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We investigate the impact of buoyancy on the solute mass transport in an evaporating
liquid mixture (nonvolatile solute + solvent) confined in a slit perpendicular to the gravity.
Solvent evaporation at one end of the slit induces a solute concentration gradient which in
turn drives free convection due to the difference between the densities of the solutes and
the solvent. From the complete model coupling mass transport and hydrodynamics, we
first use a standard Taylor-like approach to derive a one-dimensional nonlinear advection-
dispersion equation describing the solute concentration process for a dilute mixture. We
then perform a complete analysis of the expected regimes using both scaling analysis and
asymptotic solutions of this equation. The validity of this approach is confirmed using a
thorough comparison with the numerical resolution of both the complete model and the
1D advection-dispersion equation. Our results show that buoyancy-driven free convection
always impacts solute mass transport at long timescales, dispersing solutes in a steadily
increasing length scale along the slit. Beyond this confined drying configuration, our work
also provides an easy way for evaluating the relevance of buoyancy on mass transport in
any other microfluidic configuration involving concentration gradients.

DOI: 10.1103/PhysRevFluids.5.024201

I. INTRODUCTION

Drying of liquid mixtures often leads to concentration gradients and therefore density gradients.
When these gradients are orthogonal to gravity, they inevitably generate buoyancy-driven flows, that
then alters the drying process when coupled to the overall mass transport. Solutal buoyancy-driven
free convection is generally relevant at relatively large scales, but many recent experiments reported
such flows in confined microfluidic geometries (10–100 μm): drying of confined [1–4] and sessile
droplets [5–7], or any other microfluidic configuration generating concentration gradients [8,9]. At
small scales, buoyancy-driven flows are expected to play a minor role on mass transport, owing to
the high viscous dissipation and fast solute diffusion [10]. Nevertheless, these flows always exist as
soon as density gradients are perpendicular to gravity, and they can have an impact on less mobile
species dispersed in the liquid mixture [8,9].

The purpose of this work is to theoretically address such issues and, more precisely, to
quantitatively predict the range of parameters for which buoyancy-driven flows impact mass
transport in a confined drying experiment. To do this, we consider the model experiment described
in Fig. 1(a). A horizontal slit of height h, initially filled with a liquid binary mixture, is connected
at one end to a tank containing the same mixture, and opened to the ambient atmosphere at the
other end. This geometry is not only prone to a simple modeling, but also commonly used to probe
mass transport and unidirectional drying in complex fluids ranging from colloidal dispersions to
surfactant mixtures; see, e.g., Refs. [11–16]. In the following, we consider for simplicity a dilute
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SALMON AND DOUMENC

FIG. 1. (a) Schematic view of the confined drying experiment. The slit is connected at X → −∞ to a
tank containing the dilute mixture at concentration �i. (b) Solvent evaporation at a rate Ė > 0 drives a flow
concentrating continuously the nonvolatile solute at the tip of the slit, see also the colored gradient in (a).
The density gradient in turn generates a buoyancy-driven flow, superimposed on the evaporation-induced
Poiseuille flow. (c) Without buoyancy, δ initially grows as

√
DT before reaching a steady value δ ∼ D/Ė ,

whereas the diffusive layer invades the channel as δ ∝ T 2/5 when buoyancy-driven free convection dominates
at long timescales. These two curves are slightly shifted for the sake of clarity.

binary mixture, solvent + nonvolatile solute at concentration �, for which both interdiffusion
coefficient D and kinematic viscosity ν are constant. Thereafter, we will also consider that the height
of the slit is small enough to neglect any inertial effect. Solvent evaporation, occurring at the outlet
(X = 0) at a rate Ė > 0 (m/s), leads to a flow field U within the slit. Owing to mass conservation,
the horizontal component of the fluid velocity verifies

〈UX 〉 = 1

h

∫ h

0
UX dZ = Ė , (1)

where h is the height of the slit. This flow continuously concentrates the nonvolatile solutes at the tip
of the slit, in a layer whose typical size δ depends on the competition between evaporation-induced
advection and solute diffusion; see Fig. 1(b).

