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Deformable microswimmer in an external force field
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External forces, such as gravity, play significant role in the swimming properties
of autonomous biological microswimmers as well as artificial swimming robots. Here
we have studied the influence of the external forces on the transport characteristics of
the triangular bead-spring microswimmers. The microswimmer, formed by connecting
three beads using three springs in an equilateral triangular arrangement, is capable of
performing autonomous translational (“mover”) and rotational (“rotor”) motions. We
show that for a mover triangle the application of a small external force results in the
alignment of swimming direction with that of the external force, a phenomenon known
as “gravitaxis.” We demonstrate that this gravitactic nature of the active triangle is purely
due to the hydrodynamic interaction among the beads. Under large external force, however,
the gravitactic nature is lost. This transition from gravitactic to nongravitactic motion of the
microswimmer is characterized by a saddle node or pitchfork bifurcations (depending on
nature of active forces), where the strength of the critical external force scales linearly
with the active force amplitude, f c

e ∼ fa. However, for the rotor triangle only saddle
node bifurcation is observed, which results in a vanishing angular velocity as the strength
of the external force is increased. The critical value of the external force for the rotor,
however, scales as f c

e ∼ f 2/3
a . These findings will provide insights into the nature of

biological swimming under gravity, especially the gravitactic microorganisms such as
Chlamydomonas, as well as help in the design of underwater vehicles.

DOI: 10.1103/PhysRevFluids.5.033101

I. INTRODUCTION

Swimming based on a change of shape is deployed by several biological systems [1–4] as well as
artificial microswimmers [5–9]. For these microorganisms inertia is negligible and their propulsion
is governed by purely viscous forces. In real life biological as well as artificial microswimmers are
rarely in isolated environments and often experience external flows and/or forces. Therefore, the
presence of external forces, such as gravity in the case of biological organisms or electromagnetic
forces for some artificial microswimmers [10,11], warrants the understanding of their influence on
the swimming properties [12].

It is known, for example, that the swimming direction of several biological organisms is
influenced by the presence of gravity, a phenomenon known as “gravitaxis” [13–15]. Among the
biological microswimmers, the phenomenon of gravitaxis has been most extensively studied for
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Chlamydomonas reinhardtii [16], a unicellular alga, and Euglena gracilis [17], a microscopic
protozoan, both of which are found primarily in fresh stagnant water bodies. These microorgan-
isms utilize cyclic deformations of flagella or the cell body itself to generate propulsion. The
proposed mechanisms for the gravitactic motions involve either a biological gravity sensor in the
microorganisms [18,19], or a finite separation between the center of gravity and center of buoyancy
(back-heaviness) [16], or the asymmetric shape of the microswimmer [15,20]. More recently,
the behaviors of active colloidal particles [20], Janus particles [21], and squirmers [22,23] in
the presence of external forces have also been the subject of intensive investigations revealing shape
asymmetry and collective effects as the possible sources of gravitaxis in these systems. Despite
the rich behavior revealed by these rigid microswimmers in the presence of external force, little is
known on the swimmers performing shape change for locomotion.

Here, we consider a triangular bead-spring microswimmer as a prototypical model for swimming
thanks to shape change, and analyze the influence of external forces. This type of microswimmer
is capable of performing steering motion [8] and have also been used as a model for the
swimming of C. reinhardtii [24], and magnetocapillary swimmers [10]. This triangular bead-spring
microswimmer is a generalization of the linear three-bead microswimmer which moves only along a
straight line [7]. The choice of bead-spring microswimmer as a model offers two advantages. First,
it would provide a clear understanding of the microswimmer behavior under external forces, and
second, it will also shed some new light on the effect of activity on the sedimentation properties of
beads [25,26] and bead-spring assemblies [27,28]. The sedimentation of a collection of particles has
been quite an active area of research for a very long time [29,30]. More recently, the dynamics of
the sedimentation of bead assemblies have been studied using analytical and numerical approaches
[27,28,31,32], revealing various dynamical behaviors of the passive particles, including steady
sedimentation [28], hydrodynamic reorientation of asymmetric particles [33], oscillatory solutions
[27], as well as chaotic trajectories [34]. In particular, studies on the sedimentation of triplet of beads
have shown their sedimentation in a V-shaped stable arrangement [33] or oscillatory solution in the
presence of periodic boundary conditions [26]. On the other hand, for the sedimentation of elastic
bead-spring assemblies, most of the studies have focused on the dumbbells, which demonstrate
steady configurations [31] even at finite Reynolds number [28] and oscillatory behaviors, which
depends on the ratio of gravitational and elastic forces [27]. The present work focuses on the
sedimentation of elastic triangular arrangement of the beads in the presence of activity. Besides
revealing a rich phase diagram of the microswimmer, this will provide some preliminary results
that should help to elucidate the influence of activity on sedimentation properties of particle
assemblies.

