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We study the flow topology dynamics in terms of the paramount nonlinearities of
enstrophy and strain production at hard turbulent regimes of Rayleigh-Bénard convection
(RBC). To do so, a data set of direct numerical simulations for air turbulent RBC at
Rayleigh numbers Ra = {108, 1010, 1011} is analyzed. Considering the bulk dynamics
therein, the classical two-dimensional mean Lagrangian evolution of QG and RG invariants
of G ≡ ∇u is extended to three dimensions by decomposing RG into two parts: the strain
production RS and the enstrophy production tr(Ω2S). In this way, the three-dimensional
phase space (QG, RS, tr(Ω2S)) allows us to identify separately the nonlinear straining and
rotational mechanisms in turbulence. The main resultant observations attest that, when the
turbulent regime is notably hard, a rising local self-amplification of the velocity gradient
takes place in strain-dominated areas. This process is strongly aided by vortex contraction.
Concomitantly, a pronounced increase in the linear contributions of vortex stretching is
also identified, particularly relevant to strain-dominated slots.
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I. INTRODUCTION

Many circulations in nature and industry, such as convection in the outer layer of the Sun,
coherent structures in the Earth’s atmosphere and oceans, mantle convection in the Earth’s core,
and circulation in nuclear reactors and in solar thermal power plants, are ruled by Rayleigh-Bénard
convection (RBC). Namely, the turbulent dynamics therein mainly stems from buoyancy variations
in the dynamo of a thermally driven flow heated from below and cooled from above [1–3]. Besides
the onset of flow structures, this dynamics becomes of significant complexity when the grade
of turbulence and thermal forcing is very high, i.e., Rayleigh number Ra > 1010. For instance,
the rising self-sustained instabilities of RBC induce augmenting countergradient diffusion and
energetic nonequilibrium between the buoyant production and viscous dissipation, which are mainly
compensated by pressure fluctuations [4,5]. Although important features have been explored using
direct numerical simulation (DNS) of RBC at hard turbulent regimes [6,7], such as the stable
boundary layers at Ra = 2 × 1012 [8] and the thermal plumes statistics at Ra = 1012 [9], many
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questions regarding the coherent (small-scale) structures remain. For instance, there is a lack of
understanding about the flow topology and small-scale dynamics even though these components
have a crucial contribution to the turbulent wind and energy budgets. They fully compose the main
turbulence mechanisms, such as the evolution of hairpin vorticity dynamics, the non-Gaussianity,
the strain and dissipation production, and the cascade of kinetic energy [10–12]. In this regard,
we aim to shed light on the following research question: How do the physically meaningful
nonlinearities, such as the enstrophy generation (mechanism of vortex stretching) and the strain and
dissipation production (mechanism of kinetic energy cascade), behave at hard turbulent regimes of
RBC? The enstrophy and strain production terms constitute the key elements responsible for the
self-amplifying nature of the velocity derivative G ≡ ∇u in turbulence, which is believed to be
a universal feature [10]. The role of G properties is remarkable in investigating the structures of
turbulent fluid motions [13] and the fine-scale dynamics [14,15]. Another important relation in this
regard is the so-called Tennekes-Lumely balance [11], which states that for statistically stationary
turbulence at high Reynolds numbers the viscous and production terms of enstrophy are in balance.
Therefore, a detailed analysis of the small-scale motions during their lifetime, in terms of these
nonlinearities, can provide fundamental perspectives about how thermal turbulence is evolving with
Ra in RBC. Moreover, apart from improving our understanding of buoyancy-driven turbulence, it
can also provide highly valuable information needed to develop better turbulence models [16,17].

In this paper we first outline a short description of the DNS configuration in Sec. II, together with
an overview of previous findings regarding flow topology and small-scale dynamics for turbulent
RBC at Ra = {108, 1010}, reported in Ref. [18]. In particular, we focus on showing the counterparts
encountered at a different turbulence grade at Ra = 1011. Afterward, the total group of the DNS
data set, i.e., Ra = {108, 1010, 1011}, is used to explore the small-scale dynamics in terms of the
enstrophy and strain production terms in Sec. III. Then, in order to have a more complete picture,
the dynamics of small-scale kinetic-thermal interactions is studied in Sec. IV. Finally, all relevant
results are summarized and conclusions are given in Sec. V.

