress due
to surface tension:

n · (v − vs) = 0, (4)

n · T = −2Hn. (5)

Here 2H = 2H̃R̃ is twice the dimensionless local mean curvature of S(t ), n is the outward pointing
unit normal to the free surface, and vs = ṽs/vc is the dimensionless velocity of points along the free
surface S(t ).

B. Numerical method

1. ALE algorithm, spatial discretization, and time integration

The aforementioned transient system of governing equations and boundary and initial conditions
are solved numerically using a fully implicit, arbitrary Lagrangian-Eulerian (ALE) method of lines
algorithm in which the Galerkin/finite element method (G/FEM) [43] is employed for spatial
discretization [44] and an adaptive, implicit finite difference method is deployed for time integration
[45]. In order to capture the large deformations that the surface of the coalescing drops or the free
surface S(t ), and the domain �(t ) enclosed by S(t ), undergo, the elliptic mesh generation method
developed by Christoloudou and Scriven [46] for studying thin-film coating flows and which was
later extended to simulate free surface flows of Newtonian and complex fluids with breakup and
coalescence [29,45,47], is used to discretize the spatial domain �(t ). With elliptic mesh generation,
the radial and axial coordinates of each grid point in the moving, adaptive mesh are determined
simultaneously with the velocity and pressure unknowns. The velocity and pressure unknowns are
solved for in the mixed interpolation sense using biquadratic basis functions to represent the velocity
unknowns and bilinear basis functions to represent the pressure unknowns [48]. The locations of
the mesh coordinates are also represented using biquadratic basis functions. The numerical scheme
reduces the problem to a system of nonlinear algebraic equations that can be solved iteratively via
a multidimensional Newton’s method. The resulting system of linear equations is then solved with
a multifrontal algorithm which takes advantage of the sparsity of the Jacobian matrix that arises in
Newton’s method. This multifrontal algorithm is inspired by the frontal method introduced by Hood
[49]. For a more complete description of the numerical method that has been employed, the reader
is referred to Notz and Basaran [45] and Anthony et al. [50].

2. Mesh construction and remeshing

Simulating the coalescence of two drops entails solving a challenging multiscale free surface
flow because of the occurrence of several disparate length scales. Indeed, the simulations require
that the domain �(t ) be discretized or subdivided into elements so that phenomena occurring over
the following highly disparate length scales be accurately captured. First, there is the O(1) length
scale which is the radius of the undeformed drops. Next are two much smaller length scales: one
is the O(R0) length scale which is the initial radius of the bridge or neck connecting the drops and
another is yet even a smaller length scale, the O(R2

0) length scale which is the initial height of that
bridge. Moreover, it will be seen below that another length scale arises that is of O(R3

0), making
the range of length scales in the problem even more disparate. Indeed, if the initial bridge radius is
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O(10−4), phenomena that occur over length scales that differ by 12 orders of magnitude or a factor
of O(1012) must be dealt with in a given simulation.

To accomplish the goals stated in the previous paragraph, it is necessary to concentrate the
elements of the mesh in the neighborhood of the connecting bridge. Although the elliptic mesh
equations developed by Christodoulou and Scriven [46] use functions to concentrate the mesh
where desired, it has been found necessary to incorporate additional, more strict methods of mesh
concentration. Fortunately, since the overall dynamics of coalescence is rather predictable in that
the connecting bridge will simply grow until the drops have merged, this fact can be exploited by
incorporating into the mesh design an artificial algebraic surface that surrounds the neighborhood of
the bridge and which grows with it in time. This has the effect of subdividing the domain and hence
the mesh into two distinct parts such that elements from one side of the boundary are not permitted to
cross into the other side. Given the physics of coalescence, it has been found convenient to construct
this boundary as an ellipse that is specified solely by the minimum radius of the bridge, Rmin(t ), and
whose shape is given by an equation that is determined by using Newton’s method to force the
ellipse to satisfy the conditions given by Eq. (6):

r1 = 0, (6a)

z1 =
{

Rmin(t ) if Rmin(t ) < 1/2
1/2 if Rmin(t ) � 1/2

, (6b)

∂r

∂z

∣∣∣∣
(r1,z1 )

= tan(π/3), (6c)

r2 = 2Rmin(t ), (6d)

z2 = 0, (6e)

∂r

∂z

∣∣∣∣
(r2,z2 )

= 0. (6f)

An example mesh is shown in Fig. 2 at a relatively late stage of a simulation and depicts the
division of �(t ) into two domains by the algebraic surface that is marked in red. Elements in each
subdomain are then concentrated where they are needed, e.g., near the neck, using the built in
functionality present in the elliptic mesh equations. For computational efficiency, the movement
of the algebraic surface is delayed by one time step relative to the current solution. This is done to
avoid any dependency of the locations of the nodes along the algebraic surface on the node located at
r = Rmin. Theoretically, this approach could be problematic if the algorithm were to take too large of
a time step in situations in which Rmin(t ) is changing rapidly. However, the time step size determined
by the adaptive time stepping algorithm used in the code, which is set by the instantaneous dynamics
of the flow [45,48], is in practice always sufficiently small that this issue never arises.

