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We study droplet dynamics and breakup in generic time-dependent flows via a multi-
component lattice Boltzmann algorithm, with emphasis on flow startup conditions. We first
study droplet breakup in a confined oscillatory shear flow via two different protocols. In
one setup, we start from an initially spherical droplet and turn on the flow abruptly (“shock
method”); in the other protocol, we start from an initially spherical droplet as well, but we
progressively increase the amplitude of the flow, by allowing the droplet to relax to the
steady state for each increase in amplitude, before increasing the flow amplitude again
(“relaxation method”). The two protocols are shown to produce substantially different
breakup scenarios. The mismatch between these two protocols is also studied for variations
in the flow topology, the degree of confinement, and the inertia of the fluid. All results point
to the fact that under extreme conditions of confinement the relaxation protocols can drive
the droplets into metastable states, which break only for very intense flow amplitudes, but
their stability is prone to external perturbations, such as an oscillatory driving force.
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I. INTRODUCTION

Fluid dynamics phenomena, involving droplet dynamics, deformation, and breakup, are promi-
nent in the field of microfluidics and even in general complex flows at larger scales. Beyond the
practical importance in a variety of concrete applications [1–4], they are also relevant from the
theoretical point of view, due to the complexity of the physics involved [5–9]. Droplet deformation
is characterized via the capillary number,

Ca = ηsRG

σ
, (1)

where ηs is the dynamic viscosity of the solvent, R the radius of the initially undeformed spherical
droplet, σ the surface tension, and G the shear rate intensity [9,10]. The value of Ca at breakup
is denoted by Cacr, the critical capillary number. A lot of attention has been dedicated to droplet
deformation and breakup in stationary flows [5,11,12] and, in particular, the effect of the degree
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of confinement on the flow dynamics [13–15]. The degree of confinement is parametrized by the
ratio α = 2R/L, where L denotes the shear wall separation. Confinement is frequently encountered
in experimental setups of droplet dynamics in simple shear flows [13–24] and can be enhanced by
changing α. There are some theoretical models which were developed to capture the experimental
phenomenology of confined droplet dynamics, analytical models [25,26], which extended the theory
by Taylor [9,27], and phenomenological models [28–30]. The validity of the analytcial models were
verfied in Ref. [31] and the phenomenological models in [32]. Of particular interest are the results
in Ref. [14], which show that, for nonvanishing α breakup differs substantially from the unconfined
shear case both qualitatively and quantitatively for all viscosity ratios χ = ηd/ηs, where ηd,s is the
dynamic viscosity of the droplet (d) or solvent (s) phase. Additionally, the dependency of the critical
capillary number Cacr on the droplet’s inertia is a central area of interest [7,33–53], with the degree
of inertia being given by the Reynolds number,

Re = GR2

νs
, (2)

where νs is the kinematic viscosity of the solvent. Furthermore, breakup is influenced by the startup
conditions, as demonstrated in experimental and theoretical studies [54–58]. This phenomenon is
rather subtle and can have different effects depending on the protocol in use. The dependency on the
rate of increase of the shear rate G was confirmed by Ref. [58] via supporting calculations based on
the model by Taylor [9]. A theoretical model developed by Hinch et al. [56] shows that stable droplet
equilibria below the critical capillary number Cacr breakup are only possible for a sufficiently low
increase in G. Furthermore, Renardy [57] has shown that although these stable equilibria require a
slow increase in the shear rate G they are unique and do not depend on the rate of change of G. We
stress that even though the effect of startup conditions on breakup has been investigated [54–58], the
role of confinement with varying startup conditions on droplet dynamics and breakup is not clear.
Moreover, it is unclear how breakup is affected, if the flows are time-dependent [59–63]. The aim of
the present paper is to take a step further in this direction. With the use of numerical simulations we
show that at capillary numbers close to breakup, confinement allows for the existence of a metastable
flow configuration next to the solution of the Stokes equation found in Ref. [57]. This metastable
state is prone to perturbations and collapses to the Stokes solution, if we have a time-dependent flow
with a sufficiently large shear frequency. It should be stressed that this result is unique to the case
of a confined droplet in an oscillatory shear, as this metastable configuration is not present neither
for an unconfined droplet in an oscillatory shear flow nor in the case of an oscillatory elongational
flow. Our studies can be seen as an extension to Refs. [50,57], where the influence of inertia on
droplet breakup was studied, whereas we deal with time-dependent cases, where the temporal rate
of change of the shear intensity is comparable to the droplet relaxation time,

td = ηdR

σ
. (3)