II. TRIANGULAR BEAD-SPRING ASSEMBLY

A. Passive bead-spring triangle

Three identical beads of radii a form an equilateral triangle (Fig. 1) with the help of three springs
(equilibrium lengths l , l � a). This bead-spring assembly is suspended in a fluid of viscosity η

and an external force field which exerts force fe on each bead. The configuration of the triangle is
described by θ , the angle formed between the line joining one of the beads (labeled as bead 1) to the
triangle center and the external force direction (Fig. 1). The springs are assumed not to experience
the external force or disturb the flow of the surrounding fluid. The triangle, although kept in a
three-dimensional medium, is constrained to move in its plane, which contains the direction of the
external force.

Under the assumption of negligible inertia of the beads, that is, Reynolds number Re = 0, the
positions of the three beads satisfy the following equations:

dri

dt
= μfi(r, t ) +

∑
j �=i

Gi j · f j (r, t ), (1)
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FIG. 1. Schematic of passive (left) and active (right) triangular bead-spring assemblies placed in an external
force field fe. The swimmer orientation θ is characterized by the angle made by the vector joining the triangle
center with one of the beads and the direction of external force fe. The unit vector êm marks the direction of
motion for a mover triangle.

where μ = 1/(6πηa) is the mobility of each bead, fi = fe + ∑
j �=i f i j

s is the total force (external
force + spring force) acting on the ith bead, and

Gi j = 1

8πη

(
I

ri j
+ ri j ⊗ ri j

r3
i j

)
(2)

is the Oseen tensor between the ith and jth beads, and ri j is the vector joining the ith and jth
beads with ri j = |ri j |. It has to be noted that for the Oseen tensor to be a valid representation for the
hydrodynamic interaction among the beads it requires l/a � 1. When this condition is not satisfied,
one can include the effects of finite bead radii into the lowest order term (still under far-field
approximation) of the hydrodynamics interaction tensor to get the Rotne-Prager-Yamakawa tensor
[35] or by taking into account the higher order contributions [36,37]. The Oseen tensor corresponds
to the velocity field created by a localized force in the Stokes flow,

∇ · u = 0, η∇2u(r, t ) − ∇P(r, t ) + fpδ(r − r0, t ) = 0, (3)

where u and P are the fluid velocity and pressure, respectively, and fpδ(r − r0, t ) is the localized
point force at r0. Here we consider the connecting springs to be finitely extensible nonlinearly elastic
(FENE) with resistance force given by

f i j
s = −k

εi j

1 − (
εi j/εm

)2 , (4)

where εi j = (ri j − l )/l is the spring strain connecting the ith and jth beads, and εm is the magnitude
of the maximum possible strain for the spring. For very small deformations εi j � 1 and the FENE
spring behaves as a linear spring with an elastic constant k.

B. Active bead-spring triangle

In the absence of any external forcing, the above-described triangular bead-spring assembly
undergoes self-propulsion when periodic active forces (see Fig. 1)

f i j
a (t ) = f i j

a sin(ωt + αi j ) (5)

are applied on the beads i and j along the connecting springs [8]. This arrangement of active force
results in autonomous motion as the total force and torque on the triangle vanish. In general, this
active triangle is capable of moving along arbitrary trajectories by appropriately modulating f i j

a

and αi j [8]. In this paper, however, we limit ourselves to two specific cases of the active triangle
(i) purely translational motion (“mover”) and (ii) purely rotational motion (“rotor”). We can study
the swimming behavior of this active triangle using Eq. (1) with fi = ∑

j �=i(f
i j
s + f i j

a ) as the total
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force on the ith bead. For small force amplitudes f i j
a � k, we can perform a Taylor series expansion

of Eq. (1) in ξi j , the displacement of the ith bead relative to that of the jth bead (see Appendix for

details). For equal force amplitudes, that is f i j
a = fa � k, and α12 = α13 = 0, α23 = α the triangle

moves along a straight line with an average velocity [8]

va ≈
√

3
f 2
a

klη

(
(1 − cos α) + (9λ + 2/λ) sin α

16π (9λ + 4/λ)(9λ + 1/λ)

)
êm + O

(
ξ 3

i j

)
, (6)

where λ = kμ/lω is the ratio of the timescales of the active force actuation (1/ω) and the triangle
deformation (l/kμ). The details of the derivation are given in Appendix A 1. It needs to be
pointed out here that even though the fluid surrounding the swimmer follows Stokes equations
[Eq. (3), which are linear], the leading order dependence of swimmer translational velocity (the
same holds for the angular velocity, see below) on active force amplitude is quadratic. This
nonlinear relationship is due to the deformation-dependent propulsion mechanism of the swimmer.
As in the Stokes problem, the swimmer velocity is proportional to the force amplitude. However,
motion takes place only because of the spring deformation, which is proportional to force; hence
there is a quadratic dependence of swimming speed on the force amplitude. This result has to
be contrasted with the force-dipole–based rigid microswimmer models where the leading order
dependence of swimmer velocity on active force amplitude is linear (for an example, see [38]).
Further, microswimmers are usually classified as “puller” (e.g., C. reinhardtii) or “pusher” (e.g., E.
coli) depending on the flow field they generate in the surrounding fluid [1]. This puller-pusher
characterization is based on the force-dipole (also known as stresslet �) representation of the
microswimmer where positive and negative values of stresslet correspond to pusher and puller
swimmers, respectively. As reported in [8], for fa � k the mover triangle behaves as a neutral
swimmer since the average stresslet over one swimming stroke remains zero. However, for large
active force amplitude this ceases to be the case with stresslet � ∼ sin α, which results in puller-
and pusherlike behaviors of the triangle for α < 0 and α > 0, respectively.