Assuming first that diffusion homogenizes the concentration of solutes over h, the solute
concentration profile �(X, T ) obeys the following 1D advection-diffusion equation:

∂�

∂T
+ Ė

∂�

∂X
= D

∂2�

∂X 2
, (2)

along with a solute no-flux boundary condition at X = 0 as we consider nonvolatile solutes.
Fedorchenko and Chernov investigated theoretically this equation in the context of gas segregation
induced by a moving solidification front [17] (see also Ref. [18] who used the same equation
to describe stratification in drying films of colloidal dispersions). According to Ref. [17], solutes
accumulate at the tip of the slit in a diffuse layer, which first grows as δ ∼ √

DT , and reaches the
steady value δ ∼ D/Ė after a transient time ∼D/Ė2; see Fig. 1(c). In this asymptotic regime, the
amount of solutes at the tip increases linearly with time, as well as the concentration gradient.

When the solute and solvent do not have the same density, such concentration gradients
inevitably generate buoyancy-driven free convection, see schematically Fig. 1(a). Free convection
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is intrinsically a multidimensional (2D or 3D) problem. In the present work, we will show that free
convection due to buoyancy and its consequence on solute transport in the slit sketched in Fig. 1
can be described by a 1D advection-dispersion equation. More precisely, we will use a standard
Taylor-like approach to show that the transverse-averaged solute concentration profile defined by

�0(X, T ) = 1

h

∫ h

0
�(X, Z, T )dZ (3)

is well approximated, for a wide range of parameters, by the solution of

∂�0

∂T
+ Ė

∂�0

∂X
= ∂

∂X

(
Deff

∂�0

∂X

)
, (4)

where

Deff = D

[
1 + 1

α

(
gβsh4

νD

∂�0

∂X

)2
]

(5)

is a dispersion coefficient that takes into account both thermal diffusion and buoyancy on the solute
mass transport. In the above equation, g is the acceleration due to gravity, βs the solutal expansion
coefficient of the fluid mixture, and α = 362880 (D is the interdiffusion coefficient and ν the
kinematic viscosity). Chatwin and Erdogan were the first to derive this term when studying the
effect of buoyancy on the dispersion of solutes in a pressure-driven flow [19]. They also reported
that Taylor made the same calculation in 1953 but did not publish it; see also the review of Young
and Jones on shear dispersions [20].

The physics of Eqs. (4) and (5) can be explained as follows. In the framework of the lubrication
approximation, the density gradient induces a flow UB whose scale comes from a balance between
buoyancy (gβsh

∂ϕ0

∂X ) and viscous forces (νUB/h2), leading to [20]

UB ∼ gβsh3

ν

∂�0

∂X
. (6)

This flow, and more precisely its axial velocity distribution along X , see Fig. 1(a), increases solutes
dispersion leading to the term in Eq. (5). This term scales as ∼(UBh/D)2, thus comparing the solute
diffusive transport (D/h) and its transport by buoyancy-driven convection (UB). The prefactor α, as
well as the power 2, comes from a standard Taylor-like perturbation approach, as first derived by
Chatwin and Erdogan but in a circular tube [19]. The nonlinearity of this dispersive term, compared
to the Taylor-Aris dispersion in a Poiseuille flow, comes from the coupling between the buoyancy-
driven flow and the density gradient: Strong gradients increase the magnitude of free convection,
which in turn increases solute dispersion; see Eq. (6).

Similar equations were also derived in various convection problems driven by temperature
differences in a fluid layer but also for describing the dynamics of well-mixed estuaries [21,22],
for quantifying the impact of buoyancy on the measurement of diffusivities in liquid metals [23],
or even to study gravity currents of miscible fluids in porous media [24]. Despite an in-depth
literature review on this classical Taylor-like approach, we are not aware of any work discussing
such an equation in the context of confined drying, and more generally of microfluidic experiments
generating solute gradients.

In a second step, we thus report a complete investigation of the solute concentration process
described by the advection-dispersion equation Eq. (4). We first predict all the expected regimes of
solute concentration using a detailed scaling analysis, and we then provide asymptotic analytical
solutions of the concentration profiles when mass transport is dominated by diffusion or else by
buoyancy-driven dispersion.

