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Enhancement of boiling heat transfer on biphilic (mixed-wettability) surfaces faces
a sudden reversal at low pressures, which is brought about by excessive contact-line
spreading across the wetting heterogeneities. We employ the diffuse-interface approach
to numerically study bubble expansion on a heating surface that consists of opposing
wettabilities. The results show a dramatic shift in the dynamics of a traversing contact
line across the wettability divide under different gravities, which correspond to variable
bubble growth rates. Specifically, it is found that the contact-line propagation tends to
follow closely the rapidly expanding bubble at low gravity, with only a brief interruption
at the border between the hydrophobic and hydrophilic sections of the surface. Only when
the bubble growth becomes sufficiently weakened at high gravity does the contact line
get slowed down drastically to the point of being nearly immobilized at the edge of the
hydrophilic surface. The following bubble expansion, which faces strong limitations in the
direction parallel to the surface, features a consistent apparent contact angle at around
66.4◦, regardless of the wettability combination. A simple theoretical model based on
the force-balance analysis is proposed to describe the physical mechanism behind such
a dramatic transition in the contact-line behavior.

DOI: 10.1103/PhysRevFluids.5.033603

I. INTRODUCTION

More than just an everyday experience, boiling offers one of the most efficient heat transfer
solutions [1–3] to various industrial challenges ranging from nuclear reactor cooling [4,5] to thermal
management of data centers [6,7], because it capitalizes on the vast reservoir of latent heat of
vaporization as well as sensible heat. Dating back to the 1930s when Nukiyama [8] first discovered
the so-called boiling curve, the modern research on boiling phenomena—which are inherently
multiphase and multiscale [9] and fraught with intractable randomness [10]—continues to garner
considerable attention beyond the conventional field of thermal engineering and has fascinated
generations of scientists in the intervening years [11]. Pioneering studies by Han and Griffith [12],
Mikic et al. [13], Zuber [14,15], and van Stralen et al. [16] all contributed to the classic theory about
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the pool boiling process: (i) isolated bubbles emerge from pre-existing cavities or defects in the solid
surface; (ii) mostly driven by evaporation occurring around and underneath the bubbles (namely, that
of a thin microlayer), the bubbles continues to expand under a thermally controlled regime until they
turn large enough to be ejected from the surface by growing buoyancy; (iv) heat transfer mechanisms
such as microconvection (namely, agitation effect), microlayer evaporation during bubble growth,
and regeneration of the superheated liquid layer that is periodically stripped away by the departing
bubbles are believed to be responsible for the enhanced heat transport, and (v) the transition to film
boiling [i.e., the critical heat flux (CHF)] is mostly dictated by Helmholtz-Taylor instability, which
triggers cascading merging of neighboring vapor jet flows and eventually leads to a precipitous
decline in the heat transfer efficiency and cataclysmic temperature upsurges.

However, this somewhat simplified physical depiction is now facing mounting challenges from
recent advances in precise measurement and engineering innovations in boiling surface design and
fabrication that defy conventional thinking. New findings such as the apparently strong dependence
of the onset of nucleate boiling (ONB) on surface wettability [17] and the unusually early activation
of nucleation sites at very low surface superheats on an ultrasmooth (with a nanoscale roughness)
surface [18] call into question the validity of the vapor-trapping-cavity theory for bubble nucleation
in heterogeneous boiling. An unusually stable presence of dissolved gas near the solid surface
[19,20] in the form of surface nanobubbles [21] has been proposed as a plausible alternative
nucleation mechanism. Moreover, the significant CHF enhancement achieved through use of
nanofluids [22], nanowires [23], microporous coatings [24], microchannels [25], and honeycomb
structures [26] has upended the classic hydrodynamic interpretation of the boiling crisis, which is
notably devoid of any inputs from the solid side. More accurate predictions of CHF have been made
possible by taking into account several previously overlooked surface characteristics, including
surface-wettability change (due to nanoparticle deposition) [27], contact angle hysteresis of the
surface [28], capillary wicking of the microstructure [29], dry-out in the porous structure [30], and
capillary rewetting of the nanotexture [31].

Emerging from those developments in the understanding of boiling heat transfer is a consensus
on the important role of active control of dynamic three-phase contact line. Preferred boiling
conditions such as robust nucleate boiling with an effectively delayed CHF can be realized on
highly hydrophobic surfaces but with a low receding contact angle (which represents essentially an
“underwater” Wenzel state). Techniques such as purging the surface of noncondensables [32], para-
hydrophobic texturing [33], rapid pressurization [34], or electrowetting [35] have been demonstrated
to give rise to a Cassie-to-Wenzel transition of the initial wetting state, whereby the minimized
surface dewetting is effective in preventing excessive vapor spreading, particularly at high surface
heat fluxes. Strong pinning of the contact lines on bi-philic (that is, with alternating wettabilities)
[20,36] or bi-conductive (namely, endowed with in-plane variations of thermal conductivity) [37]
surfaces can bring about ordered bubble growth with separate pathways for escaping vapor from
and replenishing liquid to the surface, which was thought to underpin the exceptionally high heat
transfer rates seen on microchanneled surfaces [38]. Such an enhanced state of boiling, however,
has been found to be particularly vulnerable to external perturbations such as pressure variations.
Our previous study [39] of subatmospheric boiling on a biphilic copper surface electroplated with
an array of hydrophobic Ni-TFEO (tetrafluoroethylene oligomer) spots revealed a sudden transition
from continuous boiling to a deleterious mode of intermittent boiling when the pressure dropped
sufficiently low. It was further argued [40] that the lateral depinning of the bubble contact lines
from the interface between the hydrophobic and hydrophilic surfaces during bubble growth and the
resulting “flooding” of the hydrophobic spots in the wake of bubble departure were responsible for
the temporary deactivation of the nucleation sites, which can, in turn, result in a sharp deterioration
of boiling heat transfer. Hence, it will be of particular interest to elucidate the mechanism of
contact-line depinning on biphilic surfaces, which can possibly lead to an enhanced surface design
that is immune to intermittent boiling-induced heat transport deterioration at all pressure levels.