II. BACKGROUND

In the above-explained context, well-known features of the small turbulent scales already
encountered in different kinds of turbulent flows, e.g., isotropic turbulence [15], turbulent boundary
layer (BL) [19], channel flow [20], turbulent mixing layer [21], and turbulent jets [22], were first
explored in RBC by Dabbagh et al. [18] using DNS results at Ra = {108, 1010}. Namely, we
simulated the dimensionless incompressible Navier-Stokes (NS) and thermal energy equations given
by

Du
Dt

=
√

Pr

Ra
∇2u − ∇p + f , ∇ · u = 0, (1)

DT

Dt
= 1√

Ra Pr
∇2T, (2)

where D/Dt = ∂/∂t + u · ∇ is the Lagrangian derivative with time t , p is the pressure, T is the
temperature, and u = (u, v,w) is the velocity field in Cartesian coordinates x = (x, y, z). The
governing equations (1) and (2) are written in nondimensional form using the cavity height H ,
the temperature difference between the upper and lower walls ��, and the buoyant velocity
Uref = √

αgH�� as references, where α is the volumetric thermal expansion coefficient and g
is the gravitational acceleration. The Boussinesq approximation is used to model the buoyancy
forces, i.e., f = (0, T, 0). The configuration studied is shown in Fig. 1(a). Considering that the
cavity is filled with air (Pr = ν/κ = 0.7), then the system depends only on the Rayleigh number
Ra = gα��H3/νκ , where ν is the kinematic viscosity and κ is the thermal diffusivity. The global
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FIG. 1. (a) Schema of the Rayleigh-Bénard configuration studied in Refs. [16,18] and rendered with an
instantaneous temperature field developed from the DNS at Ra = 1010. (b) Instantaneous picture of |u| at
Ra = 1011 for a spanwise cross section. (c) Structures of high positive QG isocontours, which are arranged like
worms of intensive enstrophy. (d) Same as in (c) in addition to visualization of the sheetlike strain structures
that follow high negative values of QG. Both (c) and (d) are taken from the DNS results at Ra = 108 and
supplemented with some streamlines.

response is measured via the average Nusselt number Nu given by

Nu =
√

Ra Pr〈vT 〉A − ∂〈T 〉A

∂y
, (3)

where the operator in angular brackets represents the temporal average (likewise it denotes the
ensemble average in the statistical analysis) and the subscript A refers to the average over a
horizontal x-z plane at a given y position. For details about the used numerical methods, algorithms,
and verification of the DNS results, the reader is referred to our previous work [18]. In this work
we extend our DNS set with a simulation at Ra = 1011, computed on 8192 CPU cores of the
MareNostrum 4 supercomputer [23], and using the in-house STG code [24] on a grid of 5.7 × 109

nodes [see Fig. 1(b) and Table I for details]. Similarly to the previous DNS [18], a fourth-order
symmetry-preserving spatial discretization [25] has been used together with a self-adaptive second-
order explicit time-integration scheme [26]. Finally, herein, the total data set of DNS results at
Ra = {108, 1010, 1011} is considered and analyzed, and a summary of parameters is given in Table I.
The power-law scaling obtained, Nu ∼ Ra0.31, agrees very well with the fit of Grossmann-Lohse
theory from Stevens et al. [27] and the DNS results of van der Poel et al. [9] for an air-filled
cylindrical cell of aspect ratio 1/3 and Ra up to 1012.

As mentioned above, results at Ra = {108, 1010} allowed us to study relevant features of the
small turbulent scales in RBC [18]. For example, we clearly observed the universal inclined teardrop
shape of the joint PDF of the second, QG = −1/2 tr(G2), and third, RG = −1/3 tr(G3), invariant of
the velocity gradient tensor G in the two-dimensional (2D) phase space (QG, RG) [see the similar
tendency at Ra = 1011 in Fig. 2(a)]. Notice that the flow is solenoidal; therefore, the first invariant
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TABLE I. Physical and numerical parameters of the simulation adopted with refinement approaches to
the Grötzbach estimate ηGrö� π Pr1/2[(Nu − 1)Ra]−1/4 [28]. Here ηDNS = (�x�y�z)1/3

max identifies the DNS
grid size with NBL as the imposed number of nodes inside the thermal boundary layers (exceeding Shishkina
et al. [29] requirements). In addition, �t represents the time step in free-fall time units (TU) and ζ indicates
the temporal integration periods that guarantee a statistically stable turbulent heat transport. Quantitatively,
ζst lasts for several large-eddy turnover times τeddy during which consecutive snapshots are gathered for the
statistical analysis. Using the definition of τeddy = H/urms, where urms is the root mean square of the bulk
velocity, τeddy ≈ {7, 5, 4} TU for Ra = {108, 1010, 1011}, respectively.