Similarly, for fi j = fa � k and α12 = ∓2π/3, α23 = 0, and α13 = ±2π/3, the triangle per-
forms pure rotational motion with an angular velocity

�a = ±9
μ f 2

a

kl

1

9λ + 4/λ
+ O

(
ξ 3

i j

)
, (7)

where negative and positive signs correspond to the clockwise and anticlockwise rotations of the
triangle in its plane, respectively (see Appendix A 1 for details). The swimming behavior of the
active triangle in the presence of external force can be studied by solving Eq. (1) with

fi = f i
e +

∑
j �=i

(
f i j
s + f i j

a

)
, (8)

where the three terms on right-hand side correspond to external force, spring force, and active force
on the ith bead. In the following we study the behavior of an passive and active triangle in the
presence of external force analytically as well as numerically. In the analytical treatment we consider
the small deformation of the triangle (see details below) and validate the obtained expressions by
numerical simulation of Eq. (1) with Eqs. (2), (4), and (8). For the numerical simulations we utilized
theODEINTfunction of the SCIPY library in PYTHON.

III. RESULTS

A. Passive bead-spring triangle

In order to delineate the effect of the interaction between the triangle activity and the external
force field we first need to understand the sedimentation properties of a passive triangle ( f i j

a = 0).
In the absence of any hydrodynamic interaction among the three beads, the passive triangle remains
undeformed and undergoes purely translational motion with a constant velocity μfe. Hydrodynamic
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FIG. 2. Schematics of (a) stable and (b) unstable steady state configurations of a passive triangle in an
external force field fe.

interactions among the beads result in the triangle deformation and rotation. For small deformations
of the triangle, Eq. (1) can be linearized to obtain the angular velocity of rotation

θ̇ = �e ≈ −B f 3
e sin(3θ ) + O

(
ξ 4

i j

)
, (9)

where B = 15
√

3
512π

( a2

ηl4k2 ) > 0 (see Appendix A 2 for details). Further, the translational velocity of the
passive triangle ve, described by the components in the directions normal (but within the plane of
triangle) and parallel to the external force,

v⊥
e ≈

√
3a

64πηl2

f 2
e

k
sin(3θ ) + O

(
ξ 3

i j

)
, (10)

v‖
e ≈ μ fe + 3 fe

8πηl

(
1 − a

16l

)
+

√
3a f 2

e

64πηl2k
cos(3θ ) + O

(
ξ 3

i j

)
, (11)

respectively, depends on its orientation θ . The first two terms in the expression for v‖
e [Eq. (11)]

correspond to the sedimentation velocity of a rigid bead-spring triangle, whereas the last term in
the Eq. (11) and velocity component v⊥

e [Eq. (10)] are due to the triangle deformability. For a rigid
equilateral triangle there is no transverse migration owing to its symmetry. This may not be true for
a rigid irregular triangular arrangement of beads. The f 2

e term in Eq. (10) reflects the combination
of the deformation (proportional to fe) and the forces on the beads which are also proportional to
fe. This explains the result in Eq. (9), which is the product of velocity (proportional to f 2

e ) and
deformation (proportional to fe). The 3θ dependence of �e and ve are the direct consequence of
the equilateral triangular shape of the assembly. For a triangle of asymmetric shape (for example,
isosceles) we expect this dependence to change from 3θ to θ , as seen in biological as well artificial
gravitactic microswimmers [15,20].

The expression for �e [Eq. (9)] shows that there exists one stable (corresponding to θ = 0, 2π/3
and 4π/3) and one unstable (corresponding to θ = π/3, π and 5π/3) steady-state configuration of
the passive triangle relative to the external force (Fig. 2). In the stable steady-state configuration, the
triangle gets elongated along the direction of external force, whereas in the unstable configuration it
is stretched in the direction normal to the external force field. These two steady-state configurations
can be described by

h ≈
√

3l

2
± 3 fe

8k
a + O

(
ξ 2

i j

)
, (12)

b ≈ l ∓
√

3 fe

4k
a + O

(
ξ 2

i j

)
, (13)
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as the heights and base lengths of the isosceles triangle, respectively. It can be seen that in order to
keep the linearization of Eq. (1) valid, we must have, according to the above expressions, fe

k � 4l√
3a

.

Further, elimination of sin(3θ ) from Eqs. (9) and (10) shows that v⊥
e is proportional to θ̇ . This

demonstrates that in the steady-state configuration [θ̇ = 0, Fig. 2(a)] the lateral motion of the passive
triangle ceases. In the following we will analyze the impact of activity of the mover and rotor
triangles on their behavior under the action of external force fields.

B. Active bead-spring triangle

In order to analyze the effect of activity on the triangle dynamics in the presence of external
forces, we calculate the average translational and angular velocities over one cycle of the active
force. In the following, we describe the behavior of mover and rotor triangles.