The pinning/depinning behavior of contact lines has long attracted the attention of hydrodynam-
icists studying evaporation of a sessile droplet sitting on a periodic wettability-patterned surface,
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which shows a strong dependence on the size of the local inhomogeneities [41–43]. It was noted in
particular that when crossing the boundary between the hydrophobic and hydrophilic nanotextures,
the contact-line dynamics seems to undergo a “jump” event [41,42] in addition to the famed
“stick-slip” (staggered) motion induced by the wetting hysteresis [44]. This intriguing behavior
was interpreted to be caused by a special form of contact-line breaking [45].

In contrast, the three-phase contact line is expected to travel at a considerably faster speed in
boiling (even reaching the order of 10−1 m/s on nano-enhanced surfaces [46]) due to the apparently
more intense phase change. It will thus be reasonable to postulate that a commensurably stronger
energy barrier is required at the surface heterogeneities so as to immobilize or slow down the rapid
contact-line motion [42]. Indeed, tantalizing evidence can be found in previous experimental results
[40] that the depinning of the bubble contact line and the following rewetting of the hydrophobic
spots tends to occur only at extremely low pressures when the pinning force can no longer hold
back the considerably accelerated bubble growth. The aim of the present study is to characterize
the three-phase contact-line interaction with a wettability-patterned surface in a single-component
nonisothermal system, which mimics boiling on a biphilic surface. We investigate the contact-line
dynamics under the influences of both the bubble growth rate and the local wettability contrast
using numerical simulation, which is based on the diffuse-interface method [47]. As a matter of
fact, a similar model for a dilute binary mixture of water and nitrogen has been employed to
investigate the effect of dissolved gas on the growth and departure of bubbles on biphilic surfaces
[20,48].

The remainder of the paper is organized as follows. In Sec. II we describe the diffuse-interface
model along with the computational steps. Section III is devoted to the typical numerical results,
which show contrasting contact-line spreading behaviors on the biphilic surface under various
bubble growth rates. Based on the simulations, we set out to quantify the contact-line dynamics
under different combinations of wetting heterogeneities in Sec. IV, which shows, among other
things, that while a depinned contact line tends to behave differently in accordance with the local
wetting characteristics, several universal features seem to emerge once the contact line gets pinned
at the wettability divide. We further discuss the physical mechanism and critical condition for
contact-line pinning on a biphilic surface in Sec. V. Finally, a summary of the results and a few
concluding remarks are given in Sec. VI.

II. NUMERICAL SIMULATION

Modeling of two-phase flows centers on the treatment of the liquid-vapor interface, which
carries extra complexity when mass transfer due to phase change has to be taken into account
[49]. The historical debate regarding the nature of the interface can be traced back to the times
of Lord Rayleigh [50] and van der Waals [51]. The classic continuum hydrodynamic perspective
considers the interface between two immiscible fluids to be a free boundary of zero thickness where
physical quantities exhibit discontinuities between the liquid and vapor phases [47]. Tracking of
the interface relies on solving an auxiliary advection equation (notable examples of which include
the level-set method [52] and the volume-of-fluid method [53]). Also, effects of capillarity need
to be explicitly taken into account at the interface. One of the major theoretical flaws of the
sharp-interface approach lies with the inherent inconsistency between a moving contact line and
the no-slip boundary condition under the Navier-Stokes framework [54]. Although the resulting
paradox of unbounded viscous dissipation at the contact line can be remedied by a localized slip
model based on the lubrication or thin-film approximation, additional efforts, however, are usually
required to match the inner-region solution with that of the outer region [55].

The alternative approach is to assign a finite width to the interface, which is closer to physical
reality especially near the liquid-vapor critical point. Under the diffuse-interface assumption, surface
energy (tension) can be derived “organically” from the smooth transition of density between the two
phases. More importantly, the viscous stress singularity that plagues the sharp-interface description
can be easily resolved as slip behavior is built in the local equilibrium in the contact-line region
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[56], which makes the diffuse-interface model a very useful tool to probe two-phase phenomena
involving dynamic wetting [57]. For these reasons, we choose to employ the diffuse-interface model
based on the dynamic van der Waals theory in an attempt to quantify the contact-line dynamics of
a growing bubble on a wettability-patterned surface. That is despite the stringent time- and length-
scale limitations and the significantly increased computational complexity, which the method is
known to entail [48,58,59].

A. Mathematical formulation

We consider a two-phase single-component fluid occupying a volume �, where the extra cost of
free energy associated with the formation of a diffuse liquid-vapor interface can be quantized, to a
first approximation [60], by the extended Helmholtz free energy functional,

F =
∫

�

dV

[
f (ρ, T ) + κ

2
|∇ρ|2

]
. (1)

The first term on the right-hand side represents the bulk contribution (i.e., the classic Helmholtz
free energy density), which for a van der Waals fluid is written as

f (ρ, T ) = kBT NV (ρ)

{
ln

[
NV (ρ)T 3/2

1 − bNV (ρ)

]
− 1

}
− aNV (ρ)2. (2)

Here the number density is defined as NV (ρ) = ρ/mp (with mp being the molecular mass), kB

is the Boltzmann constant, a and b are the molecular parameters in the van der Waals equation of
state, and T is temperature.

On the other hand, the second right-hand-side term of square-gradient density ρ of Eq. (1)
denotes the energy excess in the interfacial region. Assuming the gradient energy coefficient
κ = const [60], we can infer the interfacial thickness from the interpretation of the surface tension
(energy) σ as the energy cost in creating a smooth liquid-vapor interface,

σ = κ

∫ ρl

ρv

(
dρ

dx

)2

dx, (3)

where the subscripts l and v represent the liquid and vapor phases, respectively.
The equilibrium coexistence state of the system can be derived by minimizing the free-energy

functional F under the constraint of mass conservation, which leads to a second-order stress tensor
in the form of (for a detailed derivation, the interested reader is referred to [47,58,59])

↔
� = [p(ρ, T ) − κρ∇2ρ − 1

2κ|∇ρ|2]
↔
I + κ∇ρ ⊗ ∇ρ. (4)

Let
↔
I denote the identity tensor, and the thermodynamic pressure for a van der Waals fluid is

given by

p(ρ, T ) = ρ
∂ f (ρ, T )

∂ρ
− f (ρ, T ) = kBT NV (ρ)

1 − bNV (ρ)
− aNV (ρ)2. (5)

With the divergence-free extended pressure tensor Eq. (4), we finally arrive at the nonequilibrium
model for a viscous compressible two-phase flow with a finite-width interface:

∂ρ

∂t
+ ∇ · (ρ�v) = 0, (6)

∂

∂t
(ρ�v) + ∇ · (ρ�v ⊗ �v) = ∇ · ↔

τ − ∇ · ↔
� + ρg�eg, (7)
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where �v is the fluid velocity, �eg is the unit vector in the direction of the gravitational force, and g is
the acceleration due to gravity. Based on the Stokes’ hypothesis, the viscous stress tensor is given

as
↔
τ = η{[∇�v + (∇�v)T ] − 2

↔
I∇ · �v/3}, with η denoting the shear viscosity.