Ra ηGrö
(�y=�z)max

ηGrö

�x
�ymax

ηDNS Nx × Ny × Nz NBL �t (TU) ζ (TU) ζst[τeddy] Nu

108 0.0109 0.70 1.0 7.70 × 10−3 400 × 208 × 208 9 1.45 × 10−3 500 40 30.9
1010 0.00246 0.92 1.36 2.50 × 10−3 1024 × 768 × 768 12 4.14 × 10−4 200 10 128.1
1011 0.00114 0.93 1.44 1.20 × 10−3 2048 × 1662 × 1662 13 1.66 × 10−4 165 10 269.5

is zero, i.e., PG = tr(G) = ∇ · u = 0. It is very common to use this phase space to classify the
flow topology into four different classes [13,15]. Namely, RG < 0 and QG 	 0 correspond to
stable tubelike vortex-stretching structures, where positive enstrophy production is prevalent [see
the instantaneous visualization in Fig. 1(c) for the high positive QG isosurfaces at Ra = 108, which
are structured as the so-called worms [10], together with the streamlines]. In the opposite quadrant,
when RG > 0 and QG 
 0, the straining production becomes dominant and it is mostly associated
with strong unstable sheetlike viscous dissipative structures [the additional visualization shown in
Fig. 1(d) that exposes the surrounding sheetlike strain, which is characterized by high negative
values of QG]. The other two less frequent quadrants correspond, respectively, to ribbons of unstable
vortex-compressing structures (QG 	 0 and RG > 0) and highly dissipative tubelike-shape struc-
tures (QG < 0 and RG < 0, below the null-discriminant curve DG = 27

4 R2
G + Q3

G = 0). In general,
the joint probability density function (PDF) aspect rendered in Fig. 2(a) indicates that most of the
flow domain is occupied by large-scale (small mean gradients) dynamics around the origin, while
the turbulent small-scale motions obey substantially the tubelike vortex-stretching and the sheetlike
viscous dissipation structures. The life cycle of these scales, on the other hand, was interpreted by
studying the mean evolution of QG and RG invariants in the same (QG, RG) phase space, meaning

FIG. 2. (a) Joint PDF of normalized QG and RG invariants in their own space, rendered on a logarithmic
scale, and (b) conditional mean vectors of 〈DQG/Dt〉 and 〈DRG/Dt〉 in the same plane together with the integral
trajectories (black solid orbits). Both outcomes are taken from Ra = 1011, through the bulk, where the solid
continuous gray lines indicate the null-discriminant curve DG = 0.
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FIG. 3. PDF of vorticity alignments with the eigenvectors of (a) the rate-of-strain tensor and (b) the vortex-
stretching vector ωS, through the bulk, at Ra = {108, 1010, 1011}.

that, in the frame of a moving observer following a fluid particle, the local surrounding flow
structures are essentially described by G and its invariants, i.e., QG and RG. Its change in time can
be depicted by the Lagrangian dynamics of invariant quantities as proposed by Martín et al. [14] and
Ooi et al. [15]. So, identical to that procedure, the mean trajectories of (〈DQG/Dt〉, 〈DRG/Dt〉) were
studied in RBC [18] and revealed the similar (universal?) characteristic clockwise spiraling behavior
decaying towards the origin [see the planer cycling trajectories plotted for Ra = 1011 in Fig. 2(b)].
From Fig. 2(b) one can perceive how the local flow topology is altering, during its lifetime, from the
viscous dissipation to the vortex stretching and then the compressing structures, before vanishing in
the mean.

Apart from the above attributes, we also observed in Ref. [18] the preferential alignment of
vorticity ω = ∇ × u with the intermediate eigenstrain vector λ2 and the vortex-stretching vector
ωS, where S denotes the rate-of-strain tensor. This prevalent alignment was speculated to be a
universal feature of the geometrical structures in 3D turbulence [10]. By retrieving similar aspects
at Ra = 1011, Fig. 3 shows the PDF of cos(ω,λi ) = (ω · λi )/(|ω||λi|) [Fig. 3(a)] and cos(ω,ωS)
[Fig. 3(b)], plotted together with the previous outcomes of turbulent RBC cases through the bulk.
The present case indicates similar trends and manifestation on the universal positiveness of the net
enstrophy production, i.e., 〈ω · ωS〉 > 0 [18], which is revealed in Fig. 3(b). It is worth noting that
the present aspects, inspected in Figs. 2 and 3 at Ra = 1011, are very similar to those at Ra = 1010

[18].