While the strategy described in the previous paragraph has proven to be successful as Rmin varies
over a wide range, it does not perfectly control the mesh. When attempting to span many orders of
magnitude in Rmin, typically three or more, the elements remain too concentrated in the bridge as
the height of the bridge scales as R2

min whereas the ellipse grows in proportion to Rmin. In order
to accommodate large changes in the bridge size, periodic remeshing, typically whenever Rmin

increases by a factor of four, has been found convenient. In this remeshing step, the concentration
imposed by the control functions in the elliptic mesh is relaxed to avoid having elements that
are needlessly too small in the bridge. The accuracy of the remeshing process has been ensured
by comparing and demonstrating excellent agreement between results obtained from simulations
with remeshing and ones without remeshing. The remeshing coupled with the incorporation of an
algebraic dividing surface in the domain has made it possible to carry out simulations over larger
ranges of Rmin than those reported in earlier works on drop and bubble coalescence [29,51]. A more
detailed description of the aforementioned meshing techniques can be found in Ref. [52].
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FIG. 2. Portion of an example mesh during the coalescence of two drops of Oh = 0.001 at the instant in
time when Rmin ≈ 0.18. The mesh is heavily concentrated both radially and axially near the neck compared
to the bulk of the drop(s). The dividing surface or boundary, marked in red, moves according to an algebraic
condition so that its position changes dynamically in time in response to the evolution of the bridge radius
Rmin(t ), as discussed in the text. Actual simulations typically use a mesh that is two to four times more dense
than the example shown here.

III. INITIAL REGIME OF DROP COALESCENCE

As per the discussion in the introduction, it has come to be accepted based on some of the most
recent experimental work in the field that coalescence always begins in the ILV regime and that the
dynamics eventually transitions to either the Stokes regime if Oh >̃ 1 or the inertial regime if Oh <̃ 1
[29] where the scaling law governing the variation of the minimum bridge radius Rmin with time τ

(see below) from the coalescence singularity is given in each of these regimes by

Rmin = −CV τ ln
( τ

Oh

)
(Stokes regime), (7a)

Rmin = CILV τ (ILV regime), (7b)

Rmin = CIτ
1/2 (Inviscid regime). (7c)

CV , CILV , and CI in Eqs. (7) are the prefactors in each of these three regimes. Moreover, the transition

from the ILV to the Stokes regime is believed to occur when Oh ≈ (Rmin)−1/2| ln ( Rmin
8 )| and the

transition from the ILV to the inertial regime is believed to occur when Rmin ≈ Oh [29]. Here, as
we are particularly interested in demonstrating the existence or nonexistence of the ILV regime, the
most instructive case to study is one that should not only begin in the ILV regime but also remain
in the ILV regime during the entirety of the coalescence event. Thus, we consider the situation in
which Oh = 0.6, which is also the primary case that was used to establish the existence of the ILV
regime by Paulsen et al. [29]. While the dynamics in this case should theoretically transition from
the ILV to the inertial regime when Rmin ≈ 0.6, this value of Rmin is large enough that finite-size
effects would come into play when Rmin has become so large and hence a transition between two
scaling regimes would be difficult to observe in actuality. Moreover, because Oh < 1 in this case, a
transition to the Stokes regime would not be expected to occur.

Therefore, we now report results of simulations of drop coalescence when Oh = 0.6 and the
point contact condition is approximated using Eq. (2) with R0 = 10−6 and Z0 = 1

2 R2
0 = 5 × 10−13.
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FIG. 3. Scaling behavior of three quantities obtained from simulations. (a) The variation of the minimum
neck radius Rmin with the viscous coalescence time τv (main figure) and the variation of the magnitude of twice
the mean curvature 2H with Rmin (inset), both of which are shown as log-log plots. (b) The variation of the
velocity of the growing neck or the bridge, which has been rescaled by the visco-capillary velocity, with Rmin

and which is shown as a semilog plot. In (a)–(b), it is demonstrated that the scaling laws inferred from the
simulations closely follow the predictions obtained from Stokes theory for Rmin, 2H, and uv rather than those
that would be expected in a linear ILV regime. Here Oh = 0.6, R0 = 10−6, and Z0 = (1/2)R2

0 = 5 × 10−13.

The use of such a small value for R0, which is only made possible by the improved meshing scheme
employed here, is to ensure that the simulations yield a sufficient amount of scaling data that can
be fit by an equation such as those given in Eq. (7) before finite-size effects become important.
Figure 3 shows the results of simulations in which the time evolution of the minimum bridge radius
is depicted for two drops of Oh = 0.6 undergoing coalescence and also two purely viscous drops
that are coalescing under Stokes flow conditions, i.e., simulations that have been carried out in the
limit of 1/Oh = 0.