For a nonisothermal system such as boiling, the governing equations (6) and (7) need to be
appended by the balance equation for energy. It should be mentioned that the local energy flux
ought to include both classic (based on Fourier’s law of heat conduction) and nonclassic (due to
interstitial working [47]) contributions, which leads to

∂e

∂t
+ ∇ · (e�v) = (

↔
τ − ↔

�) : ∇�v + ∇ ·
(

λ∇T − κ
Dρ

Dt
∇ρ

)
. (8)

In accordance with the van der Waals equation of state, the internal energy here can be evaluated
as e(ρ, T ) = f (ρ, T ) − T ∂ f (ρ, T )/∂T = 3kBT NV (ρ)/2 − aNV (ρ)2. Furthermore, we postulate
that simple linear dependences on density exist for the viscosity η and the thermal conductivity
λ, which essentially entails [47,48,59]

η = η0ρ, (9)

λ = λ0ρ. (10)

It is worth noting that alternatively, instead of the energy flux, the pressure tensor itself [Eq. (4)]
can be modified to account for the effect of adiabatic interfacial forcing [61]. It appears that these
two formulations will lead to more or less indistinguishable predictions for heterogeneous boiling
behavior under constant-temperature boundary heating [59].

B. Nondimensionalization

The equations (6)–(8), along with the equation of state [Eq. (5)], constitute the set of governing
partial differential equations, which can be solved numerically in nondimensional form. The critical
coordinates of water (Tc = 8a/27kBb = 647.1 K, pc = a/27b2 = 22.1 MPa, and ρc = mp/3b =
322.0 kg/m3) are used as the scales for temperature, pressure, and density, respectively. Specifically,
the reduced fluid variables read

T̃ = T/Tc, (11)

p̃ = p/pc, (12)

ρ̃ = ρ/ρc, (13)

ẽ = e
27b2

a
= e/pc, (14)

where the tildes mean dimensionless quantities.
In order to fully resolve the diffuse interface, the length scale is chosen to be l∗ = 2b1/3 = 7.4 ×

10−10 m, and the matching time scale hence becomes t∗ = 6b5/6(mp/a)1/2 = 2.8 × 10−12s. Such
miniscule values pose one of the main challenges facing the phase-field-based approach—rendering
it extremely difficult, if not impossible, to perform meaningful quantitative comparisons with
experiments except for cases involving critical phenomena or nanofluidic applications. However,
we deem that the benefits of using the diffuse-interface method outweigh the disadvantages, for it
can lead to valuable and, more importantly, theoretically sound insights regarding the interfacial
interactions [47].

Based on the thermophysical properties of saturated water at T = 0.5Tc, we adopt the following
dimensionless parameters: η̃0 = 1.0, λ̃0 = 30.0, and κ̃ = 1.0. More details with respect to the
nondimensionalization can be found in Ref. [59]. Special care is taken when handling the
external-force term in the momentum equation (7), which involves the nondimensional gravitational
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FIG. 1. Schematic illustration of the axisymmetric simulation domain. The top open boundary, which
allows free flow of saturated liquid, mimics saturated heterogeneous boiling under surface superheating of
�T. The initiation of boiling is realized by seeding a vapor bubble nucleus on the top of the heating wall. By
use of the surface-energy formulation, contrasting wetting conditions can be applied to the bottom boundary,
with the hydrophobic (marked in purple) and hydrophilic (marked in green) regions demarcated at r = 60.0.

acceleration in the form of

g̃ = t∗2

l∗ g. (15)

Given that t∗ and l∗ are both negligibly small, instead of the terrestrial value of 9.8 m/s2, we rely
on an artificial gravity, which incidentally needs to be inflated multiple orders of magnitude [48,62]
to impose any meaningful impacts on bubble growth and, for that matter, contact-line propagation.
(Actually, the effect of the consequently different bubble growth rates on contact-line motion will
constitute the main focus of the following sections.) For the sake of conciseness and readability,
without specific indication, the accents, “∼,” will be dropped henceforth from the dimensionless
variables.

C. Numerical scheme

We employ the finite-element-based symbolic computing toolbox FEMLEGO [63], which features
the characteristic-based split (CBS) scheme, to numerically solve the partial differential equations.
Temporal terms are discretized using the first-order Euler forward method, whereas space discretiza-
tion relies on the piecewise linear approximation with adaptive mesh refining in the vicinity of
the liquid-vapor interface. The general minimal residual (GMRES) algorithm is used to solve the
resulting linear systems with an iterative convergence tolerance set at a relatively strict threshold of
10−8. The interested reader is referred to [59] for more technical details about the computational
procedures and code verification.
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Figure 1 shows the two-dimensional asymmetrical computation domain (0 < r � 200 and 0 �
z � 300) used in the present study, which is filled with saturated liquid water at Tsat = 0.79 and
ρsat,l = 1.95. Note that in order to avoid computational uncertainties associated with the cylindrical-
coordinate singularity, the axis of symmetry is purposefully removed from the left boundary (located
at r = 0.001), where the symmetry boundary condition is enforced.

The open boundary condition [59], which includes

∇n�v = 0 (16)

ρ = ρsat,l (17)

T = Tsat (18)

�i j = psat (Tsat )δi j, (19)

is assigned to the top boundary (z = 300). Here δi j denotes the Kronecker delta and ∇n the gradient
normal to the boundary. Essentially connecting the domain with an infinite virtual reservoir of
saturated liquid, the open boundary condition approximates vigorous boiling under the external
pressure of psat = 0.29. Such a treatment is equivalent to maintaining a metastable liquid phase by
placing a gaseous pocket above the growing bubble [62].