1. Translation of a mover in external force field

In the presence of an external force and activity we calculate the translational velocity of the
triangular swimmer by averaging Eq. (1) as

vm = 2π

3ω

3∑
i=1

∫ ⎛
⎝μfi +

∑
j �=i

Gi j · f j (t )

⎞
⎠dt, (14)

where fi = f i
e + ∑

j �=i (f i j
s + f i j

a ) is total force on the ith bead with contributions from external force,
spring force, and activity, respectively. On averaging over the active force cycle for all three beads,
the first term in the above equation has contributions only from the external force. For small triangle
deformation, the integrand in Eq. (14) can be expanded as a Taylor series of the triangle deformation
ξi j (see Appendix A 3 for details) to obtain the leading order terms in the expression of sedimentation
velocity of a mover triangle ( f i j

a = fa, and α12 = α13 = 0, α23 = α) as

vm = ve + va + vae, (15)

which is described by three contributions: ve, the passive sedimentation velocity due to external
force [given by Eqs. (10) and (11)]; va, the velocity due to the active propulsion [Eq. (6)]; and vae,
the effect of the coupling between the active and the external forces with components

v⊥
ae = vae sin(2θ ), (16)

v‖
ae = v0

ae − vae cos(2θ ), (17)

where

v0
ae ≈ 3 fe

16π

(
μ f 2

a

ηkωl2

)
λ(18 cos α + 63) + (14 cos α + 22)/λ

(9λ + 4/λ)(9λ + 1/λ)
+ O

(
ξ 4

i j

)
, (18)

vae ≈ fe

16π

(
μ f 2

a

ηkωl2

)(
153λ2 + 19

)
(cos α − 1) + 18 sin α

(9λ + 4/λ)(9λ + 1/λ)
+ O

(
ξ 4

i j

)
. (19)

Due to the sinusoidal nature of the active force, it can be seen that the terms proportional to fe fa

and fa f 2
e in Eq. (14) vanish on averaging over one active force cycle.

Equation (18) shows that even for α = 0, corresponding to the active triangle but with zero
translational and rotational velocities, the sedimentation velocity is enhanced due to its activity.
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(a) (b) (c)

FIG. 3. Bifurcation diagrams for the gravitactic swimming of a mover with (a) A > 0 and (b) A < 0
as obtained from the numerical simulation of Eq. (1). For fe < f c

e , the swimming direction for a pusher
(α > 0) is the same as that of external force. For a puller swimmer (α < 0), however, the swimming direction
depends on the sign of A (also see Fig. 4). The solid and dashed lines represent the stable and unstable steady
states, respectively. Values of other parameters are fa/k = 0.03, l/a = 100, α = π/2,−π/4, and λ = 0.8,
0.3. (c) Phase diagram of the mover triangle from the numerical simulation of Eq. (1) for different values of
active and external forces. The critical value of the external force separating the gravitactic (shaded region) and
nongravitactic behaviors scales linearly with the active force amplitude. The triangles represent the steady state
behavior of the microswimmer in the presence of fe, with the arrows in the triangles denoting the respective
direction of autonomous propulsion.

2. Gravitaxis

Similar to the passive triangle, the active mover triangle also demonstrates rotation in the
presence of external force. The average angular velocity of the rotation is given by

�m = �e + �ae, (20)

where

�ae ≈ −
√

3

8π

(
μ f 2

a

ηkωl3

)(
(27λ + 1/λ)(1 − cos α) + 18 sin α

(9λ + 4/λ)(9λ + 1/λ)

)
fe sin(θ ) + O

(
ξ 4

i j

)
≈ −A f 2

a fe sin(θ ) + O
(
ξ 4

i j

)
(21)

is the rotation due to the coupling between activity and the external forcing. This shows that we can
write the equation for the mover triangle orientation as [where we use that �m = θ̇ in Eq. (20)]

θ̇ ≈ [−A f 2
a sin(θ ) − B f 2

e sin(3θ )
]

fe + O
(
ξ 4

i j

)
, (22)

where coefficients A and B are given by Eqs. (21) and (9), respectively. It can be seen that for
|A| f 2

a � B f 2
e , that is, for large active force as compared to external force, there is only single stable

steady state θ = 0 (for A > 0) or θ = π (for A < 0). In other words, for very weak external forces
the triangle aligns its swimming direction with that of the external force field, resulting in gravitactic
swimming [14,15] [Figs. 3(a) and 3(b)]. This gravitactic behavior of the mover triangle can be
understood as follows. In the absence of external force the swimming direction is arbitrary (there
is continuous degeneracy, in that any direction is equivalent). Switching on the external force on
the mover breaks down the continuous family of directions into a discrete set of solutions nπ ,
where for A > 0, 0 corresponds to a stable (unstable for A < 0) and π to an unstable (stable for
A < 0) solution (modulo 2π ). For |A| f 2

a � B f 2
e , the external force dominates the triangle dynamics

resulting in three stable steady states [similar to passive triangle, see Eq. (9)] and the triangle gets
trapped in any of these three steady states, depending on its initial configuration. Therefore, for
strong external forcing the gravitactic nature of the mover triangle is lost. A close inspection of
Eq. (22) shows that depending on the values of A, which describes the flagellar beating pattern and
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FIG. 4. Phase diagram showing swimming direction of puller (−π < α < 0) and pusher (0 < α < π )
swimmers in the gravitactic regime as obtained from numerical simulation of the mover triangle. The triangles
in the three regions represent the steady state swimmer configuration with the arrows denoting respective
swimming directions. Values of other parameters are l/a = 100, fa/k = 0.01, and fe/k = 0.5.