Since simulations must begin when the bridge is already of finite size, in Fig. 3 the time
coordinate has been redefined such that τ = t + tcon. Here tcon is the estimated time that has elapsed
between the instant when the two drops just made contact and the time when the simulation began,
t is the time from the start of the simulation or the so-called simulation time, and the new time
variable τ is the coalescence time which describes the total time since the occurrence of the
space-time coalescence singularity. In order to determine the time since contact, simulation data
are fit to a power law once Rmin has increased by one order of magnitude and the contact time
is determined by extrapolation of the data to zero bridge radius. This procedure is expected to
work well for coalescence events that begin in a power law regime such as the ILV or the inertial
regime. However, one would expect this procedure to give an inaccurate estimation of the time since
contact in the Stokes regime. However, even with a poor determination of contact time or, worse
yet, even if tcon = 0, only scaling results in the first decade of variation of Rmin are affected until the
true scaling regime takes hold. This initial transient or noise can be made smaller and smaller by
starting the simulations at ever smaller values of R0. Incidentally, this procedure is similar to that
which is used in calculating the breakup or pinch-off time in studies of jet breakup (see Ref. [53]).
Furthermore, since the simulation(s) in the Stokes limit should be scaled using the visco-capillary
time tVC = μR̃/γ as characteristic time because density does not enter the problem in that limit,
the simulation data at finite Oh (note that Oh = tVC/tIC) have also been rescaled accordingly where
τv = τ/Oh to enable comparison between simulations in which inertia is accounted for (finite Oh)
and ones in which there is no inertia (1/Oh = 0 or Oh = ∞).
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Upon the aforementioned rescaling, we see in Fig. 3(a) that the simulation results at a finite
value of Oh overlap with or collapse onto both the simulation results carried out assuming the
fluid within the drops is undergoing Stokes flow and the theoretical prediction of Eggers et al.
[23] where Rmin = −(τv/π ) ln(τv ) which is valid for Rmin < 0.03. By contrast, the linear scaling
behavior expected from the ILV regime is a relatively poor fit to the simulation data for all times
regardless of the value of the prefactor chosen. Although the distinction between the Stokes and the
ILV regimes is quite clear here given the large range of Rmin spanned by the simulations carried out
in this paper, it is often more instructive and/or useful to derive the radial scaling behavior from the
scaling of the radial velocity at the location of Rmin, viz. umin = u(r = Rmin). Figure 3(b) shows the
variation of the rescaled velocity, which has once again been rescaled by using the visco-capillary
timescale such that uv = uminOh, with Rmin. This figure provides a definitive test as to which regime
is the initial regime of coalescence and a clear delineation between them because on a log-log plot
the inertial scaling regime would yield a straight line with a slope of −1/2, on a semilog plot the
Stokes regime would yield a straight line with slope 1/π , and the ILV regime would be represented
by a horizontal line on either plot because the velocity is a constant in that regime. Figure 3(b)
makes plain that on a semilog plot, both the simulation data for Stokes flow and the simulation data
for Oh = 0.6 yield straight lines as would be expected in a Stokes regime. Moreover, the slopes of
the lines from the two simulations are identical with the predicted slope of 1/π from theory. Any
small discrepancy at late times may be due to finite-size effects and/or the onset of the transition out
of the Stokes regime into the inviscid regime.

The driving force for coalescence and hence the resulting flows in this problem is due to the
large curvature of the meniscus in the vicinity of r = Rmin. In theoretical analyses of coalescence
and in the derivation of the scaling law for coalescence in the Stokes regime, a scale that is smaller
than the bridge height, 2Zb ≈ R2

min, arises. This small length scale is given by δ ≈ R3
min [23], and

represents the scale of a radially directed ring force that drives the coalescence process. Therefore,
we next test whether the simulations can accurately predict this small length scale by obtaining
from simulation data how the magnitude of twice the mean curvature of the interface |2H| scales in
this locale keeping in mind that the expectation from theory is that |2H| ≈ δ−1 ≈ R−3

min. The inset to
Fig. 3(a) clearly shows that the numerically computed values of |2H| in both the finite and infinite
Oh simulations do indeed scale with R−3

min as expected from theory. That this scaling is observed in
either case and that an ultrasmall length scale δ does indeed exist provides yet more credence that
coalescence does indeed begin in the Stokes regime (also, see below). Moreover, because this length
scale was predicted by Hopper to be of central importance in the similarity solution for the interface
profile during coalescence of two infinite cylinders [22], we have constructed similarity profiles by
suitably collapsing the transient profiles obtained from the solutions of the Navier-Stokes system.
Here the collapse of the numerical solutions is accomplished by rescaling of the radial and the
axial length scales by Rmin and R2

min, respectively. This collapse is demonstrated in Fig. 4 where the
rescaled shape profiles are plotted over five orders of magnitude of variation in Rmin.

Given that the new simulations when Oh = 0.6 show that the initial dynamics clearly lies in the
Stokes regime, it is natural to ask why a linear regime was observed in both the experiments and the
simulations in Ref. [29]. It is worth noting that a key difference between their simulations
and the ones being presented here pertains to the initial geometry of the bridge or, more precisely,
how the value of half the bridge height Z0 is assigned in this paper as opposed to that in Ref. [29].
The results presented in Fig. 3 have been obtained using an initial half bridge height of Z0 =
(1/2)R2

0 whereas in the previous simulations in Ref. [29] a value of Z0 = 0.1R0 was used due to
computational limitations. This limitation inherent to the computational results reported in Ref. [29]
was necessitated because simulations become increasingly more difficult as Z0 is decreased from a
value that is comparable to or somewhat smaller than R0 to a value that scales as O(R2

0) and hence
is orders of magnitude smaller than the initial bridge radius when R0 � 1. Therefore, if R0 = 10−3,
while the value of Z0 used here would be 5 × 10−7, that used in Ref. [29] was 10−4. Given the large
discrepancy of more than two orders of magnitude in the initial gap width between the two works,
a study is undertaken into any possible effect that the gap width or bridge height can have on the
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FIG. 4. Variation of the appropriately scaled profiles of the bridge or neck connecting two coalescing drops
as a function of the minimum radius Rmin and hence time. The profiles are seen to collapse nicely onto a single
similarity profile as Rmin → 0. The inset shows a blow-up of the interface profiles shown in the main figure by
focusing in on the region in the vicinity of the location where the bridge radius is a minimum. Here Oh = 0.6,
R0 = 10−6, and Z0 = (1/2)R2

0 = 5 × 10−13.

scaling dynamics by carrying out simulations over the range of values of 5 × 10−7 � Z0 � 10−4. (It
should be noted that whereas values of R0 as small as 10−6 and values of Z0 as small as 5 × 10−13

have been used in this paper, the smallest values of these length scales that could be achieved in
Ref. [29] were 10−3 and 10−4, respectively.)