In particular, we show that solutes dispersion caused by buoyancy leads at long timescales
to a diffusive layer thickness δ which continuously invades the channel following δ ∝ T 2/5; see
Fig. 1(c). This theoretical approach also helps us to provide a simple diagram highlighting the range
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of parameters corresponding to mass transport dominated by diffusion (i.e., negligible dispersion).
Finally, the validity of the 1D advection-dispersion model is thoroughly investigated by means of
scaling analysis, and the results confirmed by comparisons with direct numerical simulations of the
2D model.

The present paper is organized as follows. In Sec. II, we first present the equations modeling
the experiments shown in Fig. 1, as well as the underlying assumptions. We then derive from this
model the advection-dispersion equation Eq. (4). Section III then reports a complete discussion of
the different regimes expected, as well as the corresponding analytical asymptotic solutions. The
validity of the 1D approach is then investigated. In Sec. IV, we conclude our work by discussing its
possible implications, particularly for microfluidic experiments generating concentration gradients.

II. FROM THE 2D MODEL TO A 1D ADVECTION-DISPERSION EQUATION

A. 2D model

As stated in the Introduction, we first consider a binary mixture, solvent + nonvolatile solute
with concentration �. We also assume that its density evolves as

ρ = ρi[1 + βs(� − �i )] , (7)

where ρi is the density at the solute concentration �i, and βs the solutal expansion coefficient of
the fluid mixture at the reference concentration �i. The configuration under study is depicted in
Fig. 1, and we consider that both the height of the slit and the evaporation-induced flow are small
enough to neglect inertia. The slit is initially filled homogeneously by the solution at concentration
�i. Solvent evaporation induces the concentration of the nonvolatile solutes at the tip of the slit.
Thereafter, we limit our study to dilute solutions, for which the evaporation rate Ė and the various
transport coefficients (viscosity ν, mutual diffusion coefficient D) remain constant. The following
model, coupling Stokes, continuity, and solute conservation equations, is expected to describe the
overall concentration process:

ρiν
U − ∇P + (ρ(�) − ρi )g = 0, (8)

∇.U = 0, (9)

∂T � + U.∇� = D
�, (10)

where U is the velocity field of the mixture, and P is the pressure deviation from the initial
hydrostatic pressure field.

We also assume the following standard boundary conditions at the solid walls:

U = 0 (no slip), (11)

∇�.n = 0 (no flux), (12)

and the following standard ones at the evaporating free surface:

UX (X = 0, Z, T ) = Ė , (13)(
∂UZ

∂X

)
(X = 0, Z, T ) = 0, (14)

(
UX � − D

∂�

∂X

)
(X = 0, Z, T ) = 0. (15)

Equation (15) ensures the nonvolatility of the solute. At X → −∞, we impose

�(X → −∞, Z, T ) = �i. (16)
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B. Numerical resolution on a given experimental case

To illustrate the impact of buoyancy, we first consider the following realistic case: water
evaporation from an aqueous dispersion of silica nanoparticles at ambient conditions in a slit
of height h = 150 μm. Similar conditions were recently explored experimentally either to probe
mass transport in such charged dispersions [14,16,25], or to investigate the dynamics of fractures,
delamination and shear bands in the concentrated regime; see, e.g., Refs. [11–13]. We will assume
an initial concentration �i = 0.001 and radius a = 5 nm for the silica nanoparticles, leading to a
diffusivity D 	 4.37×10−11 m2/s according to the Stokes-Einstein relation for a temperature of
25 ◦C (we do not consider here enhanced values due to colloidal interactions occurring for such
systems at high concentrations [4,16]). For such a very dilute silica dispersion, the solutal expansion
coefficient at the reference concentration �i is well approximated by βs 	 ρs/ρw − 1 	 1.2 where
ρs 	 2200 kg/m3 is the density of silica, and ρw 	 1000 kg/m3 that of water. We assume an
evaporation rate Ė = 0.1 μm/s. The latter remains constant as the volume of the colloids is much
larger than the water molecular volume [26]. We will finally assume that the kinematic viscosity
ν = 10−6 m2/s remains also constant during concentration.