frequency, the transition between the gravitactic and nongravitactic swimming of the mover triangle
is described by a saddle node [for A > 0, Fig. 3(a)] or pitch fork [for A < 0, Fig. 3(b)] bifurcation
where the critical value of the external force is given by

(
f c
e

)2 ≈ χ
A

B
f 2
a , (23)

where χ = 1,−1/3 for A > 0 and A < 0, respectively. This shows that the critical value of the
active force amplitude scales linearly with the external force [Fig. 3(b)].

Further, it can be seen in Figs. 3(a) and 3(b) that for an external force just beyond f c
e the triangle

orientation corresponding to the stable steady states is not the same as that for the passive triangle
(which is equal to 0 and 2π/3 for the stable positions). For fe � f c

e , however, the steady-state
orientations coincide with those for the passive triangle (Fig. 2).

As mentioned earlier, even though in the gravitactic regime the swimming direction gets aligned
with the external force, its exact nature (θ = 0 or π ), however, depends on A via α and λ. In fact,
for fa � k, in the gravitactic regime for α ∈ [αc, 0], where

cos αc = 1 − 648

(27λ + 1/λ)2 + 324
and αc < 0, (24)

the θ = π orientation (which is unstable for passive triangle) becomes stable and θ = 0 becomes
unstable. This, combined with the dependence of swimmer propulsion direction on λ and α, results
in three distinct swimmer behaviors as shown in Fig. 4. For α > αc the swimming direction is
along the external force direction, whereas for α < αc it is opposite to the external force. Further,
for λ � 1, that is very slow swimming strokes relative to the relaxation time of the swimmer, and
fa � k we get αc ∼ 0. This demonstrates distinct behaviors for puller and pusher swimmers under
external force where pullers tend to swim opposite to the external force and pushers along the
external force.
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(a) (b)

FIG. 5. (a) Bifurcation diagram for the rotor triangle from the numerical simulation of the rotor triangle.
For fe < f c

e , the rotor triangle has a nonzero angular velocity. The solid and dashed lines represent the stable
and unstable steady states, respectively. Values of other parameters are fa/k = 0.03, l/a = 100, and λ = 0.8.
(b) Phase diagram of the rotor triangle as obtained from numerical simulations. The critical value of the external
force separating the rotating (shaded region) and nonrotating states scales as f c

e ∼ f 2/3
a .

3. Rotor in an external force field

We have seen in the last section the effect of external force on the straight trajectory (a mover)
of the triangle. Here we consider the other limit where the unperturbed swimmer is a rotor. In
the absence of any external force, the rotor triangle ( fi j = fa, α12 = −α13 = ∓2π/3 and α23 = 0)
performs only rotational motion with an angular velocity �a [Eq. (7)]. In the presence of external
force the leading order terms in the angular velocity

�r = �a + �e + +O
(
ξ 4

i j

)
(25)

are due to the active rotation and the rotation due to external force, respectively. From the
expressions of �e [Eq. (9)] and �a [Eq. (7)], we can write the equation for the orientation of the
rotor triangle as

θ̇ ≈ C f 2
a − B f 3

e sin(3θ ) + O
(
ξ 4

i j

)
, (26)

where the coefficient C (which can be positive or negative depending on the active force distribution)
is easily read off Eq. (7) and B > 0 [see Eq. (9)]. This demonstrates that for |C| f 2

a � B f 3
e (weak

external forcing) the swimmer rotates with nearly a constant angular velocity (shaded region in
Fig. 5). On the contrary, for |C| f 2

a � B f 3
e (strong external forcing) the swimmer rotation stops and

it gets trapped in one of the three steady states described by Eq. (9). Similar to the mover triangle,
the qualitative change in the behavior of the rotor triangle as the strength of the external forcing is
increased can be characterized by a saddle node bifurcation [Fig. 5(a)]. Equation (26) shows that
the critical value of the external force at the bifurcation point is given by

(
f c
e

)3 ≈ |C|
B

f 2
a (27)

and it scales with the active force amplitude as f c
e ∼ f 2/3

a [Fig. 5(b)].

4. Lateral migration of a rotor

Recall that in the absence of any external force the rotor does not show any translational
motion. The application of external forcing, however, results in a lateral migration along with an
enhancement of mobility along the external force direction. The total velocity for the rotor with
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(a) (b)

FIG. 6. (a) Velocity field uFD due to the force-dipoles induced by the passive bead-spring triangle in
external force field. Parameter values are l/a = 100, fe/k = 1. (b) Schematic showing the forces acting on
the three beads of the passive triangle in the reference frame comoving with the triangle.