This work is a followup study of Ref. [62], where stable time-dependent droplet dynamics
was investigated via a multicomponent lattice Boltzmann scheme and a phenomenological model
[28,29]. It was found that droplet deformation depended strongly on an external timescale, the
oscillation frequency of an oscillatory shear flow, for a confined droplet. For relatively large
oscillation periods close to the value of td the droplet is hardly deformed by the solvent shear flow,
which was described as the “transparency effect” in Ref. [62]. The findings in Ref. [62] have been
validated by comparing the lattice Boltzmann results to the results obtained via a phenomenological
droplet deformation model, the Maffettone-Minale model [28,29].

This paper is organized as follows: Sec. II gives a brief overview on the lattice Boltzmann
algorithms and models in use. In Sec. III, we outline the general details of droplet breakup with an
emphasis on confined systems and simple shear flows. In Sec. IV, we investigate breakup in a time-
dependent (oscillatory) shear flow under strong confinement. A mismatch between two protocols,
involving different startup conditions of the flow, leads us to investigate breakup conditions under
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the influence of inertia (Sec. V) and the effect of confinement (Sec. VI). Moreover, we check whether
the protocol mismatch depends on the flow topology (Sec. VII).

II. LATTICE BOLTZMANN ALGORITHMS AND METHODS

We use lattice Boltzmann simulations [64,65] to study droplet breakup in confined and time-
dependent shear and elongational flows. The lattice Boltzmann method (LBM) has been extensively
used in the field of microfluidics, including extensions to accommodate nonideal effects [66],
coupling with polymer micromechanics [67] and thermal fluctuations [68,69]. LBM has also been
used widely for the modeling of droplet breakup behavior [41,44,70–77]. To model multicomponent
systems with the lattice Boltzmann model (LBM), we need to account for interfacial forces between
different fluid components. This can be achieved with the Shan-Chen multicomponent model
(SCMC) [78,79], a diffuse interface model in the framework of the LBM. The hydrodynamical
quantities, mass and momentum densities, can then be described as

ρ(x, t ) =
∑

σ

∑
i

gσ
i (x, t ), ρ(x, t )u(x, t ) =

∑
σ

∑
i

gσ
i (x, t )ci, (4)

where gσ
i (x, t ) denotes the populations in the LBM model for the fluid component σ and ci are the

lattice velocities. For example, for a two-component system with species A and B the index σ can
take the values σ = A and σ = B. The interaction at the fluid-fluid interface [80,81] is given by

Fσ (x, t ) = −ρσ (x, t )
∑
σ ′ �=σ

N∑
i=1

Gσ,σ ′wiρσ ′ (x, t + ci )ci, (5)

where ρσ (x, t ) is the density field of the fluid component denoted by σ . Gσ,σ ′ is a coupling constant
for the two phases σ and σ ′ at position x and wi are the lattice isotropy weights. We use the same
open flow boundary conditions as outlined in Ref. [62]. To use arbitrary boundary values of the
density ρ(x, t ) and velocity u(x, t ) fields of the solvent fluid we use ghost populations (or halos),
which store the equilibrium distribution functions geq

i of the boundary density and velocity fields.
The equilibrium distribution functions geq

i are given by

geq
i (x, t ) = ρb(x, t )wi

(
1 + 3 ci · u + 9

2 (ci · u)2 − 3
2 u2), (6)

with wi being the lattice weights for the set of lattice vectors ci and ρb(x, t ) the density field at the
simulations domain boundary. Thus, the ghost distributions update the boundary nodes during the
LBM streaming step and effectively simulate an open flow boundary given by the chosen density
ρb(x, t ) and velocity u(x, t ) fields of the outer fluid [62]. The streaming and collision steps are given
by the lattice Boltzmann equation:

gi(x + ci�t, t + �t ) − gi(x, t ) = 	({gi(x, t )}), (7)

where 	({gi(x, t )}) is the collision operator depending on the whole (local) set of lattice populations
and �t is the simulation time step. For MRT (multirelaxation timescale) the collision operator is
linear and contains several relaxation times linked to its relaxation modes (depending on the lattice
stencil) [82]. One relaxation time τ is directly linked to the kinematic viscosity ν in the system

ν = 1
3

(
τ − 1

2

)
, (8)

which is one of the primary links between the LBM scheme and hydrodynamics [64,65]. The
boundary scheme described here is not strictly mass conserving, so we correct the local population
mass densities to cure mass conservation [83–85]. This is not the case in unconfined system, where
we can accept small mass fluctuations of both droplet and solvent, but have to reinject mass into the
droplet [86].