III. EVOLUTION IN A 3D PHASE SPACE

Principally, in the present work, we seek to expose the role of strain generation RS = −1/3 tr(S3)
and enstrophy production tr(Ω2S) = RS − RG in controlling the evolution of small-scale dynamics,
where S = 1/2(G + Gt ) and Ω = 1/2(G − Gt ) are the rate-of-strain and rate-of-rotation tensors,
respectively. To do so, we expand our 2D (QG, RG) evolution study [18] to the 3D phase space
(QG, RS, RS − RG) by decomposing RG = RS − tr(Ω2S) into its two components, similar to Lüthi
et al. [30]. In this way, we avoid the planner projection of trajectories onto (QG, RG); therewith the
influence of increasing turbulence (nonlinearity) is difficult to distinguish [18]. In other words, we
better disclose the local self-amplification nature of G at high Ra in the evolution of flow topology
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by separating the production terms, i.e., RS and tr(Ω2S), which were blended to RG in the (QG, RG)
space [10,18]. These third-moment nonlinearities are essential parts of the enstrophy ω2 and total
strain S2 transport equations. Namely, by taking the gradient of the NS equations (1) and using
the definition of the invariants QΩ = −1/2 tr(Ω2) = 1/4|ω|2 and QS = −1/2 tr(S2), these transport
equations read

DQS

Dt
= −3RS + tr(Ω2S) − tr(SHS), (4)

DQΩ

Dt
= 2 tr(Ω2S) − tr(ΩHΩ), (5)

where

HS = −
(

H(p) − 2QG

3
I
)

+
√

Pr

Ra
∇2S + 1/2(∇ f + ∇ f t ), (6)

HΩ =
√

Pr

Ra
∇2Ω + 1/2(∇ f − ∇ f t ) (7)

are second-order tensors that include the terms of the resultant pressure Hessian H(p), the viscous
diffusion terms of strain (Pr/Ra)1/2∇2S and rotation (Pr/Ra)1/2∇2Ω, and the gradient of the
buoyancy forces ∇ f . On the other hand, it is worth recalling that this 3D phase space is a subset of
the 5D phase space of invariants (QG, RG, QS, RS,V 2) that fully describes the local flow topology
for incompressible flows [14] and composes the cornerstone of turbulence models [31]. For the
so-called restricted Euler (RE) equations (where the pressure, viscosity, and buoyancy terms are
neglected), the transport equations of these invariants read [14,31]

DQG

Dt
= −3RG,

DRG

Dt
= 2

3
Q2

G, (8)

DQS

Dt
= −2RS − RG,

DRS

Dt
= 2

3
QGQS + 1

4
V 2,

DV 2

Dt
= −16

3
(RS − RG)QG, (9)

where V 2 = 4[tr(S2Ω2) − 2QSQΩ] = |Sω|2 � 0 is the L2-norm of vortex-stretching vector.
Identically to the 2D evolution procedure adopted in Refs. [15,18], the conditional 3D phase

space (QG, RS, RS − RG) is analyzed using data from the bulk region [Vbulk = {x = (x, y, z)|0.2 �
y � 0.8; 0.2 � z � 0.8}] and dividing the domain⎧⎨

⎩
−2 � QG/〈QΩ〉 � 2

−0.2 � RS/〈QΩ〉3/2 � 1.2
−1 � (RS − RG)/〈QΩ〉3/2 � 1

⎫⎬
⎭

into 40 × 40 × 40 bins. Therein, the average approach to the material derivative of QG, RS, and
RS − RG is applied conditionally upon the invariants themselves. Namely, using a set of consecutive
instantaneous flow fields collected during ζst (see Table I), the three components

〈
DQG

Dt

∣∣∣∣ − 1

2
�

(
QG − Q0

G

)
�QG

<
1

2
; −1

2
�

(
RS − R0

S

)
�RS

<
1

2
; −1

2
� (RS − RG) − (

R0
S − R0

G

)
�

(
RS − RG

) <
1

2

〉
,

〈
DRS

Dt

∣∣∣∣ − 1

2
�

(
QG − Q0

G

)
�QG

<
1

2
; −1

2
�

(
RS − R0

S

)
�RS

<
1

2
; −1

2
� (RS − RG) − (

R0
S − R0

G

)
�

(
RS − RG

) <
1

2

〉
,

〈
D(RS − RG)

Dt

∣∣∣∣ − 1

2
�

(
QG − Q0

G

)
�QG

<
1

2
; −1

2
�

(
RS − R0

S

)
�RS

<
1

2
; −1

2
� (RS − RG) − (

R0
S − R0

G

)
�(RS − RG)

<
1

2

〉

(10)

are computed to compose 3D vectors, where (Q0
G, R0

S, R0
S − R0

G) are the center coordinates of the
bin size (�QG,�RS,�(RS − RG)). A robust converging of the rates therein has been accomplished
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using a high number of samples (greater than 1000) per bin. The mean rate vectors are integrated
along some paths to produce the conditional mean trajectories (CMTs) for the three turbulent cases
Ra = {108, 1010, 1011} displayed in Figs. 4(a)–4(c), respectively.