α12 = ∓2π/3, α23 = 0, and α31 = ±2π/3 is given by

vr = ve + v̂ae, (28)

where the components of v̂ae are

v̂⊥
ae ≈ ± 27 fe

768π2

(
f 2
a

k2η2l2μ

)
1

9λ + 4/λ
+ O

(
ξ 4

i j

)
, (29)

v̂‖
ae ≈ 27 fe

32π

(
μ f 2

a

ηkωl2

)
1

9λ + 4/λ
+ O

(
ξ 4

i j

)
. (30)

It is noteworthy that the leading-order terms in the velocity due to the coupling between activity and
external force do not depend on the triangle orientation. Further, the direction of lateral migration
(v̂⊥

ae) depends on the nature of the active forcing. A reversal of the direction of active rotation (by
modulation of αi j) also results in the reversal of the direction of lateral migration.

C. Velocity fields

In order to gain further insights into the nature of the swimming of the active triangle in the
presence of external force we calculate the velocity fields generated by these microswimmers in
the surrounding fluids. For a passive triangle, the steady state fluid velocity in the reference frame
attached to the triangle is given by

up(r) = −ve + ue(r) + uFD, (31)

where ve is the velocity of triangle sedimentation, ue(r) = ∑3
i=1 G(r, ri )fe [where ri is the position

of ith bead and G is given by Eq. (2)] is the velocity induced by the external force fe acting on the
beads, and uFD(r) is the velocity field due to the deformation of the triangle.

Figure 6(a) shows the nature of uFD(r) in the reference frame attached to the passive triangle. It
can be seen that this velocity field resembles the one due to the swimming of Chlamydomonas, a
biflagellated alga [39]. This is expected, since in the steady state the passive triangle gets elongated
in the direction of the external force, which leads to three point forces (or stokeslets) acting on the
three beads, which is also a simplified representation of Chlamydomonas for the far-field velocity
field [39]. In the calculations of the far-field fluid velocity these stokeslets can also be represented
as three force dipoles along the three connecting springs [Fig. 6(b)]. We obtain the leading order
terms in the far field uFD as

uFD(r) ≈ 9
√

3a

128πη

fer
r5

(
r2 − 3

(r · fe)2

f 2
e

)
+ O

(
ξ 2

i j

)
, (32)
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(a)

(a ) (b ) (c ) (d )

(b) (c) (d)

FIG. 7. Velocity fields (averaged over one cycle of activity) due to a mover triangle with (a) fa/k = 0.01,
fe/k = 0, (b) fa/k = 0.02, fe/k = 0.01, and a rotor triangle with (c) fa/k = 0.01, fe/k = 0, and (d) fa/k =
0.02, fe/k = 0.01 in the reference frame comoving with the swimmer. Other parameters are l/a = 100,
λ = 0.8, (a), (b) α12 = α13 = 0, α23 = π/2, and (c), (d) α12 = −α13 = −2π/3, α23 = 0. Corresponding lower
panels show the schematics with the singularity representations where straight and curved arrows mark the
average stokeslets and rotlets, respectively.

which shows a 1/r2 dependence, as expected from the force dipoles. This shows that the terms ue

and uFD in Eq. (31) decay as 1/r and 1/r2, respectively. It has to be noted that the velocity field
uFD is independent of stiffness of the springs, k. It can be understood by the fact that for fe � k,
the linear nature of the springs results in triangle deformation by a magnitude which is proportional
to fe/k. Therefore, force acting at each bead due to the triangle deformation is proportional to
k × fe/k = fe, which is independent of k.

The application of the activity on the triangle results in additional correction ua in the velocity
field (Fig. 7). As shown previously in [8], the average far-field velocity field due to the mover
triangle in the absence of any external force can be represented by a rotlet-dipole. This rotlet-dipole
is composed of two rotlets of opposing polarity placed at beads 2 and 3 [Fig. 7(a′)]. Similarly,
for the rotor triangle the far-field velocity field can be expressed in terms of three rotlet dipoles
[Fig. 7(c′)]. The rotlet-dipole representation of the velocity field due to triangle activity, in both of
these instances, demonstrates a 1/r3 decay of the fluid velocity. The analytical expressions for the
far-field velocity fields due to mover and rotor triangles are given in [8].

Therefore, in the presence of activity ( fa � fe) the near-field velocity field in the fluid is
primarily due to the swimmer activity, whereas the far field is described by the external force.
For a mover triangle with fa � fe its gravitactic property also ensures a symmetric nature of
the total fluid velocity about fe in the steady state [Figs. 7(b) and 7(b′)]. On the other hand, for
fa � fe (non-gravitactic swimming) the fluid velocity is not necessarily symmetric about fe since
the propulsion direction of the mover is not always aligned with fe. Similarly, the velocity field due
to a rotor triangle in the presence of external force is also not symmetric [Figs. 7(d) and 7(d′)].