033607-3



MILAN, BIFERALE, SBRAGAGLIA, AND TOSCHI

III. SIMULATION SETUP AND DEFINITIONS

In this section we define what we mean when we speak of droplet breakup and characterize the
simulation setups. We deal with both a confined droplet in a simple shear flow and an unconfined
droplet in a uniaxial extensional (elongational) flow. The velocity gradient matrix for both shear and
elongational flows is given by

∇v = G

2

⎛
⎝

β 0 2(1 − β )
0 β 0
0 0 −2β

⎞
⎠, (9)

where ‖∇v‖ = G and β is a parameter characterizing the flow type. The shear flow setup is
equivalent to the one used in Ref. [62] with β = 0 in Eq. (9) except that the flow is unconfined
and elongational with an oscillatory velocity gradient amplitude G(t ) given by Eq. (9) with β = 1.
Droplet deformation can be characterized by the capillary number Ca. In the case of a shear flow
including confinement the shear rate is given by

G = 2u0

Lz
, (10)

with Lz being the channel width responsible for the droplet confinement and u0 being the maximum
wall velocity amplitude. This definition may also be extended to time-dependent shear flows [62],

G(t ) = 2u(t )

Lz
, (11)

In accordance with Ref. [14], we define the critical capillary number Cacr as the value of Ca
for which an initially spherical droplet breaks up, which is achieved by a sudden increase in the
shear rate amplitude G. We refer to this breakup protocol as the shock method. In addition we can
gradually increase the shear rate G starting from a value for which the droplet is only marginally
deformed [56–58]. A fixed increase �G [or �u0 in the case of Eq. (11)] is equivalent to a fixed
increment rate �Ca for the capillary number. This way the droplet and the solvent flow are given
more time to relax to their respective equilibrium distributions at specific Ca. We call this protocol
the Relaxation method. It should be stressed that breakup in the relaxation method has a small
dependency on �Ca. If �Ca is very large, e.g., �Ca ∼ Cacr, then the value for Cacr will be the
same as the one obtained through the shock method. Thus, the �Ca has to be chosen sufficiently
small enough for the relaxation method to work. Essentially, the relaxation method captures the
deformation history of the droplet before breakup with an accuracy given by �Ca contrary to the
shock method. The relaxation method is especially important for droplet dynamics in palatially
evolving shear flows in the case of a smoothly varying local shear both spatially and temporarily.
A variation of the relaxation method for time-dependent oscillatory flows, i.e., where the shear
amplitude G(t ) = G0 cos(ωt ), is to consider the flow and droplet configuration at a capillary number
Ca close to Cacr and then to increase the oscillatory shear frequency ω f = ω/(2π ) until breakup,
starting from the stationary case of ω f = 0. As in Ref. [62] we use a dimensionless frequency
ω f td in our discussion, where td is the droplet relaxation time defined in Eq. (3). In the presence
of a flow with nonzero frequency ω f td , we focus on Camax, which denotes the maximum value of
the time-dependent capillary number Ca(t ) over one oscillatory cycle [62]. An instance of droplet
breakup in an oscillatory simple shear flow is depicted in Fig. 1. The droplet is oscillating between
two maximally elongated states for Ca < Cacr and breaks up during the flow build up for Ca > Cacr

in the case of the shock method. The droplet elongation is characterized by the droplet length L(t ),
which is defined as the longest axis of the elongated droplet, and Lcr denotes the droplet length in the
critical case Ca � Cacr. The time evolution of L(t ) is also shown for the two cases Ca < Cacr and
Ca > Cacr in Fig. 1, which shows that breakup occurs at around t = 17 000 lbu with lbu denoting
lattice Boltzmann Units. In all simulations in this article the viscous ratio χ ≡ 1 and the density
ratio ρd/ρs ≡ 1. If not explicitly stated otherwise, then the confinement ratio for simple shear flows
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FIG. 1. Snapshots of a droplet in a confined oscillatory shear flow with a nondimensionalized oscillation
frequency ω f td . Snapshots of the droplet in the velocity field are shown for Ca < Cacr and Ca > Cacr. The plots
on the right panel show the time evolution of the normalized droplet length L(t )/R. The degree of confinement
of the system is given by α = 2R/Lz, where R is the droplet radius of the undeformed droplet and Lz is the wall
separation.