Figure 5 shows simulation results for the scaling of Rmin with time tv where the latter has again
been rescaled with the visco-capillary time, viz. tv ≡ t̃/tVC = t/Oh. The results shown in this figure
make clear that as the initial value of the half bridge height is increased from the ideal case of two
drops starting to coalesce from an initial state of approximate point contact, viz. Z0 = 5 × 10−7, the
simulation results depart from what would be expected in the Stokes scaling regime and the early
time dynamics begin to exhibit behavior that would be expected in an apparent initial linear regime.
The duration of this linear regime is dependent on the value of Z0 and once sufficient time has
elapsed, this regime ends and thereafter the dynamical response exhibited by all simulations collapse
onto that which would be expected in the Stokes regime. It is noteworthy that the case of Z0 = 10−4

reported in this figure is identical to the case that was used in Ref. [29] to demonstrate the existence
of the ILV regime and that the results obtained in this work and those reported in Ref. [29] are in
good agreement with each other when a consistent set of initial conditions, viz. R0 = 10−3 and Z0 =
0.1R0 = 10−4, are used despite the improved meshing scheme and higher resolution simulations that
are utilized in this work. The inset to Fig. 5 shows the computed scaling of the half bridge height Zb,
which is calculated from the simulations as Zb = z(r = 1.05Rmin) and which is expected to scale as
R2

min given the geometry of the two drops. However, when the drops are connected by a bridge of
finite height, viz. Z0 > (1/2)R2

0, the height of the bridge grows insignificantly in time compared to
the initial separation between the drops. This delayed or arrested growth in the instantaneous height
of the bridge lasts longer as the value of Z0 is increased.

A similar situation arises and has already been reported in bubble coalescence when a finite
bridge connects the two bubbles [42]. (We note that in the most recent and accurate simulations
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FIG. 5. The effect of the initial half bridge height Z0 on the variation with time of the instantaneous value
of the minimum radius Rmin (main figure) and the variation of the instantaneous value of the half bridge height
Zb with Rmin (inset). Here all simulations begin with an initial bridge of radius R0 = 10−3 but the initial bridge
height in the different simulations is systematically increased from the case where two drops virtually touch
at a point, viz. Z0 = (1/2)R2

0, to values where Z0 approaches 0.1R0. Lines/curves represent simulation results
when Oh = 0.6, whereas symbols denote the results of a Stokes flow simulation in which Z0 = 0.1R0 = 10−4.
A line of slope one in the main plot shows that a linear regime in radial scaling is followed until the axial scale
Zb begins to vary as R2

min as shown in the inset.

of bubble coalescence [42], it has been demonstrated that simulations and theory are in excellent
agreement when proper initial conditions on the bridge connecting the two bubbles are used in the
computations.) As in the case of bubble coalescence, the dynamics in the present case can also be
understood as a Taylor-Culick [54,55] regime that is analogous to the retraction of a gas film that
has undergone point rupture. When this linear regime should give way to the Stokes regime can
be predicted by equating the value of Z0 to the value of the half bridge height in the ideal case
as a function of Rmin, that is, Zb = (1/2)R2

min. One can then solve for the value of Rmin where the
increase in bridge height due to the curvature of the drop surfaces has become equal in magnitude to
the initial separation of the drops, giving a value of a crossover radius of Rc = (2Z0)1/2. Once this
crossover radius has been reached, the dynamics forgets the finiteness of the initial bridge height
and thereafter the scaling of Zb with time follows that in the ideal case. The results reported in Fig. 5
confirm that this is indeed what is observed and that the simple estimate for the duration of the linear
regime is also consistent with the simulation results. Therefore, these findings suggest that the ILV
regime is simply a consequence of the initial conditions that give rise to a Taylor-Culick regime
where the axial scale is roughly constant, which is a point that is returned to below. Furthermore,
Fig. 5 includes the results from one simulation, which are shown as symbols, that has been carried
out under Stokes flow conditions with Z0 = 10−4 and which clearly shows that the dynamics in this
case too follows the Taylor-Culick regime for some time as well. Since the inertial terms have been
thrown out or set equal to zero in the Stokes flow simulation, the resulting scaling regime must truly
be due to the finite size of the initial bridge connecting the drops and not the existence of the ILV
regime where inertial and viscous forces would balance capillary force.

Armed with the realization that the ILV regime is akin to a Taylor-Culick-type regime, we show
in Fig. 6 the variation of the absolute value of twice the mean curvature |2H | in the vicinity of
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FIG. 6. Scaling of the curvature in the Stokes and the ILV regimes. The variation of the magnitude of twice
the mean curvature 2H with Rmin determined from simulations. In both cases, Oh = 0.6 and R0 = 10−3. In
one of the cases (red curve), the simulations have been carried out with an initial condition of an ideal bridge
or a virtually point contact initial condition where Z0 = (1/2)R2

0 = 5 × 10−7. In the other case (blue curve),
a finite-size bridge is used as an initial condition where Z0 = 0.1R0 = 10−4. In the first case, the dynamics
follows that which is expected in the Stokes regime (black line of slope of −3.) In the second case, the dynamics
follows ILV scaling at early times where the curvature is nearly constant (dashed black line) for some time. In
the latter case, the dynamics ultimately transitions to the Stokes regime at late times (and/or for large values of
Rmin) where |2H | once again scales as R−3

min.

the neck with the minimum neck radius Rmin in two situations in which Oh = 0.6. One of the
cases shown depicts the results of a simulation that has been carried out with an initial bridge
corresponding to the situation where two drops virtually touch at a point (ideal condition where Z0 =
(1/2)R2

0 = 5 × 10−7) whereas in the other case, the simulation has been performed with an initial
bridge of finite size that poorly approximates the point contact condition (Z0 = 0.1R0 = 10−4). In
the former case, the dynamics lies in the Stokes regime and |2H | ∼ R−3

min, in agreement with earlier
results. However, in the latter case where the dynamics initially follows ILV scaling, after the decay
of initial transients, the curvature becomes virtually constant for some time, in accordance with
a Taylor-Culick-type behavior. Therefore, using the 1/R3

min scaling of curvature as a yardstick is
indeed one of several reliable measures for ascertaining whether or not coalescence is occurring in
the Stokes regime.