With close inspection, one can deduce the following 3D scenario of dynamics in the mean: At
Ra = 108, the evolution of flow topology seems to be very weak in areas dominated by high positive
values of strain production RS > 0. This consistently corresponds with the prevalence of the tubelike
rotational geometry over strain slots in the bulk at that turbulent grade [18]. Therefore, the CMTs
follow a planer (QG, RG) rotation near RS = 0 moving on average from strain-dominated regions
[Vieillefosse tail [32] at the null-discriminant plane DG = 0 where QG < 0 and RS dominates
tr(Ω2S)] towards the enstrophy-dominated areas QG > 0 of vortex stretching RS − RG > 0 to
regions of vortex contraction RS − RG < 0 and so on [see Fig. 4(a)]. They finally decay towards
the origin (0,0,0), vanishing the fluctuations in the mean and leaving the large scales of the coherent
uniform flow next to the origin [18].

By increasing the Ra number, the trajectories’ movement is drastically expanded to 3D helical
tracks. They start the rotation in regions dominated by vortex stretching RS − RG > 0 and strain
production RS > 0 preferentially located in strain-dominated areas −QS or QG < 0 [see the facing
QG-RS plane of combined CMTs for all cases, shown in Fig. 4(f)]. This helical movement becomes
notable, stronger, and further developed at Ra = {1010, 1011} [see Figs. 4(b) and 4(c), respectively].
It manifests in (i) the enhanced local interaction ω/S, which amplifies the linear contribution of
vortex stretching in strain-dominated slots. Nearby observations suggest that the axis of this helical
behavior begins to be perpendicular to the intersection line of the QG = 0 and DG = 0 tent plane,
in very high positive values of RS − RG and RS [see Fig. 4(d) and the facing RS-(RS − RG) plane
in Fig. 4(e)]. Afterward, closer to the origin, the CMTs reverse their clockwise roll when they
run downward below, after crossing the DG = 0 tent plane [see Figs. 4(d) and 4(f)], and return to
their original rotation after flowing upward, rotating towards the origin with an axis normal to the
QG-(RS − RG) plane near RS = 0. This directional modification in the strain-dominated regions
−QS is due to the opposite sign of RS and tr(Ω2S) inside Eq. (4).

While approaching the end, the vectors of mean dynamics obey a rapid downward action in areas
of enstrophy domination QG > 0, vortex contraction RS − RG < 0, and strain production RS > 0.
This action becomes stronger when increasing the turbulence grade, i.e., with higher Ra [see vectors
in Figs. 4(a)–4(c), plotted by length and color range proportional to their magnitude]. Relevant
CMTs are found to travel extensively downward in the strain-dominated areas QG < 0 towards high
values of RS > 0 as the Ra increases [see Figs. 4(a)–4(c) and 4(f); for a better grasp of the evolution,
see the movie of the CMTs for Ra = 1010 in Ref. [33]]. This in turn confirms two additional issues:
(ii) A local self-amplification of the turbulence background G and viscous straining −QS in growing
strain-dominated areas takes place at hard turbulent RBC and corresponds to amplified vorticity
contracting events [note that positive values of RS and negative ones of tr(Ω2S) strengthen −QS and
vice versa in Eq. (4)] and (iii) there is a direct and local collaborative role of vortex compression in
the dissipative actions and kinetic energy cascade. That is, vortex compression RS − RG < 0 aids
the production of strain and dissipation RS > 0 and the kinetic energy cascade, on the contrary to
the vortex stretching that suppresses the cascade [10].

In order to certify conclusion (i), we investigate the local underlying physics of the vortex-
stretching vector ωS. Namely, we propose to evaluate the mean value distribution of the squared
magnitude of the vortex-stretching vector, i.e., V 2, conditioned on the joint PDF map of (QG, RS −
RG) invariants. By doing so, we can determine whether the highest stretching pertains to the
enstrophy-dominated QΩ regions or the strain-dominated −QS regions. Hence, the average values
〈V 2|(QG, RS − RG)〉, which are conditioned by the most probable joint PDF of QG and (RS − RG)
in their own space, are plotted and shown in Fig. 5(a) for Ra = 108. As expected, even at the lowest
turbulent case Ra = 108, the maximum mean V 2 (black circle) is located in the positive enstrophy
production RS − RG > 0 and strain-dominated QG < 0 areas. Although the enstrophy production
and V 2 remain large in the rotation-dominated QΩ regions, its highest order of magnitude occur in
the strain-dominated slots. Similar pictures are observed for the higher Ra numbers, identified by
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FIG. 4. Conditional mean vectors (〈DQG/Dt〉, 〈DRS/Dt〉, 〈D(RS − RG)/Dt〉) in (QG, RS, RS − RG) space,
colored and scaled proportionally to their magnitudes and plotted together with their integral trajectories (black
and gray lines) at (a) Ra = 108, (b) 1010, and (c) 1011, through Vbulk. (d) Combination of (a)–(c) trajectories,
plotted together in clear gray for Ra = 108, dark gray for Ra = 1010, and black for Ra = 1011. Also shown
representations of (d) in (e) RS-(RS − RG) and (f) QG-RS facing views. The transparent tent-shaped surface in
all figures indicates the null-discriminant surface DG = 27