α ≡ 2R/Lz, where R is the radius of the spherical undeformed droplet and Lz the channel width, is
set to α = 0.75.

IV. DROPLET BREAKUP IN AN OSCILLATORY SHEAR FLOW

Similar to Ref. [62] we consider a droplet in a confined oscillatory simple shear flow, see Fig. 2.
The setup is shown in Fig. 1 with a confinement ratio α = 0.75 and a time-dependent shear rate
G(t ) = 2u0/Lz cos(2πω f t ), where ω f is the frequency of the outer oscillatory flow [59–63]. Our
main focus is the dependency of Cacr on the normalized shear frequency ω f td of the oscillatory outer
flow. Droplet dynamics in oscillating flows may feature a so called transparency effect [62], which
states that the droplet is hardly deformed if ω f td ∼ 0.1, i.e., the timescale of the oscillating shear
flow 1/ω f is of the similar order as the droplet relaxation timescale td . The droplet dynamics are
hardly influenced by the shear frequency for ω f td ∼ 10−4 and the transparency effect is noticeable
for ω f td ∼ 10−2 and higher frequencies, which leads to a sudden increase in the critical capillary
number. To stay in tune with experimental results [14,15,22,23], we limit the range of the critical
capillary number close to Cacr ∼ 1.0. In Fig. 3 we can see that the droplet breakup behavior is
significantly different for our two LBM simulation protocols, the shock and relaxation method. The
shock method implies that droplet breakup is independent of the oscillatory shear frequency ω f td ,
significant changes in Cacr only occur close to the transparency effect region at high frequencies
(ω f td ∼ 10−2). The relaxation method is of a different nature: first of all Cacr in the low-frequency
region (ω f td ∼ 10−4) is larger than the values obtained with shock method (see also Sec. VI).
Moreover, for intermediate frequencies ω f td ∼ 5 × 10−3 we observe that breakup occurs at a
significantly smaller Cacr than in the low-frequency range and is now of a comparable value to
Cacr obtained via the shock method. The mismatch between the two protocols in the low-frequency
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FIG. 2. Planar cut of a droplet in a shear flow, featuring an ellipsoidally deformed droplet and large droplet
deformation before breakup. The droplet contours are shown in black and the velocity field is visualized by
streamlines coloured according to the velocity magnitude.

regime in Fig. 3 is in disagreement with previous studies of startup conditions of droplet breakup
in confined simple shear flows [14,57]. However, the shock method produces results in accordance
with the literature [14], as the dashed line in Fig. 3 indicates. It should also be noted, that the
destabilization of the “relaxation branch” is rather sudden and takes place at very small ω f td . This
suggests that the protocol mismatch is due to metastable solution (relaxation method) existing next
to a stable solution (shock method) in the low-frequency range ω f td � 0.02. The protocol mismatch
seems rather puzzling: according to Renardy [57] the solution should be unique. However, our setup
differs in a few points from the one in Renardy [57]. First of all, the droplet is strongly confined
(α = 0.75) in our setup (see Fig. 1), which could have a strong effect on the values Cacr for varying
startup conditions. Moreover, inertia might stabilise the droplet in the case of the relaxation method.
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LBM: Shock method
LBM: Relaxation method

Cacr for ωf = 0 Jansen (2010) (Experiment)

FIG. 3. Critical capillary number Cacr at varying frequencies ω f td . There is a mismatch between the
predictions of the two breakup protocols. Whereas droplet breakup is largely independent in the case of the
shock method, except for the asymptotic behavior in the high frequency region, the relaxation method in the
low-frequency limit predicts a higher Cacr than the ones of the shock method. This mismatch is investigated
in the article. The error bars are estimated via steps in the critical capillary number �Ca. Both curves are
interpolated via bezier curves.
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FIG. 4. Cacr vs. Reynolds number Re. The mismatch between the shock and relaxation breakup protocols
does not depend on inertia. This is especially clear in the case of the Stokes solution, for which Re = 0. The
error bars are estimated via steps in the critical capillary �Ca and Reynolds number �Re.