It is worth noting that the retracting neck and the air film may succumb to azimuthal or 3D
instabilities, as in Ref. [56] where retraction of a fluid sheet in a viscous atmosphere is studied
(see also Ref. [57]). However, as in other computational studies of drop coalescence to date (e.g.,
Refs. [23,29,32]), we leave the possibility of such azimuthal instabilities as an open problem for
future research in fluid mechanics.

IV. SCALING TRANSITIONS IN DROP COALESCENCE

While it has been established in the previous section that the initial regime of coalescence is
indeed the Stokes regime, scaling regime transitions are expected to occur that depend on the value
of the Ohnesorge number. To search for these transitions, a study is undertaken in this section
on the effect of Oh on the scaling dynamics by varying the Ohnesorge number over the range
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FIG. 7. Scaling behavior or the variation with the viscous coalescence time τv of the minimum neck radius
Rmin on a log-log plot for a range of values of Oh indicated by the various line types in the legend of the
main figure. The simulation results show that that in all cases (except when Oh = 10−3 where the dynamics is
already in the inviscid regime), coalescence begins in the Stokes regime and the variation of Rmin with τv closely
follows that observed in the Stokes flow simulation (indicated by the square data points) until the crossover
radius Rc is reached. Thereafter, the dynamics transitions to the inviscid regime where Rmin exhibits a power
law scaling in τv with a slope of 1/2. The data points that are circles correspond to a straight line of slope 1/2
on the log-log plot as indicated in the legend. The results for Oh = 440, 20, and 3 are virtually indistinguishable
from the results of the Stokes flow simulation, i.e., the curves representing these large but finite Oh cases lie on
top of the data points corresponding to the Stokes flow case, over the entire time range shown. A relation for Rc

is shown in the inset with both the linear dependence of Ref. [28] (U = γ /μ) and the logarithmic corrections
suggested here that are derived from theory [U = −(γ /μ) ln(Rmin )] and simulation data [U = U (sim)]. Here
all simulations start with an initial bridge of R0 = 10−3 and Z0 = (1/2)R2

0 = 5 × 10−7.

10−3 � Oh � ∞. All simulation results that are presented in the remainder of this paper have been
carried out using the ideal case in which at the initial instant there is approximate point contact
between the two drops, viz. Z0 = (1/2)R2

0. A crossover from the Stokes regime to the inviscid regime
is expected to occur when the local Reynolds number in the neck, which is given by Re = ρUL/μ

where L is the local length scale and U is local velocity scale, becomes unity. Recent experimental
studies [28,29] have shown the crossover radius Rc for the transition from the Stokes regime to an
inertial regime depends linearly on Oh. This result can be arrived at by taking the relevant length
scale and the velocity scale to equal the instantaneous bridge height R2

min and the instantaneous
velocity of the growing bridge umin [28] (but see the following paragraph). Figure 7 shows that when
Rmin is plotted against τv , in all of the simulations, with the exception of the case when Oh = 0.001,
the time evolution of the minimum bridge radius exhibits near perfect overlap with that obtained
from the Stokes flow simulation. While all simulations for Oh > 1 remain in the Stokes regime for
the entire period shown in the figure, the dynamics for both Oh of 0.03 and 0.3 can be seen to exhibit
a departure towards the inviscid regime where Rmin ≈ τ 1/2 as time increases. Although both cases
of Oh = 0.03 and 0.3 appear to transition to the inviscid regime in accordance with Rc ≈ Oh, the
transition is particularly evident for the case of Oh = 0.03. These results further affirm the linear
relation between the crossover radius and Ohnesorge number found in recent studies [28,29] and
is in contrast to earlier studies which had suggested a crossover radius that varied with Ohnesorge
number as Rc ≈ Oh2 [23,26,27,37,41,58].
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While the transitions shown in Fig. 7 do seem to follow the linear dependence of the crossover
radius on Ohnesorge number, Rc ≈ Oh, this relation was obtained assuming that the local velocity
is constant and equal to the visco-capillary velocity as in the ILV regime whereas it has been shown
here that the bridge radius grows in time with a logarithmic correction. Therefore, if one instead
takes L = R̃ × R2

min (as earlier) and U = −(γ /μ) ln(Rmin) (rather than the constant velocity used
earlier), a relation between the Ohnesorge number and the crossover radius can be derived as Oh2 =
(R2

c )| ln(Rc)|. However, this relation should only be used for Oh < 0.03 since the expression for the
velocity is limited to this range. This limitation can be avoided and the estimation of the crossover
radius can be extended to later times, and hence larger values of the crossover radius, by instead
obtaining U directly from a simulation of drop coalescence under Stokes flow conditions. The inset
to Fig. 7 shows that when the crossover radius with the logarithmic correction is plotted against
the previously discussed linear relation, the value of the predicted crossover radius is relatively
unchanged over the range investigated in the main part of the figure. For example, the value of
the crossover radius predicted with the improved method approximately equals 0.028 when Oh =
0.03. Remarkably, even the improved value of the predicted crossover radius for Oh = 3.5 × 10−6

differs from the original prediction by a factor of one-half. While it is desirable to attempt to verify
the relation predicting the value of the crossover radius at lower values of Oh, the reconnection
phenomenon described by Duchemin et al. [37] is more likely to occur at lower values of both
Rmin and Oh. The exploration of such cases proves prohibitive as it is not possible to continue the
simulations after a reconnection occurs with the algorithm that is used in this work.