4 R2
G + Q2

G = 0.
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FIG. 5. (a) Average squared magnitude of the vortex-stretching vector i.e., 〈V 2〉, conditioned on (QG, RS −
RG) invariant space and normalized by its maximum. (b) Conditional averages of V 2 in slots of QΩ and −QS.
The data set analyzed in both figures is obtained from Ra = 108 through the bulk, where the small black circle
in (a) points out the maximum magnitude.

higher magnitudes for all elements. For a sharper comparison, the conditional averages of V 2 are
determined (separated) in slots of QΩ and −QS, as displayed in Fig. 5(b), meaning that we compute
the mean value of 〈V 2/〈V 2〉〉 in each bin �QΩ/〈QΩ〉 and −�QS/〈QΩ〉, which make up a total
number of 300 bins. Again, for Ra = 108 (similar to the others), the stretching magnitude is much
larger in strain-dominated areas than that in enstrophy-dominated ones and the main contribution to
the vortex stretching in these regions comes from effects associated with the local interaction ω/S.
These findings, in particular the clear evidence in Fig. 5(b), are consistent with those in Ref. [34],
where DNS results in a box with periodic boundary conditions at Reλ = 75 were used.

More investigations conducted for the same term V 2, but conditioned on the QΩ and −QS joint
PDF map, are shown in Fig. 6. This map provides physical information about the dominant flow
topologies with respect to the kinetic energy dissipation. For example, points of high enstrophy QΩ

but very small dissipation −QS indicate solid-body rotational structures (vortex tubes), while points
of strong dissipation but little enstrophy represent irrotational straining domination. A balanced
distribution of QΩ = −QS translates into a vortex sheet topology, which normally occurs in the BLs.
It was found in Ref. [18] that the bulk geometries are mainly tubelike rotational with a map skewed
towards high QΩ at Ra = 108 [Fig. 6(a)]. However, at Ra = 1010, the self-growth of −QS geometries
was clearly identified, as demonstrated in Fig. 6(b). If we plot the average values of 〈V 2|(QΩ,−QS)〉,
similar to Fig. 5(a), it can be observed that at Ra = 108 the maximum value (black circle) lies at
−QS ∼ 0.7 in the dominated rotational topologies. This is natural since the vortex stretching obeys
a dominant long-lived solid-body rotation. Note also the same maximum position of average V 2

at QG ∼ −0.7 in Fig. 5(a). When the turbulence grade increases (Ra = 1010, which has the same
trends as Ra = 1011), the vortex tubes break up by developing local (self-amplified) straining in
the stretching contributions, and the maximum 〈V 2|(QΩ,−QS)〉 shifts upward in Fig. 6(b), towards
higher values of −QS. All these events confirm conclusions (i) and (ii).

Our resultant evolution is consistent, to some extent, with the evolution dynamics studied by
Lüthi et al. [30] for isotropic turbulence in the same 3D phase space. They found the same cyclical
evolution in areas of positive enstrophy and strain productions, with the same rotation axis, leading
to enstrophy-dominated regions QG > 0. It is noteworthy to evoke the statistical comparable aspects
of isotropic turbulence with the bulk structures of RBC at Ra = 108, as shown in Ref. [18]. Therein,
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FIG. 6. Average squared magnitude of the vortex-stretching vector, i.e., 〈V 2〉, conditioned on (QΩ, −QS)
invariant space and normalized by its maximum. The statistics analyzed are taken from (a) Ra = 108 and
(b) Ra = 1010 through the bulk. Similar to Fig. 5(a), the small black circle indicates the maximum value of
〈V 2〉.

the joint PDF map of (QΩ,−QS), in Vbulk, was found to be of similar distribution as the forced
isotropic turbulence investigated in Ref. [15]. However, at higher Rayleigh number Ra = 1010, the
distribution deviates [Fig. 6(b)]. Hence, such a discrepancy with respect to the results obtained in
Ref. [30] for isotropic turbulence may be produced by our higher turbulence grades, the confinement
effect of our RBC, and the different mechanism of injecting kinetic energy into the system, i.e., by
the dissipation of thermal plumes.