At the bottom (z = 0) and right walls (r = 200), the no-slip condition can be safely imposed
since the singularity of infinite stress at a moving contact line is readily resolved under the
diffuse-interface framework [56]. Following the localized surface-energy approach [59], we model
the wetting boundary condition at an isothermal solid wall as

∇nρ = σ cos θs

κ
∂ρψ (ρ). (20)

Such a relation is derived from applying energy minimization again at the contact line, which
leads to fast relaxation of the density distribution that approximates the equilibrium microscopic
contact angle θs. Note that ψ (ρ) represents an interpolating third-order polynomial function of
density that satisfies ψ (ρsat,v ) = 0 and ψ (ρsat,l ) = 1, along with the constraints ∂ρψ (ρsat,v ) = 0 and
∂ρψ (ρsat,l ) = 0 [such that Eq. (20) is nonzero only in the interfacial region].

It should be mentioned that the wetting condition can be described alternatively by a so-called
geometric formulation, which was claimed to result in more faithful reproduction of the imposed
contact angle in, for instance, droplet spreading [64]. Notwithstanding, as was shown in one of
our previous studies [59], the evolution of the particular interfacial shape under the surface-energy
formulation eventually arrives at an apparent contact angle that closely matches (within 3 degrees)
the set angle θs. Hence, we continue to use Eq. (20) in the present study. While the right wall has a
trivial value of θs = 90◦, the bottom wall is divided into a hydrophobic region (r � 60.0) featured
by θs,pho and a hydrophilic region (r > 60.0) by θs,phi, which notably constitutes a biphilic surface.

To simulate the robust growth of a vapor bubble in pool boiling, at t = 0 a spherical bubble
nucleus (ρv = 0.31, Tv = 0.73, and pv = 0.38) with an initial radius of 50.0 is artificially seeded
atop the bottom wall, whose center is located at z = 10.0. The interfacial density profile follows a
hyperbolic tangent function set between ρv and ρl [60] over a tentative width of 5.0. Additionally,
an isothermal (Dirichlet-type) condition is imposed at the bottom wall (namely, at a superheat of
�T = 0.06). The computational domain is discretized by a 200 × 300 mesh. All simulation runs
are carried out under a uniform time step of �t = 0.01.

III. CONTACT-LINE DYNAMICS

In this section, we will study in much detail the contact-line dynamics traversing a wettability
divide on the solid surface under various gravities. It is worth noting that in choosing gravity as
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the sole parameter of interest, we can effectively eliminate other interfering factors such as various
thermophysical properties. Moreover, because of the strong correlation between the gravity level
and the bubble expansion rate in boiling [65], the results are expected to shed light on the unalloyed
relationship of the bubble growth rate versus the pinning state of the contact line as it straddles the
border between contrasting hydrophobic and hydrophilic surfaces.

A. Low gravity (g = 0.0002)

We plot in Fig. 2 the time evolution of the bubble shape (namely, the density distribution) as
it is growing on the biphilic surface with θs,pho = 130◦ and θs,phi = 10◦ under a low gravity level
of g = 0.0002. Due to the strong hydrophobicity of the surface underneath the bubble, the initial
fast expansion of the contact line far precedes that of the rest of the bubble, as is evidenced by
the protruding bubble base at t = 0.5. Once the bubble grows beyond the border of the hydrophobic
surface, however, the contact line appears to drag behind while the bubble continues growing, which
results in a shift in the apparent contact angle that more or less reflects the surface’s nominally
enhanced affinity for water.

A more quantitative depiction of the (horizontal) bubble growth on the biphilic surface can be
found in Fig. 3, which traces the reaches of the bubble base (contact-line radius Rc) and the bubble
itself (bubble width Rb, as defined using the rightmost point along the bubble interface) over time.
Because the contact-line expansion leads the bubble growth during the initial bubble spreading on
the hydrophobic surface, the results for Rc and Rb overlap with each other until around t = 1.2.
Then, a bifurcation starts to emerge between Rc and Rb when the bubble reaches the end of the
hydrophobic region and the contact line gets overtaken by the rest of the bubble. Specifically,
the contact-line motion faces strong resistance as it strives to overcome the wettability divide,
as shown by the sharp decline of the corresponding time derivative Ṙc, whereas the bubble itself
keeps growing. Note that the marked hinderance to the contact-line expansion appears to be only
temporary, since the pace of the contact-line expansion quickly recovers and catches up to that of the
remaining bubble after the contact line finally moves over onto the hydrophilic part of the surface.

B. High gravity (g = 0.0007)

Next we repeat the simulation but with an elevated gravity g = 0.0007 while keeping everything
else unchanged. The results describing bubble growth are shown in Fig. 4. Quite similar to the case
with the low gravity (cf. Fig. 2), the bottom of the bubble seems to be expanding at an increasing
rate on the hydrophobic surface at the early time of t = 0.5, which leads to a bell-like shape.
But what transpires after the contact line arrives at the interface of the contrasting wettabilities
differs dramatically from the previous case. Instead of being only temporarily delayed, the contact
line appears to remain pinned at the boundary (around r = 60.0) between the hydrophobic and
hydrophilic regions. Thereafter, the abruptly interrupted horizontal expansion leaves bubble to grow
mainly along the vertical direction. It is interesting to note that on account of the continuous pinning
of the contact line, the bubble interface near the wall appears to turn increasingly stretched as
the bubble grows, giving rise to formation of a sharp contact angle extending all the way to the
midsection of the bubble at t = 25.0. More discussion regarding the apparent contact angle will
follow in Sec. IV.