Although considerable effort has been expended up until this point to thoroughly examine the
dynamics in the vicinity of the singularity and to identify the scaling behavior displayed by the
growing bridge, it is also instructive to analyze the dynamics that are occurring on a larger scale
within the coalescing drops. While it would be expected that the flow profiles would be qualitatively
different in the inviscid and Stokes regimes, it was further shown in Ref. [29] that a different type of
flow field arises for intermediate values of Oh where the ILV regime was believed to occur. Clearly,
a question of central importance is whether the specific details, i.e., radius and height, of the initial
finite-sized bridge connecting the two drops has any impact on the flow profiles on a large scale
in addition to modifying the scaling behavior that is exhibited by the neck. In order to answer this
question, the results of three simulations, two at finite Ohnesorge numbers of Oh = 10−3 and 0.6
and the third under Stokes flow conditions, are compared in Figs. 8(a)–8(c). These flow profiles do
appear to indicate the occurrence of three distinct flow regimes and are for all practical purposes
identical to those reported by Paulsen et al. [29] who used these distinct flow profiles as evidence for
the existence of the third regime, the ILV regime. According to Paulsen et al., the unique trademark
of the ILV regime is the large recirculations seen in Fig. 8(b) for Oh = 0.6 but which are absent
in the Stokes flow simulation shown in Fig. 8(c). It is also noteworthy that the case of Oh = 0.001
is indicative of the inviscid regime where capillary waves can be seen to be propagating along the
interface from the bulge that is clearly visible in Fig. 8(a) in the vicinity of the bridge.

Since there still appears to be three distinct types of behavior when the dynamics is viewed
on a larger scale than that of the growing bridge, it is helpful to categorize these coalescence
events using an approach that was developed in Ref. [29]. In that work, the motion of the back
of the drop that is farthest from the coalescence singularity was tracked by measuring both
experimentally and computationally the axial velocity Vb.o.d. at that point. In the inviscid regime,
capillary waves that emanate from the growing bridge should propagate to the back ends of the
drops and cause an oscillatory response in time. By contrast, in the Stokes regime, a force balance
can be carried out to infer the center-of-mass motion of the drops and thereby used to show that
Vb.o.d. = Oh

2π
Rmin| ln (Rmin/8)| [29]. Figure 8(d) shows the aforementioned oscillatory behavior when

Oh = 0.03 and where the drop has already entered the inviscid regime while the simulation results
for Stokes flow follow closely the prediction obtained from the theoretical expression reported above
[29]. What is perhaps more interesting is that for cases of intermediate Oh, there is a region of
super linear growth that precedes the collapse of the data onto the Stokes flow simulation and
the theoretical expression derived in Ref. [29]. However, when Oh = 0.6, the flow field does
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FIG. 8. Instantaneous flow fields and pressure contours within the drops at the instant in time when Rmin =
0.03 for the situations in which (a) Oh = 10−3, (b) Oh = 3 × 10−2, and (c) 1/Oh = 0 or Oh = ∞ (Stokes
flow). Although there are only two distinct scaling regimes governing the time evolution of the neck in the
vicinity of the space-time singularity, the global dynamics can exhibit three qualitatively different types of
flows. (d) The existence of three different types of global flow fields is further demonstrated by monitoring the
instantaneous value of the axial velocity of the back of the drop(s), Vb.o.d.. Here simulation results for a range
of Oh (shown by different symbols) are compared to predictions from Stokes flow theory (shown by the black
line). All simulations start with an initial bridge of R0 = 10−3 and Z0 = (1/2)R2

0 = 5 × 10−7.

not approach that which arises in the Stokes flow limit until the coalescence event is essentially
completed despite the fact that Fig. 3 clearly shows that the local dynamics in this case lies in the
Stokes regime during the entirety of the coalescence event. This transition from super linear growth
onto the response that is exhibited by two drops undergoing Stokes flow has been used in the past as
additional justification for the existence of the ILV regime and also as an indicator or a signal for the
transition between the ILV and Stokes regimes. In summary, while it has been demonstrated in this
paper that the dynamics that is local to the vicinity of the small region of the growing bridge may
only fall into either the inviscid or the Stokes regime, flows that arise on the scale of the drop radii
may in fact lie in one of three possible regimes, i.e., inertial, viscous (Stokes), or inertial-viscous.