Therefore, the protocol mismatch might disappear in the Stokes limit. In addition, one may also
wonder what is the effect of flow topology, as an inherently different flow field might lead to a
similar protocol mismatch. Given these considerations, in the following sections, we will investigate
the cause of the mismatch by considering both inertial effects, as is the case in Ref. [57] (see Sec. V)
and the importance of confinement in stationary shear flows (see Sec. VI). Regarding the importance
of flow topology, we investigate time-dependent breakup in an elongational flow in Sec. VII.

V. INERTIAL EFFECTS

In Ref. [57] it is shown that the solution of the Stokes equation in confined simple shear flows
is unique and does not depend on neither the initial conditions of the droplet nor the solvent flow
configuration. Thus, one might think that the protocol mismatch might be due to inertial effects
and would disappear, if we were close to the time-dependent Stokes limit of Re ≡ 0. Interestingly,
the LBM formalism allows us to directly set Re = 0, as we can eliminate the nonlinear terms in
the equilibrium distribution functions in the LBM algorithm, Eq. (6), which leads us to a modified
Eq. (12), accounting only for the linear terms in the velocity field u(x, t ). It should be remarked
that only the nonlinearites of the Navier-Stokes equation are removed in this way, since the inertia
embedded in the time derivative of the velocity field u(x, t ) does not disappear and may still play a
role during the non steady breakup process. Inertial effects tend to stabilise the droplet [54,55] for
low Re < 1, whereas Cacr ∼ 1/Re for large Re > 10 [50]. This suggests that the stabilization effect
of low Re are responsible for the protocol mismatch, which consequently should disappear in the
Stokes limit Re = 0. We investigate the dependency of Cacr on Re, as shown in Fig. 4. For the case
Re = 0 we use only the linear terms of the equilibrium distribution functions given by

geq,lin
i (x, t ) = ρb(x, t )wi(1 + 3 ci · u). (12)

The simulations are carried out for a stationary shear flow, with the setup described in Fig. 1. We
can see that the mismatch between the breakup protocols, does not depend on inertia and is even
present in the Stokes limit of Re = 0. We conclude that the mismatch between the two breakup
protocols is not influenced by any stabilization effects of inertia [54,55] for the given range of
Reynolds numbers Re ∼ 0.0, . . . , 1.5.
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FIG. 5. Critical capillary number Cacr for different confinement ratios α = 2R/Lz. We compare the values
obtained by the LB simulations with the shock method and the ones obtained by the relaxation method. Since
the relaxation method is dependent on the startup conditions of the outer flow and the droplet, we provide a
range of different increments �Ca, where smaller �Ca denote a slower and flow build up and vice versa. The
error bars are estimated via steps in the critical capillary number �Ca. For each simulation run of the relaxation
method with a given Ca we gave the droplet a sufficiently long time to relax to its stationary state.

VI. CONFINEMENT EFFECTS

We now focus on both confinement and startup conditions in the shear rate amplitude G for
droplet breakup in a stationary shear flow. The setup is once again the one in Fig. 1, a confined
droplet in a stationary (ω f td = 0) shear flow, but now we vary the confinement ratio α and, in the
case of the relaxation method, the rate of change of the shear amplitude G, resulting in increments
of the capillary number �Ca. Our results are summarized in Fig. 5. We can see, as was shown in
Ref. [57], that the critical capillary number Cacr is independent of the startup conditions for low
confinement ratios (α � 0.5), as both the shock method and the relaxation method yield the same
results with respect to the simulation errors. However, if the droplet is strongly confined (α � 0.6),
then the two methods yield very different results, with the Cacr predicted by the relaxation method
being substantially larger than the one predicted by the shock method. It should be noted, that Cacr

is independent of �Ca, given that �Ca is small enough, which can be seen from Fig. 5, where the
values of Cacr overlap in respect to their error ranges for different �Ca and the same α. Figure 6
shows the length of the elongated droplet as a function of the LB simulation time for the different
shear startup methods: we can see that for the shock method droplet breakup occurs soon after
the maximal elongation, whereas for the relaxation the droplet experiences a sequence of maximal
extensions and subsequent retractions after breaking up for a given Cacr at its critical length Lcr(t ).
We conclude that both a slow startup of the outer flow (relaxation method) and a strong confinement
of the droplet (α � 0.6) are necessary for the mismatch reported in Fig. 3 in the low-frequency limit.
The eventual collapse of the relaxation method solution on to the one found by the shock method
suggests, that the relaxation method branch in the low-frequency limit in Fig. 3 is a metastable
state, explaining the high susceptibility to small perturbations and the collapses to the configuration
obtained by the shock method for intermediate oscillatory frequencies ω f td .