Similarly, we show plots of Rb and Rc as functions of time and their time derivatives in
Fig. 5. Compared with their low-gravity counterparts in Fig. 3, here the bubble appears to grow
appreciably slower. We notice that under such significantly decelerated bubble growth, the contact-
line propagation on the surface eventually comes to a halt (Ṙc ≈ 0) at the entrance to the hydrophilic
region at around r = 60.0, while the rest of the bubble continues to grow (even at an apparently
accelerated rate), in sharp contrast to Fig. 3. In the inset we show enlarged results depicting a
gradual drastic slowdown, rather than a complete termination, of the contact-line expansion, which
agrees with recent molecular dynamics (MD) simulations of droplet evaporation under the effect of
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FIG. 2. Snapshots of the density distribution at different times for the case with g = 0.0002 at (a) t = 0.5,
(b) t = 2.5, (c) t = 5.0, and (d) t = 10.0. The initial stage of the bubble growth features fast expansion of the
bubble base on the hydrophobic surface (marked in purple, with θs,pho = 130◦). The local convex bubble outline
near the heating surface quickly turns into a concave shape once the contact line enters the hydrophilic territory
(marked in green) at r = 60.0, due largely to a shift in the surface wetting characteristics (θs,phi = 10◦).

surface heterogeneities [42,66]. Moreover, the pinning of the contact line at the wettability border
seems to be particularly strong since no reconvergence occurs between the curves for Ṙb and Ṙc

for the time period considered. In the case with g = 0.0002 (see Fig. 3), by contrast, the depinned
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FIG. 3. Plots of the bubble width Rb (in black) and the radius of the contact line Rc (in red) as functions
of time and their corresponding time derivatives Ṙb and Ṙc, for the case with θs,pho = 130◦, θs,phi = 10◦, and
g = 0.0002. The expansion of the bubble contact line seems to encounter a pronounced yet brief interruption
as it traverses the border between the hydrophobic and the hydrophilic surfaces.

contact line finds itself being dragged along by the continuous bubble expansion on the hydrophilic
surface, which results in Ṙc moving in almost perfect tandem with Ṙb. Also noted is the apparently
elevated level of “noises” present in the results of Ṙb and Ṙc in Fig. 3, in comparison with Fig. 5.
One possible explanation is that the increased instability could be caused by a propagating capillary
wave along the bubble interface that is generated from the moving contact line [67].

C. From depinning to pinning

As the above comparison of the cases of low and high gravities has shown, the level of gravity has
interesting implications for contact-line behavior on a mixed-wettability surface. Having performed
more simulations under the same surface-wettability contrast (θs,pho = 130◦ and θs,phi = 10◦) but at
different g’s, we plot in Fig. 6 with growing gravity the variations of the characteristic traversing
bubble expansion rate 〈Ṙb〉 and the corresponding contact-line speed 〈Ṙc〉, respectively. The results
represent the transition from the depinned-contact-line (DCL) mode to the pinned-contact-line
(PCL) mode. Note that here 〈Ṙb〉 and 〈Ṙc〉 are calculated averages based on the extracted data of
Ṙb and Ṙc over the duration of the wettability-border crossing when the contact-line dynamics is
evidently under the influence of the wettability contrast (for instance, the highlighted parts in Figs. 3
and 5). The error bars denote data spread (as defined by standard deviation of the data set).

It seems that the variation of 〈Ṙc〉 is nearly parallel to that of 〈Ṙb〉, which attests to the strong
correlation between the contact-line dynamics and the bubble growth rate in heterogeneous boiling.
As g increases, both 〈Ṙc〉 and 〈Ṙb〉 diminish following quasilinear relations. At around g = 0.0005,
a noticeable departure from the steep-sloped pattern begins to emerge, indicating a fundamental
shift in the behavior of bubble spreading on the surface. With further increases in g, the falling
general bubble growth rate gradually levels off, whereas the contact-line speed is reduced to
vanishingly small values. Hence, such a dramatic transition suggests that a complete demobilization
of contact line could indeed result from considerable deceleration of bubble expansion across
the surface-wettability gap. In what follows, we will delve further into the different contact-line
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FIG. 4. Snapshots of the density distribution for the case with g = 0.0007 on a biphilic surface divided
at r = 60.0 between the hydrophobic section (marked in purple, θs,pho = 130◦) and the hydrophilic section
(marked in green, θs,phi = 10◦) at (a) t = 0.5, (b) t = 5.0, (c) t = 10.0, and (d) t = 25.0. The bubble contact
line is seen to get pinned at the wettability divide, while the bubble continues to grow vertically, which gives
rise to the continued stretching of the lower half of the bubble interface all the way down to the surface.

characteristics between the DCL and PCL modes and their transition under the influence of surface
wettabilities.
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FIG. 5. Plots of the bubble width Rb (in black) and the radius of the contact line Rc (in red) as functions
of time and their corresponding time derivatives Ṙb and Ṙc, for the case with θs,pho = 130◦, θs,phi = 10◦, and
g = 0.0007. The results show clearly that the contact line fails to travel beyond the hydrophobic surface but
remains hemmed in by the surrounding hydrophilic surface (r = 60.0). Inset: enlarged view showing long-term
slowing down of the contact-line expansion.

IV. EFFECT OF HETEROGENEOUS WETTABILITIES

Encouraged by the promising results depicting divergent contact-line dynamics under the effect
of the bubble expansion rate, we now set out to broaden the scope of the study to elucidate the
effect of the surface wetting pattern. The objective is to derive a more complete description of the
behavior of contact lines traversing wetting heterogeneities. In what follows, a series of simulations
are performed based on the same problem setup but with different combinations of θs,pho and θs,phi.
The results reveal some remarkable characteristics of the contact-line mobility in the DCL mode
and the interesting emergence of a seemingly universal (effective) contact angle in the PCL mode.

A. Contact-line mobility

In Fig. 7 we show results delineating the influence of the biphilic pattern (that is, the contrast
between θs,pho and θs,phi) on the dynamics of a more mobile contact line (namely, under the DCL
regime) crossing the wettability interface. Here the vertical axes denote the relative movability of
the traversing contact line, which is defined as

� = 〈Ṙc〉
〈Ṙb〉

. (21)

Equation (21) measures the extent to which the contact-line spreading gets slowed down as it is
pulled by the expanding bubble across from the hydrophobic section onto the hydrophilic section of
the surface.