Interface profiles obtained from transient simulations at any Ohnesorge number may be shown
to collapse onto a similarity profile by suitably rescaling the radial coordinate by Rmin(t ) and the
axial coordinate by R2

min, and plotting the rescaled profiles that have thereby been obtained at a
number of instants in time as Rmin → 0. This collapse was demonstrated earlier for the coalescence
of two drops when Oh = 0.6. It is also instructive to perform a similar exercise by rescaling
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FIG. 9. Variation with Oh of the appropriately scaled profiles of a growing bridge connecting two
coalescing drops as Oh → ∞ at the instant in time when Rmin = 8 × 10−3. As Oh → ∞, the profiles are
seen to collapse or tend nicely onto a single similarity profile that results in the limit of Stokes flow. When
Oh � 1, the scaled interface shape takes on a starkly different profile with a characteristic bulge indicative of
the inviscid regime. The inset shows a zoomed-in view of the neck or the tip of the receding air film. Here
R0 = 10−3 and Z0 = (1/2)R2

0 = 5 × 10−7 in all simulations.

interface shapes obtained from simulations at different values of Oh and examining the collapse
of such profiles onto the limit as Oh → ∞. While all such solutions would collapse onto the Stokes
solution as Rmin → 0, it is equally instructive to compare such rescaled profiles obtained at different
values of Oh at the same value of Rmin. Therefore, rescaled profiles when Rmin = 8 × 10−3 obtained
from simulations at different values of Oh are shown in Fig. 9 and demonstrate a clear collapse or
approach of the profiles at different values of Oh to that of Oh → ∞ (Stokes flow). When the inset
to the figure is examined more closely, the rescaled profile for Oh = 10−3 can be seen to deviate
quite dramatically from all the others. This difference is expected since at this value of Rmin, the case
of Oh = 10−3 is the only one which lies in the inviscid regime as made evident by the large bulge
in the interface profile that is characteristic of the inviscid regime (cf. Refs. [24,37]) in contrast to
the other cases which all exhibit the slender profile that is characteristic of the Stokes regime. To
further highlight the difference between the two regimes, Fig. 10 depicts interface profiles for the
same cases as in Fig. 9 albeit where the two axes have been scaled in a different way than that in the
previous figure. First, in Fig. 10(a) the radial coordinate has been shifted so that tip of the blob in
the inviscid regime is located at (0,0) and both the radial and axial coordinates have been scaled by
R2

min to demonstrate that the extent of the bloblike tip of the retracting air film is roughly two in both
directions. The latter point is reiterated in Fig. 10(b), which shows that the apparently sharp corner
in the interface profile when Oh = 0.001 in Fig. 9 is indeed due to the rescaling of the axes and
the actual interface profile near the tip is smooth when plotted with respect to physical coordinates
(both of which, however, have been scaled by the minimum radius).

V. CONCLUSIONS

Through a detailed exploration by means of high-accuracy simulation of the dynamics of two
coalescing drops, the discrepancy that had existed between experiments [35] and theory [23] on
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(a) (b)

FIG. 10. Profiles of a growing bridge between two coalescing drops for the same set of Oh and at the same
instant in time as in Fig. 9. (a) Interface profiles are shown after the radial coordinate has been shifted as
explained in the text. Here both the shifted radial coordinate and the axial coordinate are then normalized by
R2

min to highlight the blob in the situation in which the Ohnesorge number is smallest (Oh = 0.001) and that
the blob is of nearly equal O(1) extent in both the radial and the axial directions. The inset shows a zoomed-in
view of the neck or the tip of the receding air film. (b) The interface profile when Oh = 0.001 that further
highlights the blob that forms in the inviscid limit.

the initial regime of coalescence has been resolved. Previously, experiments had indicated that all
coalescence events should begin in the inertially limited viscous, or ILV, regime before transitioning
to either the Stokes regime or the inviscid regime depending on the value of the Ohnesorge number,
whereas theory had shown that coalescence should begin in the Stokes regime before transitioning to
the inviscid regime. In simulations presented here, it has been shown that coalescence always begins
in the Stokes regime, thereby demonstrating excellent agreement between theory and simulation
for values of Rmin as small as 10−6. Simulations have shown that the ILV regime does not arise
regardless of the value of Rmin or Oh. Moreover, with the simulation results presented in this paper,
it has been further affirmed that the crossover radius between the initial Stokes regime and the
inviscid regime should indeed have a linear dependence on Oh and is clearly more accurate than
the previously held notion that it should vary as the square of Oh. Moreover, small logarithmic
corrections to the linear crossover expression have been suggested here that improve the accuracy
of the expression particularly for small values of Oh. Using all of this information, a phase diagram
showing the regimes of coalescence of drops in air as well as transitions between them can be
constructed that summarize succinctly the results obtained in this work as shown in Fig. 11. Here
the transition between the Stokes and inviscid regimes is determined by using as the velocity of the
growing bridge the value that is obtained directly from simulations and by taking as the appropriate
length scale the bridge height or R2

min. The crossover radius at a given value of Oh is then calculated
by determining the point at which the local Reynolds number of the flow becomes unity, as has
already been done earlier in Fig. 7. It has further been shown that the crossover radius can also
be estimated well by using the relation Oh2 ≈ (R2

c )|ln(Rc)|, which is valid so long as Rmin � 0.03,
and the estimate that is thereby obtained is found not to differ significantly from the previously
established relation of Rc ≈ Oh that had been deduced in earlier studies [28,29].

Despite the demonstration of excellent agreement between theory and the new simulation results,
substantive disparity would still appear to remain between the two aforementioned approaches
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FIG. 11. Phase diagram in the space of Ohnesorge number and crossover radius, (Oh, Rc ), of drop
coalescence in a dynamically passive fluid, e.g., a gas such as air, showing the regimes of coalescence and
the conditions for transitions between them. Following the occurrence of the space-time singularity when two
drops have just touched at a point, coalescence will always begin in the Stokes regime and the dynamics will
either transition to the inviscid regime when the minimum radius of the neck connecting the drops exceeds the
crossover radius or terminate with the two drops having fully coalesced.