For a rough comparison, we have simulated the evolution of the 5D phase space of invariants
(QG, RG, QS, RS,V 2) for the RE equations projected onto our 3D phase space (QG, RS, RS −
RG). To do so, we have integrated Eqs. (8) and (9) explicitly from multiple initial values for
(QG, RG, QS, RS,V 2), and their evolution has been projected and plotted in the 3D phase space
(QG, RS, RS − RG) in Fig. 7(a) together with the tent plane DG = 0. We note how the trajectories
start from small values of RS − RG > 0 and RS > 0 in the strain-dominated regions QG < 0 and
asymptotically approach the left-hand side of the DG = 0 wire mesh. Then they expand and rotate
in the quadrant of positive enstrophy and strain productions RS − RG > 0 and RS > 0 towards high
values in the rotation-dominated areas QG > 0 [see Figs. 7(a) and 7(b)]. This behavior is similar
to the dynamics observed in the DNS [see Fig. 4(e), where the rotation axis is similar to that in
Fig. 7(b)], but the spiraling direction is reversed and is preferentially located in strain-dominated
areas QG < 0 [see Fig. 4(f)]. It can be deduced that at a high turbulence grade, the effect of the
nonlinear advection (convective term) appears in both cases and concentrates, for the RE model,
in the centered vorticity tubelike filaments or worms, where the vortex stretching and intensive
enstrophy are dominant, i.e., RS − RG > 0, QG > 0, and RS > 0. In particular, in these areas
where QΩ is dominant, for the DNS the enstrophy production is in an approximate balance with
the viscous destruction of rotation −tr[Ω(Pr/Ra)1/2∇2Ω], as discussed by Tsinober [10]. Hence, the
influence of the natural turbulence remains predominantly in the strain-dominated regions of the
vortex-stretching patterns (i), and is primarily returned to the pressure Hessian term. This conforms
well with the results of Tsinober et al. [34], who found that in regions of high strain the pressure
Hessian even enhances the growth of stretching. On the other hand, Lüthi et al. [30], in their similar
3D phase space for isotropic turbulence, and other detailed studies [35,36] have corroborated that
the RE dynamics is essentially counteracted by the deviatoric nonlocal part of the pressure Hessian
and not by the viscous term. Afterward, the RE trajectories continue asymptotically to the right-hand
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FIG. 7. Evolution trajectories of the 5D phase-space invariants (QG, RG, QS, RS,V 2), given in Eqs. (8) and
(9) for the restricted Euler model, plotted together with their vectors in the 3D phase space (QG, RS, RS − RG).
One track (solution) is generated for each set of initial values for the 5D phase space of invariants. The null-
discriminant DG = 0 wire-mesh plane is drawn therewith. The trajectories are displayed in two views: (a) from
the side and (b) from the top.

side of DG = 0 wire mesh, towards negative values of RS < 0, since negative enstrophy production
tr(Ω2S) < 0 leads to negative values of QG in its evolution equation [first of Eqs. (8)] with RS < 0.
In the DNS, all CMTs are twisted towards RS > 0 to be converged to the origin in a cyclic evolution.

IV. EVOLUTION IN A KINETIC-THERMAL 2D PHASE SPACE

To study the turbulent heat flux and buoyant production mechanisms in turbulent RBC, the
small-scale dynamics relevant to thermals was also reported in Ref. [18], for Ra = {108, 1010}.
Namely, we applied the same approach as in the 2D phase space (QG, RG) but using the invariants
of the traceless part of the (velocity) × (temperature) gradient tensor, i.e., (QG̃θ

, RG̃θ
), where G̃θ =

Gθ − 1/3 tr(Gθ )I, with Gθ = ∇(uT ). The invariants proposed therein demonstrated a direct picture
on the small-scale kinetic-thermal interaction dynamics and thermal plumes evolution in RBC. For
example, the statistical analysis of the joint PDF map (QG̃θ

, RG̃θ
), through the total domain, held

a symmetric aspect respect to RG̃θ
= 0 (somewhat similar to a Gaussian flow field) that directly

follows the universal log-normal statistics distribution of the thermal plume geometries. It was
noted that the CMTs of (〈DQG̃θ