First, we examine the effect of surface hydrophobicity as defined by θs,pho. As Fig. 7(a) shows, �

falls sharply when the gravity level is raised from zero to g = 0.0006: from an initial level close to
� = 0.9 down to around � = 0.7 in the cases (marked in red) of θs,pho = 100◦ (with θs,phi = 70◦) and
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FIG. 6. Variations of the average bubble growth rate 〈Ṙb〉 (black circles) and contact-line speed 〈Ṙc〉 (red
circles) during the contact-line crossing at the wettability divide (θs,pho = 130◦ vs θs,phi = 10◦) on the surface
over different gravities. Completely depinned contact lines appear to dominate under the effect of low gravity,
which, in response to the slowing down of bubble expansion, becomes less mobile following a similar linear
relationship with g (marked by dash lines). When the gravity level is sufficiently high, however, 〈Ṙc〉 eventually
drops to nearly zero, which indicates pinning of the contact line at the wetting border. The error bars represent
standard deviations of the data sets.

θs,pho = 130◦ (with θs,phi = 70◦), and from � = 0.7 down to a paltry � = 0.2 in the cases (marked
in black) of θs,pho = 100◦ (with θs,phi = 10◦) and θs,pho = 130◦ (with θs,phi = 10◦). The consistently
diminishing contact-line mobility relative to the general bubble expansion rate indicates growing
resistance in the presence of a clear wettability contrast, which, incidentally, will lead the contact
line to an ultimate standstill if g is allowed to increase even further (see Fig. 6). More interestingly,
though, the variations of � appear to depend only weakly on the assigned hydrophobic contact
angle since the results differ ostensibly less between the cases with different θs,pho’s than those
with different θs,phi’s. In other words, the dynamics of propagating contact lines across opposing
wettabilities seems to rely mainly on the more wettable side of the divide.

Such a dominant role of surface hydrophilicity is made clear in Fig. 7(b), which plots similar
calculations of � for varying degrees of water affinity (of the hydrophilic section, r > 60.0)
ranging from θs,phi = 5◦ up to θs,phi = 70◦, while the assigned equilibrium hydrophobic contact
angle is maintained at a constant value of θs,pho = 130◦. Besides the similar trend of steadily
dwindling � with increasing g, one can detect increasing retardation to the contact-line motion on
the more hydrophilic surface, for � decreases ever lower when θs,phi lessens. The apparently strong
dependence of � on θs,phi can be explained in a somewhat straightforward manner. On account of the
specific direction of contact-line propagation (i.e., from the hydrophobic part to the hydrophilic part
of the surface in the present simulation), it is reasonable to expect the motion to be affected more by
the hydrophilic surface ahead. Furthermore, it is also more likely to encounter greater resistance in
displacing liquid with vapor, as does the moving contact line, on the surface that exhibits apparent
preference for the former.
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FIG. 7. Contact-line mobility as defined by the ratio of the traversing contact-line speed to the bubble
expansion rate, � = 〈Ṙc/Ṙb〉, under the influence of the wettability contrast of θs,pho and θs,phi. In (a), the results
demonstrate a quite moderate effect of the imposed contact angle θs,pho of the hydrophobic surface (r � 60.0)
on the overall distribution of � at different gravities. In (b), on the other hand, � is found to be more sensitive
to the changing affinity for water (measured by θs,phi) of the hydrophilic part of the surface (r > 60.0). Note
that the error bars denote the data-reduction uncertainties.
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FIG. 8. Comparison of the apparent contact angles at the pinned and depinned contact lines. In (a) are
shown examples of the contact-line regions close to the biphilic surface (with θs,pho = 130◦ and θs,phi = 10◦)
under the DCL (g = 0.0002) and PCL (g = 0.0007) regimes, respectively. The vapor phase is represented in
blue and the liquid phase in red. At t = 10.0, the depinned contact line is being pulled by the rapidly growing
bubble, which leads to bending of the bubble interface [in black, as defined by the density contour line at
(ρl + ρv )/2] near the solid hydrophilic surface. The resulting apparent contact angle θa differs considerably
from that of the pinned contact line, which extends along the stretched bubble interface from the border between
the surfaces of opposing wettabilities to the outer region. In (b), the evolutions of θa across the wettability divide
are plotted for these two cases, respectively. The results show more unstable behavior for the mobile contact
line on the hydrophilic surface. Note that θa is calculated using a two-point approximation near the wall z = 0.

It is noteworthy that the impedance to the traversing contact line across the wettability divide
seems to “saturate” at θs,phi = 10◦, beyond which point further decreases in θs,phi bring about
only marginal reductions to the contact-line mobility. This raises the implication of diminished
effectiveness of enforcing contact-line pinning, in order to avoid the transition to low-efficiency
intermittent boiling on biphilic surfaces, by merely enlarging the wettability gap alone.

B. Apparent contact angle

Despite the imposed wetting boundary conditions through the equilibrium contact angle θs,pho

and θs,phi, the liquid-vapor interface finds itself meeting the solid surface at a somewhat different
apparent angle, which is susceptible to (local) distortions due to dynamic effects in the contact-line
region [59]. Figure 8 describes the typical effective contact angles θa that forms at the depinned and
pinned contact lines on the biphilic surface (with θs,pho = 130◦ and θs,phi = 10◦), respectively. One
should note that θa in the present study differs from the conventionally defined dynamic contact an-
gle [64]. In both hydrodynamic [68] and molecular kinetic interpretations [55], the dynamic contact
angle is defined through a constitutive relation dominated by the speed of contact-line motion, which
in turn relies on a variety of factors including surface roughness and chemical inhomogeneities. In
the present simulation, as is shown below, the resulting apparent contact angles exhibit no clear
dependence on the velocity of the contact line (or the bubble growth rate at different g’s).
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Figure 8(a) shows that, in the DCL case (g = 0.0002), subsequent to it overcoming the energy
barrier due to the wettability contrast, the contact line goes on to freely spread on the hydrophilic
surface, closely following the rest of the bubble (see Fig. 3). The local equilibrium in the contact-line
region under the imposed wetting condition of θs,phi = 10◦ results in sharp bending of the interfacial
profile very close to the surface. Consequently, the effective contact angle θa turns out to be mostly
confined to a thin layer between the solid surface and the rapidly expanding bubble. Many details
about the contact-line structure are hence hidden beneath the smooth interface of the macroscopic
bubble.