IV. DISCUSSION

The sedimentation behavior of the passive flexible triangle presents a picture somewhere in
between the two extremes of rigid equilateral triangle and an unconnected triplet of particles.
The rigid triangle sediments with constant velocity (although higher than that of a single isolated
bead) and the external force does not have any influence on its orientation. On the other hand,
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an unconnected bead triplet is known to demonstrate many equilibrium configurations, including
“kissing” (where only one pair of beads touch each other) and “chain” (where there are at least two
touching pairs) configurations [40], as well as oscillatory [25,27] and chaotic solutions [34]. We
have seen that for the flexible triangle, the application of external force results in its deformation
to an isosceles triangle (Fig. 2). A rigid isosceles arrangement of beads has been known to reorient
itself along the external force [33]. Therefore, it can be seen that the external force deforms the
equilateral triangle to an isosceles configuration, which, in turn, gets reoriented to align with the
external force. Although the results shown here are limited to a triangle constrained to move along
a vertical plane, it can be easily generalized to three-dimensional bead-spring assemblies such as
a tetrahedral arrangement. We do not observe any oscillatory or chaotic regimes for the passive
triangle for the range of fe/k we report in this paper. However, our preliminary results for higher
magnitude of external force demonstrate oscillatory as well as chaotic regimes which we hope to
report on in the future. The oscillatory solutions of the bead-spring triangle for large external forces
can be considered a simplified model of the sedimentation of the deformable and irregular bodies
[27,41]. Furthermore, the oscillatory solutions also raise a possibility of design of passive swimmers
under combined force and flow fields [42].

The introduction of the activity further enhances the rich dynamics of the triangle. For the active
mover triangle a weak external forcing results in the gravitactic motion. This hydrodynamics-based
mechanism for the gravitaxis depends on the puller-pusher characteristic. For pullers, such as C.
reinhardtii, the swimming direction is opposite to the external force (for example gravity). However,
pushers, such as E. coli and Spermatozoa, swimming is in the direction of the external force. Further,
considering the case of C. reinhardtii, its flagellar beating patterns correspond to α < 0 [24]. If
we take the following values for the active and external forces fa = 0.25k and fe = 5k (values
which yield a typical beating pattern) the maximum angular velocity due to the coupling of activity
and external force is approximately 0.01–0.05/cycle. This shows that it would take approximately
50–100 cycles for a C. reinhardtii to realign its direction for swimming opposite to the gravity.
This time is much smaller than the average duration of “free-flight” time (the duration between
two consecutive tumbling events), which is close to 10 s (or approximately 500–1000 cycles) [43].
Furthermore, this hydrodynamics-driven gravitaxis also provides more control for the swimming
of micro-organisms as opposed to the back-heaviness [16]. As shown in Fig. 4, for hydrodynamic
gravitaxis, a swimmer can change its direction of swimming, when required, by modulating the
beating patterns of the flagella. We also see that by performing an appropriate flagellar beating (such
as that for a rotor) a swimmer can undergo rotational motion even in the presence of external forcing.
We expect the microorganisms to deploy a combination of “mover” and “rotor” states to move along
arbitrary trajectories in the presence of the forces such as gravity. Therefore, the hydrodynamics-
driven gravitaxis shown here offers a new perspective for further experimental investigations which
may require a microgravity setup [44] for gravitaxis. It needs to be highlighted that the deformation
of the triangle due to the active or external forces is inversely proportional to the stiffness of the
spring k. Therefore, the regimes of high and low external and active forces can also be interpreted
as low and high stiffness of the springs. From the analytical expressions it can be seen that the
behaviors of active and passive triangles for small external and active forces also correspond to very
large values of k.

The reorientation of the swimmer in the presence of external force is also expected to have
effects on their behavior in suspensions. The active symmetric rigid particles (movers) have been
known to demonstrate polar ordering along the direction of the applied external force [12,45,46].
The mechanism of this polar order has been attributed to the rotational diffusion or run-and-tumble
nature of the active particles. For the deformable swimmers also, as considered here, we show a
polar ordering, albeit in a dilute regime, by virtue of their alignment of swimming direction with
that of the external force. However, the mechanism of this polar ordering is of a fundamentally
different nature since it is caused by its activity-driven deformation which does not depend on the
rotational diffusion or tumbling of the swimmer. The activity of the mover triangle results in its
change of shape from an equilateral triangle to an isosceles one, which is known to demonstrate
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gravitaxis [33]. The properties of collective sedimentation of the triangular active particles would
require further systematic analysis.

V. CONCLUSIONS

We have used numerical simulation and analytical approaches to study the behavior of a
triangular microswimmer in the presence of external force. We have observed that the flexibility
of the connecting springs and the active forces leads to faster movement of the triangle than that of a
single particle in the same external force. We have also found that for translational microswimmers
an application of weak external force leads to its alignment of propulsion direction with that of
external force. Under strong external forces we have shown that there are three distinct stable steady
states possible, which leads to loss of gravitaxis of a translational microswimmer and rotation for a
rotational microswimmer.
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APPENDIX

In the following we provide the details of the derivation of the equations in the main text.