and experiments. However, by varying the initial separation between, or the height of the bridge
connecting, the two drops in the simulations, a linear scaling regime that had heretofore been
referred to as the ILV regime [29] has been reproduced. Furthermore, it has been demonstrated
that this linear regime is more akin to a Taylor-Culick-type regime whose existence and duration
are purely consequences of the use of an initial bridge of finite size that poorly approximates the
point contact condition that is a cardinal feature of the coalescence singularity. Indeed, it has been
demonstrated that such a linear regime does in fact arise even in simulations involving Stokes flow
where inertia has been removed from the equations or set equal to zero. Despite demonstrating that
the ILV regime does not exist as an asymptotic regime of coalescence, if one looks at the dynamics
on larger scales of the order of the drop radius R̃, it has been shown that the flow fields within drops
at intermediate values of Oh qualitatively differ from those in the inviscid or the Stokes regimes
even though the growth of the neck—the bridge connecting the drops—reliably follows the Stokes
theory after two drops have touched and begun to merge into one. This point has then been further
investigated by quantitatively measuring and/or characterizing the global or macroscopic motion of
the drops. That analysis has shown that although for values of Oh < 1 the global dynamics does not
match what would be expected from Stokes flow theory and, furthermore, even after the movement
of the drops when viewed from a global perspective transitions from this intermediate regime to the
Stokes regime, the local dynamics or the scaling behavior exhibited by the growing bridge remains
unaffected and follows Stokes theory.

A number of complicating factors may arise during the coalescence of two drops even in a gas,
e.g., air, in real life situations that may limit the applicability of the phase diagram shown in Fig. 11.
First, many of the applications used in Sec. I for motivating the computational study carried out in
this paper involve drops of radii of 1 mm or smaller. Therefore, for two spherical drops of radius
of 1 mm that are initially joined by a bridge of dimensionless radius of 10−6, the dimensional
value of the bridge radius would equal 1 nm. Hence, the bridge height and radius of curvature at
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that instant would be orders of magnitude smaller than molecular/atomic length scales. Therefore,
the continuum mechanical description used in this paper would be inapplicable at such small length
scales. Even for length scales above molecular/atomic ones but ones that are of the order of hundreds
of nanometers or less, it has been suggested that van der Waals forces can become important and
alter the scaling behavior that is reported in this paper [31]. Furthermore, given the large number
of experimental studies in which an initial linear regime has been observed, it is possible that the
singular initial conditions of two spheres just touching at a point may not be readily realizable in real
life situations. This linear regime seen in experiments has been attributed in Sec. III to the unknown
or unknowable consequence of having an initial connecting bridge of finite size whose dimensions
may be difficult or even impossible to measure in practice due to the smallness of the length scales
involved in the problem. However, knowing the true origin of this linear regime has led to a more
complete understanding of transitions that can take place from this linear regime to either an inertial
or a viscous regime, and that the nature of these transitions depends solely on the geometry of the
initial conditions and not on any intrinsic properties of the fluids. In addition to a finite-size bridge,
the speed at which the drops are brought together can also affect the coalescence dynamics due to
the deformation of the interface caused by the initial motion of the drops.

The dynamics of coalescence has been analyzed in this paper assuming that the region exterior
to the two drops is vacuum (void) or a dynamically passive gas that exerts a constant pressure on
the drops. However, the dynamics of the outer fluid may also become significant depending on the
values of both the ratio of the viscosities of the two fluids and the ratio of their densities. Eggers
et al. [23] have concluded that even when the ratio of the viscosity of the inner fluid to that of
the outer fluid is large, as when two drops coalesce in air, the existence of the outer fluid must
become important as Rmin → 0. In their study, an estimate is provided that the dynamics of the
outer fluid can be significant when Rmin � M2/3 where M ≡ μouter/μinner (μouter and μinner stand
for the viscosity of the outer and the inner fluids). Therefore, for two water drops coalescing in
air at room temperature and pressure, Rmin = 4.6 × 10−2, whereas for two pure glycerol drops,
Rmin = 4.6 × 10−4. Thus, for two drops of 1 mm radius, the dynamics of the outer fluid cannot be
neglected when the minimum neck radius is below 46 μm when the drop liquid is water but the
outer fluid’s dynamics can be neglected as long as the neck radius is larger than about 460 nm when
the drop liquid is pure glycerol. Similarly, one would also expect the density ratio to play a role in
the coalescence dynamics under certain conditions. In situations in which the outer fluid is denser
than the inner fluid, it is likely that any coalescence event that begins in a Stokes regime set by the
inner fluid would then transition to an inertial regime determined by the outer rather than the inner
fluid. This expectation is based on the fact that since the characteristic length scale of the inertial
regime in bubble coalescence is the same as the characteristic length scale in the inertial regime in
drop coalescence [42,51], the value of the density ratio would then determine which of the phases
would be the dominant one as the drops coalesce. However, both of the aforementioned expectations
have yet to be confirmed through simulation, and hence efforts directed at verifying them constitute
logical and worthy extensions of this work.

In this paper, a new meshing technique has been used such that the domain is divided by a
dynamic algebraic surface into two separate regions where the locations of the mesh or grid points
in each region can be determined by solving the elliptic mesh generation equations. This algebraic
division of the domain or the mesh allows greater control of the density of the mesh in either region.
Indeed, this approach makes it possible for the region near the singularity to be highly densified
while the body of the drop can remain relatively sparsely discretized, thereby both lowering the
computation time and allowing for investigation of smaller values of the initial bridge radius R0.
Furthermore, the dividing surface or line is allowed to move in time in accordance with the dynamics
of the problem, e.g., as a function of Rmin in the present case, and the concept is thus suitable for
use in any physical situation in which largely disparate length scales can occur [42,59,60].
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