By contrast, in the PCL case (g = 0.0007), the contact line remains firmly anchored upon
reaching the edge of the hydrophilic surface (around r = 60.0). Too weak to dislodge the contact
line, the bubble growth thereafter proceeds along the stretched bubble interface at an inclined
(contact) angle to the solid surface, θa, as shown by Fig. 8(a). Note that thanks to the strong pinning
of the contact line, θa prevails beyond the immediate vicinity of the surface and over the entire lower
half of the bubble [see Fig. 4(d)].

According to the evolution history of θa, which is shown in Fig. 8(b), the apparent contact angle in
the PCL mode quickly settles into a constant value once the contact line gets pinned on the surface.
The continuous bubble expansion appears to have little if any effect on θa. For the DCL modes, on
the other hand, the results show that θa declines precipitously as the contact line ventures onto the
hydrophilic surface after a brief delay. Moreover, compared with the relatively smooth θa on the hy-
drophobic surface, the apparent contact angle exhibits oscillatory behavior (with a variation of about
4◦) as soon as the contact line enters the hydrophilic section of the surface. Such instabilities could
be the result of capillary wave propagation created at the receding wetting front on the surface [67].

In Fig. 9 we present the representative values of θa [which are averaged over a period of at least
t = 1.0 once θa reaches steady state, as shown by the examples in Fig. 8(b)] under various wetting
patterns and gravity conditions. Similar to Fig. 6, the distributions of θa over increasing g appear to
fall into two distinct groups that correspond, incidentally, to the DCL and PCL regimes.

At relatively low g, the moving contact line on the hydrophilic surface seems to adopt an apparent
contact angle that, albeit not a complete match, strongly correlates with the assigned θs,phi. The
deviation of θa from θs,phi becomes even less with growing θs,phi, which indicates improved local
equilibrium as the dynamic effect weakens in the contact-line region. It should also be noted that θa

exhibits no clear dependence on the gravity level, which corresponds to varying contact-line speed
(see Fig. 6). In other words, as we have argued above, the effective contact angle in question here
should not be confused with the classic dynamic contact angle.

When g becomes sufficiently large, the contact line eventually gets pinned on the biphilic surface.
Other than the considerably reduced mobility, the pinned contact line differs from the depinned
contact line in another key aspect. That is, the apparent contact angles obtained at g = 0.0007 seem
to all fall around θa = 66.4◦ ± 1.9◦, irrespective of the surface wetting conditions of θs,phi or θs,pho

(see Fig. 9). The nearly universal behavior signifies a delicate balance between the driving force of
the (horizontal) bubble expansion and the pinning force at the contact line, which gives rise to the
subsequent asymmetric bubble growth seen in Fig. 4. At the moment we lack a clear explanation for
the interesting value of θa = 66.4◦, which could be subject to change under different fluid properties
or characteristic sizes of the wetting inhomogeneities. More studies are needed to fully grasp the
physical meaning of the constant pinned contact angle. In the following, we give a short discussion
regarding the detailed mechanics of contact-line pinning.

V. MECHANISM OF CONTACT-LINE PINNING

Our next goal is to quantify the critical condition for contact-line pinning based on a simple
theoretical model. Inspired by Kandlikar’s seminal modeling work on boiling CHF [28] that notably
included nonhydrodynamic influences such as surface wetting, we perform a similar force-balance
analysis of bubble spreading on a biphilic surface that consists of opposing wettabilities.
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FIG. 9. Distributions of the steady-state apparent contact angle θa over different gravities, for various
combinations of θs,pho and θs,phi. Each data point represents an averaged value of long-term θa over a period
of at least t = 1.0 and the error bars denote data spread. In accordance with the pinning state of contact line,
the results can be clearly divided into two distinct groups. When the contact line is allowed to travel on the
hydrophilic surface, θa appears to vary closely with θs,phi. On the other hand, when the contact line remains
pinned at the interface between the surfaces of opposite wetting conditions, θa appears to take on a nearly
universal value that is notably independent of either θs,pho or θs,phi.

Figure 10 depicts a bubble growing atop the hydrophobic section (in gray) of the biphilic surface,
whose propagating three-phase contact line has just reached the border with the adjacent hydrophilic
surface (in green). Under the pinned-contact-line assumption, as the present simulation has clearly
indicated, the following bubble growth will continue at a fixed angle β to the surface. Driving bubble
expansion in the direction parallel to the surface is an evaporative momentum force Fm, which is
given as (per unit length normal to the paper)

Fm =
(

qi

hlv

)2 Hb

ρv

. (22)

Here, qi represents the average heat flux per unit area across the bubble interface, which we
presume is devoted entirely to local evaporation. Also, let hlv denote the latent heat of vaporization
and Hb the height of the bubble.

On the other hand, the forces resisting bubble spreading on the surface are comprised mainly of
the surface tension forces and the excess pressure force (due to the hydrostatic pressure difference
between the inside and outside of the bubble). Along the horizontal direction, the former is
represented as (again, per unit length normal to the paper)

Fs = Fs1 + Fs2 cos β = σ (1 + cos β ), (23)

whereas the latter reads

Fg = 1
2 g(ρl − ρv )H2

b . (24)
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FIG. 10. A schematic illustration of the horizontal expansion of a bubble (of Rb in width and Rc in base
radius) on a biphilic surface. Continuous bubble growth is driven by heat inputs Qi at the bubble interface
and Qw beneath the bubble. When the driving force Fm (due to the momentum variation during evaporation)
roughly matches those resisting forces due to the surface tension effect, Fs1 and Fs2, and the hydrostatic pressure
gradient Fg, the bubble tends to grow along a fixed angle β to the surface. Moreover, the contact line will remain
pinned at the border between the hydrophobic (in gray) and hydrophilic (in green) surfaces.