1. Active triangle in the absence of external force

The details of the derivations of the swimming properties of the active triangle in the absence of
any external force are given in Refs. [8,24]. Here, we describe the important steps to obtain Eqs. (6)
and (7). The actuation of the active triangle is prescribed by the active forces given by Eq. (5). In
the absence of external force (fe = 0), application of active force results in periodic deformation of
the triangle. The average swimming velocity of the triangle in one cycle of the active force can be
written as

va = 1

3T

3∑
i=1

∫ T

0

⎛
⎝μfi(r, t ) +

∑
j �=i

Gi j · f j (r, t )

⎞
⎠dt, (A1)

where fi = ∑
j �=i(f

i j
s + f i j

a ) is the total force (spring+active) acting on the ith bead and T = 2π/ω

is the time period of the active force. The first term on the right-hand side of the above equation
vanishes due to the force free condition

∑
fi = 0. We utilize the Taylor series expansion of the

Oseen tensor [Eq. (2)] around the equilibrium triangular configuration to get

va = 1

3T

3∑
i=1

∫ T

0

⎛
⎝∑

j �=i

(ξi j (t ) · ∇ )Gi j · f j (r, t )

⎞
⎠dt + O

(
ξ 3

i j

)
, (A2)

where ξi j (t ) = xi(t ) − x j (t ) represents the small relative displacement of the ith bead with respect
to the jth bead. (Here xi is the displacement of the ith bead from its equilibrium position.) Here we
have used the force-free condition.

For |ξi j | � l , the springs behave linearly, and as a result, we can expand Eq. (1) as a Taylor series
to obtain

dxi

dt
= μ

∑
j �=i

(
f i j
a − k

l2
ξi j · ri j

)
ri j

l
+

∑
j �=i

⎡
⎣G0

i j

∑
m �= j

(
f jm
a − k

l2
ξ jm · r jm

)
r jm

l

⎤
⎦ + O

(
ξ 2

i j

)
, (A3)
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where G0
i j is the Oseen tensor for the undeformed triangle. We can obtain the equation for ξi j as

dξi j

dt
= dxi

dt
− dx j

dt
, (A4)

which is a linear ordinary differential equation in ξi j with sinusoidal forcing fa. The general solution
to this equation can be written in the form

ξi j = Ai j sin(ωt ) + Bi j cos(ωt ), (A5)

which can be substituted into Eq. (A4) to solve for coefficients Ai j and Bi j . This gives a linear
dependence of ξi j on fa. Therefore, it can be seen from Eq. (A2) that the leading order dependence
of swimming speed on fa is quadratic, since the terms linear in fa vanish when averaged over one
cycle. In the same spirit the average angular velocity can be written as

�a = 1

T l2

3∑
i=1

r0
ic ×

∫ T

0
vic(t )dt + O

(
ξ 3

i j

)
, (A6)

where r0
ic is the position vector of the ith bead relative to the triangle center of mass and vic(t ) is the

relative velocity of that bead with respect to the center of mass of the microswimmer.
For sufficiently small amplitudes of the active forces, that is, fa � k, the evolution equations of

the bead positions can be obtained up to linear order accuracy [O(ξi j )] from Eq. (1). Substitution
of these values of bead position into Eqs. (A2) and (A6) gives us the translational and rotational
velocities of the active triangle which simplify to Eqs. (6) and (7) by fixing α12 = α13 = 0, α23 = α,
and α12 = ∓2π/3, α23 = 0, α13 = ±2π/3, respectively.

2. Passive triangle in external force field

For the passive triangle in the external force field we can follow the same approach as described
for the active triangle above. The sedimentation velocity of the passive triangle is given by

ve = 1

3

3∑
i=1

⎛
⎝μfi(r, t ) +

∑
j �=i

Gi j · f j (r, t )

⎞
⎠, (A7)

where fi = fe + ∑
j �=i f i j

s is the total force (external+spring) acting on the ith bead. We assume that
the relative displacement of the beads is dependent on the triangle orientation (see Fig. 1), which
is ξi j (θ ) = ∑

n[Ai j
n sin(nθ ) + Bi j

n cos(nθ )], and solve Eq. (1) for Ai j
n and Bi j

n by expanding it in the
form shown by Eq. (A4). Please note that for the passive triangle in the external force field the
active force term in Eq. (A4) has to be replaced by the external force. Substitution of the values of
coefficients Ai j

n and Bi j
n into Eq. (A7) yields Eqs. (10) and (11). Similarly, the angular velocity of

the passive triangle can be written as

�e = 1

l2

3∑
i=1

(ri × ṙi ) = μ

l2
(ri × fi) + 1

l2

3∑
i=1

[ri × (Gi j · f j )], (A8)

which simplifies to Eq. (7) for small deformation of the triangle.

3. Active triangle in external force field

Here, too, we follow the same approach with the total force on each bead given by Eq. (8). It
needs to be pointed out that due to its activity the deformation of the active triangle depends on its
orientation θ as well as on time t . Therefore, the relative displacement of the beads ξi j (θ, t ) =∑

n[Ai j
n (t ) sin(nθ ) + Bi j

n (t ) cos(nθ )] has the time-dependent coefficients Ai j
n (t ) and Bi j

n (t ). As-
suming Ai j

n (t ) = Pi j
n sin(ωt ) + Qi j

n cos(ωt ) and Bi j
n (t ) = Ri j

n sin(ωt ) + Si j
n cos(ωt ) one can linearize
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Eq. (1) following a similar approach as for Eq. (A4) to obtain the coefficients. Substitution of these
coefficients in Eqs. (A7) and (A8) along with the appropriate values of phase angles αi j gives us the
desired analytical expressions.
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