VII. FLOW TOPOLOGY

We now investigate the protocol mismatch in terms of the flow topology. Instead of an oscillatory
shear flow, we consider breakup in an elongational (or uniaxial extensional) flow; see Fig. 7. This
flow is by its very nature unconfined, so we would expect to not see a mismatch, as is the case
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FIG. 6. Normalized droplet major axis L(t )/R against simulation time t given in units of the droplet
relaxation time td . The droplet breaks up shortly after its maximum elongation for the shock method. Breakup
in the relaxation method is dependent on the shear rate and thus capillary number increase: (a) for a rate with
increment �Ca = 0.30 the droplet relaxes after reaching its maximum elongation for the first time to breakup
at a longer length at a higher Cacr later on; (b) for a smaller capillary number increase �Ca = 0.24 the droplet
length at Cacr increases even further and the L(t ) contains more full extensions and subsequent retractions.

for α = 0 in the case of the confined shear flow; see Sec. VI. The results are shown in Fig. 8.
Interestingly, a mismatch between the two droplet protocols is absent and the predictions agree well
with each other in terms of their respective errors. This shows that strong confinement (α � 0.75)
is necessary for the existence of the protcol mismatch shown in Fig. 3. Moreover, Fig. 8 shows
that droplet breakup in an oscillatory elongational flow is frequency dependent, with an exponential
dependence between the oscillation frequency ω f td and the critical capillary number Cacr. The low-
frequency limit matches the stationary flow predictions of Ref. [39].

FIG. 7. The flow layout of a droplet in an elongational (uniaxial extensional) flow. The image is a planar
cut, with the flow being rotational symmetric around the elongated droplet axis in the image. The streamlines
are coloured according to the velocity magnitude.
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FIG. 8. Critical capillary number Cacr against different frequencies ω f td for a droplet in an unconfined
elongational flow. We consider the two breakup protocols, the shock method and the relaxation method. Even
though the droplet breakup is dependent on the shear rate frequency ω f td , a protocol mismatch does not occur,
contrary to the case of the confined shear flow topology. The error bars are estimated via steps in the critical
capillary number �Ca.

VIII. CONCLUSIONS AND OUTLOOK

We have shown that the interplay of varying startup conditions and strong confinement ratios
can lead to qualitatively and quantitatively different droplet breakup conditions in stationary shear
flows, unlike the stable equilibria found for varying startup conditions [57] or the ones found for
varying degrees of confinement [14]. Having investigated the effects of inertia, confinement and flow
topology, we conclude that the protocol mismatch between the shock and the relaxation method
are due to a high degree of confinement for a droplet in a shear flow (α = 0.75). However, the
breakup solution found via the relaxation method is only metastable, since it becomes unstable
in the case of a time-dependent, oscillatory shear flow. The protocol mismatch is thus solely due
to an extra metastable solution in a strongly confined shear flow and disappears in the presence
of small perturbations (e.g., amplitude variations in an oscillatory shear flow) in accordance with
the uniqueness of the Stokes solution [14,57]. We have also shown the dependency of the critical
capillary number Cacr on the normalized oscillation frequency ω f td in both oscillatory shear and
elongational flows. In the case of the elongational flow, Cacr increases with increasing ω f td , whereas
no simple functional dependence can be found for the oscillatory shear flow, since Cacr also depends
on the flow startup and degree of confinement. We should stress again that the results presented in
this work are only valid for χ = 1, since the viscosity ratio influences the breakup of a confined
droplet [8,14,21,22]. On the one hand, for small viscosity ratios χ ≈ 0.3 the confined shear flow
stabilises the droplet and breakup is more difficult to occur than for χ = 1. On the other hand for
large viscosity ratios χ ≈ 5.0 the confined droplet is destabilized and breakup is more likely to
happen than for χ = 1 [14,21]. It would be interesting to see whether the metastable solution can
be found in an experimental setup or whether it is too prone to perturbations to manifests itself.
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