We consider saturated bubble growth, of which the energy balance leads to

Qi + Qw = πR2
b(2 − cos β )(1 + cos β )2ρvhlvṘb. (25)

Note that Qi and Qw represent the total heat inflows per unit time through the bubble interface
and from below the bubble (which, remarkably, peaks at the contact-line region [59]), respectively.
Given the dominant contribution of Qw to bubble growth over that of Qi, herein we assume without
restrictions Qw = ξQQi, where the cofactor is taken to be ξQ = 4.0 based on various bubble growth
models [69]. Equation (25) then becomes

qi = 1

2ξQ
ρvhlv (2 − cos β )(1 + cos β )Ṙb. (26)

In deriving the above equation, use has been made of the total surface area of the bubble, Ab =
2πR2

b(1 + cosβ ).
Displacing the contact line from the current affixed position requires the driving evaporative

momentum force to exceed those resisting forces, which translates to Fm � Fs + Fg. Substituting
the definitions of the individual forces by virtue of Eqs. (22)–(24), we finally arrive at

Ṙb � 2ξQ

[
1

2(2 − cos β )2(1 + cos β ) sin β

g(ρl − ρv )Rc

ρv

+ sin β

(2 − cos β )2(1 + cos β )2

σ

Rcρv

] 1
2

,

(27)

where Rc denotes the bubble base radius and is related to the bubble height by a simple geometric
argument Hb = (1 + cosβ )Rc/sinβ. The above equation describes the minimal bubble growth rate
that is needed for the contact line to overcome the energy barrier due to the surface wetting
inhomogeneities, below which the bubble spreading on the surface is expected to be severely
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FIG. 11. Traversing contact-line speed Ṙc vs bubble growth rate Ṙb. For all the patterns of surface
biphilicity considered, the dramatic transition in the contact-line behavior between the regimes of contact-line
depinning and contact-line pinning occurs at around Ṙcrit

b = 2.24, which is a value derived from the force-
balance-based bubble spreading model.

hampered or even stalled. Furthermore, it would seem that pinning of the contact line is more likely
to occur at greater g’s, whereby evidently more robust bubble growth is required for free expansion
parallel to the surface.

In the case of Rc = 60.0 and β ≈ 66.4◦ for a pinned contact line at g = 0.0007, we calculate,
using Eq. (27), the threshold bubble expansion rate for contact-line pinning, Ṙcrit

b ≈ 2.24. In Fig. 11
we plot the mapping of contact-line dynamics traversing a wettability divide, which includes results
obtained under different biphilic combinations (θs,phi and θs,pho). The vertical axis denotes the
average contact-line speed Ṙc, whereas the horizontal axis denotes the corresponding bubble growth
rate Ṙb. It can be seen that a crossover from the DCL regime to the PCL regime occurs just around
Ṙcrit

b , in agreement with the theoretical prediction. The contact-line motion initially follows closely
that of the bubble growth (exhibiting greater sensitivity to θs,phi than to θs,pho, for that matter) until
a drastic deceleration is triggered near Ṙcrit

b , which leads eventually to demobilization of the contact
line.

Before concluding this section, a few remarks on the dramatic transition in the contact-line
behavior are in order. First, it should be mentioned that the data points in Fig. 11 are derived for
different gravity levels, while only the critical bubble growth rate for the highest g(= 0.0007) is
marked. Since Ṙb tends to increase with decreasing g (as Ṙb ∝ g−1, according to Fig. 6) and the
opposite trend holds true for Ṙcrit

b [as Ṙcrit
b ∝ g0.5, according to Eq. (27)], pinning of the contact

line is therefore feasible only at sufficiently large g where a dwindling Ṙb could possibly match a
rising Ṙcrit

b . Second, calculation of Ṙcrit
b [Eq. (27)] turns out to be sensitive to the parameter ξQ. The

good agreement between the simulations and the model shown in Fig. 11 relies in no small part
on the tentative value of ξQ = 4.0. In fact, a more convincing comparison requires direct accurate
measurement of ξQ and expanded knowledge of heat flux partitioning in boiling on heterogeneous
surfaces, which goes beyond the scope of the present study. Third, the simulated transition in the
contact-line interaction with the biphilic surface qualitatively agrees with our latest experimental
observations of subatmospheric boiling characteristics [70]. The experiment revealed a strong
correlation between the depinning of the contact line and the sudden acceleration of bubble growth
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at sufficiently reduced pressures, which matches the contact-line behavior depicted in Fig. 11. And
finally, the nature of the energy barrier to contact-line motion, which is taken mainly as the surface
tension force here, could be further explored on a molecular level. Recent MD simulations [71]
have pointed to a critical characteristic size of chemical heterogeneities below which the effect of
contact-line pinning appears to vanish.

VI. CONCLUSIONS

In this study, we have performed numerical simulations of contact-line motion on an isothermal
biphilic surface by means of the diffuse-interface approach, where the liquid-vapor interface is
treated as a continuous transition between the two phases and surface tension emerges naturally as
the energy cost associated with the interfacial formation. The governing partial differential equations
written for a single-component (water) system are discretized on an axisymmetric two-dimensional
computational domain and solved by FEMLEGO, a symbolic finite-element-based numerical solver.

The results reveal interesting contact-line behavior that can shed light on the puzzling observation
of sudden boiling deterioration on biphilic surfaces at very low pressures in experiments. Following
the fast expansion on the hydrophobic surface, the bubble evolution diverges depending on the
bubble growth rate once the contact line reaches the edge of the adjacent hydrophilic surface. In
the case of fast bubble expansion (at low gravity), the contact-line motion is shown to experience a
temporary hinderance at the wettability divide, which is due more to the enhanced surface wetting
ahead, before becoming fully recovered on the hydrophilic surface. In sharp contrast to the case of
depinned contact line, however, sufficiently weakened bubble growth (at high gravity) can result
in a significant slowdown and even complete pinning of the contact line. Afterwards, the bubble
growth seems to continue along a consistent apparent contact angle that is independent of either the
hydrophobic or the hydrophilic surfaces. The crossover between the regimes of mobile contact line
and pinned contact line, which is well captured by mapping the contact-line dynamics on surfaces
with different wetting conditions, can be largely explained on the basis of the force-balance model
of bubble spreading across wetting inhomogeneities.

Exhibiting a great potential for manipulating bubble behavior, surface-wettability engineering
provides a genuinely promising solution to the challenging task of boiling heat transfer enhance-
ment. Nevertheless, a unified description of contact-line motion on biphilic surfaces is still lacking.
It is our hope that the findings in this paper that are based on a simple wetting model can advance the
fundamental understanding of how the contact line spreads on a wettability-patterned surface in the
particularly vigorous events of boiling. Future research following the present work should expand
on the interpretation of wetting behavior by including more complex physics such as contact-line
friction [72], which could foreseeably lead to new insights on controlled bubble generation and
growth in boiling applications.
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