/Dt〉, 〈DRG̃θ
/Dt〉) travel downward to expose the sheetlike plumes

dynamics (roots) within the BLs and upward to exhibit the evolution of mushroomlike plumes that
expands in the bulk. At Ra = 108, the trajectories showed two skew-symmetric converging origins,
which indicated the contribution of the hot and cold mushroomlike plumes, into the large coherent
scales of heat flux. However, at Ra = 1010 the CMTs were traveling upward in shorter tracks to
demonstrate the reduced lifetime of mushroomlike plumes under the influence of the self-amplified
dissipation and hard mixing. In consequence, all trajectories showed a zero-value converging origin
in that turbulent case. In this work, we have extended the range up to Ra = 1011 (results are shown
in Fig. 8). Similar to Ra = 1010, we have noticed the zero-value converging origin of CMTs plotted
across the whole domain [Fig. 8(a)] and a similar joint PDF (QG̃θ

, RG̃θ
) distribution with increasing

events (points) located below DG̃θ
= 0 [Fig. 8(b)]. This confirms our previous findings that the

mushroomlike thermal plumes are abundantly emitted in the BLs and scattered in the bulk under
the impact of self-amplified turbulence background. Hence, they do not contribute to the mean
(large-scale) heat flux as well at Ra = 1011. However, a very interesting feature can be drawn,
namely, the evolution of sheetlike plumes vanishes at the expense of increasing the evolution of
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FIG. 8. Same representation as in Fig. 2 considering (a) the joint PDF of (QG̃θ
, RG̃θ

) and (b) 〈DQG̃θ
/Dt〉

and 〈DRG̃θ
/Dt〉 in the (QG̃θ

, RG̃θ
) space. The results correspond to the RBC simulation at Ra = 1011 through

the total domain. The gray solid line in (a) and (b) represents DG̃θ
= 0.

mushroomlike plumes at Ra = 1011. This has been deduced from the total upward tracks of CMTs
below the null-discriminant curve DG̃θ

= 0 at QG̃θ
< 0 [see Fig. 8(b)]. They arise as a true reflection

of the increased emitting mushroomlike plumes in the BLs and the placements of more events below
DG̃θ

= 0 in Fig. 8(a). It was found in Ref. [18] that DG̃θ
= 0 curve can separate the sheetlike plumes’

(roots’) evolution (which move downward at Ra = {108, 1010} below DG̃θ
= 0) in the BLs, from

the arisen mushroomlike plumes expanded into the bulk (which move upward above DG̃θ
= 0 and

converge to the origin). Accordingly, this event supports the fact that the horizontal waves, which
travel in the BLs and interact with each other to compose the sheetlike plumes [37], become weaker
at Ra = 1011. In other words, fewer stabilizing effects are pronounced in the BLs, which become
even thinner at Ra = 1011 and tend to lose their laminar status.

V. CONCLUSION

On the basis of a fully resolved DNS data set for an air buoyancy-driven RBC, the behavior of the
small-scale dynamics inside the bulk region has been explored in different turbulent regimes Ra =
{108, 1010, 1011}. By adopting an approach similar to that of Lüthi et al. [30], we have expanded the
2D Lagrangian evolution of QG and RG invariants, previously reported in Ref. [18], to a 3D phase
space by decomposing RG into two parts: the strain production RS and the enstrophy production
tr(Ω2S). By doing so, we have demonstrated the existence of a 3D cyclical evolution of the G
state, strongly expanded for the hard turbulent cases, i.e., Ra = {1010, 1011}. This cyclical rotation
starts preferentially in the strain-dominated areas from regions of high positive magnitudes of vortex
stretching and strain production. Following its life cycle, the concluded outcomes manifest a rising
self-amplification of G in the strain-dominated area, as the turbulence grade increases. This process
is accompanied by a strong enhanced vortex contraction and amplified linear contributions of vortex
stretching, which are particularly related to the strain-dominated slots. Regarding the evolution of
the small-scale thermals, the 2D evolution of QG̃θ

and RG̃θ
, invariants of G̃θ = Gθ − 1/3 tr(Gθ )I,

with Gθ = ∇(uT ), was investigated for first time in Ref. [18], at Ra = {108, 1010}, showing a direct
description of thermal plume evolution in RBC. Here it has been extended by considering the case
at Ra = 1011. In this turbulent regime, we have noticed a clear tendency to reduce the evolution
of sheetlike plumes in the BLs at the expense of the increasing emission of mushroomlike plumes.
This may support the fact that a reduced laminarization of the BL occurs at Ra = 1011.
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It would be of great interest to extend this analysis to even higher Rayleigh numbers, especially
up to the point where BLs reach a turbulent regime. However, nowadays, DNS of buoyancy-driven
flows is still limited to relatively low Rayleigh numbers because the convective term produces far
too many relevant scales of motion. Therefore, it would be valuable to research the development of
better subgrid heat flux models in large-eddy simulation.
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