The numerical resolution of Eqs. (8)–(10) with boundary conditions Eqs. (11)–(15) has been
performed with the commercial software Comsol multiphysics (finite elements, Galerkin method).
The boundary condition Eq. (16) at X → −∞ has been moved to X = −L, where L = 10 mm
is a finite distance large enough to not affect the results significantly (in addition, the pres-
sure P has been arbitrarily set to P = 0 at X = −L). Time discretization is based on implicit
backward differentiation formulas. Spatial discretization was achieved by a structured mesh of
quadratic Lagrangian elements. The mesh convergence has been thoroughly tested by successive
refinements.

Figure 2 shows the results of the numerical simulation. More precisely, Fig. 2(a) shows
several snapshots at T = 10, 102, 103, 104, and 105 s of both the horizontal component UX of
the velocity field (color map) and the concentration profile �(X, T ) (contour). Figures 2(b) and 2(c)
display the height-averaged concentration profiles �0 and UX at X = −300 μm at the same times.
For the conditions investigated, the velocity profile UX (Z, T ) at X = −300 μm and T = 10 s
mainly corresponds to the evaporation-driven Poiseuille flow UP = 6ĖZ (h − Z )/h2. However, the
profiles are more and more distorted at longer times by the free convection induced by the solute
concentration gradient. The maximal velocity at X = −300 μm due to buoyancy only, i.e., UB =
U − UP, increases from 	 0.24 μm/s at T = 103 s to 	 2 μm/s at T = 105 s. As clearly evidenced
by the contour plot in Fig. 2(a), buoyancy also distorts the isoconcentration lines, and therefore
clearly impacts the solute mass transfer. Note that this 2D model predicts that the concentration at
the interface increases continuously, and the assumption of constant kinematic viscosity and mutual
diffusion coefficient may not hold anymore above T > 105 s for which the concentration at the
interface reaches 	 0.012.

C. Advection-dispersion equation in the framework of the lubrication approximation

As discussed in the Introduction, our aim is to predict the range of parameters for which buoyancy
impacts solute’s transport in such confined drying configuration using a 1D advection-dispersion
equation derived from the above model. As shown by Fedorchenko and Chernov [17], D/Ė is
a length scale that naturally emerges along X from the conservation equation Eq. (10), and we
therefore define the following dimensionsless variables:

z = Z/h, x = (Ė/D)X, t = (Ė2/D)T,

uX = UX /Ė , uz = UZ/(ĖPe), (17)

ϕ = (� − �i )/�i, p = h2/(ρiνD)P,

024201-5



SALMON AND DOUMENC

FIG. 2. (a) Snapshots of UX (colors) and �(X, T ) (contours) at T = 10, 102, 103, 104, and 105 s, from
top to bottom. The range of the color map is scaled by the maximal velocity in each plot (b) Height-averaged
concentration profiles �0(X, T ) and (c) velocity profiles UX (Z, T ) at X = −300 μm, at the same times T as in
(a). The thin dark line is the evaporation-driven Poiseuille profile UP = 6ĖZ (h − Z )/h2.

where Pe is the Péclet number given by

Pe = Ėh

D
. (18)

Note that we have chosen two different scales to obtain the dimensionless coordinates x and z.
As shown later, this particular choice makes it easy to highlight the different regimes of solute
concentration, while keeping a compact writing of the equations. However, it should be remembered
that the scale D/Ė is implicitly contained in the dimensionless abscissa x but not in z.

Using this set of dimensionless variables, one can demonstrate that the dimensionless counterpart
of Eqs. (8)–(10) depend only on two parameters, Pe and the solutal Rayleigh number defined as

Ra = βs�igh3

νD
; (19)
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see Appendix A. Volume integration of the continuity relation Eq. (9) yields the dimensionless
counterpart of the solution global mass balance Eq. (1):

〈ux〉 =
∫ 1

0
uxdz = 1. (20)

Similarly, integration of Eq. (10) yields the dimensionless solute global mass balance:∫ 0

x→−∞

∫ 1

z=0
ϕdzdx = t . (21)

We now assume that the typical scale δ of both the concentration gradient and the buoyancy-
driven velocity field, see Fig. 1, is much larger than the channel height, i.e., δ � Pe with our
dimensionless variables, Eqs. (17). We therefore assume quasi-parallel flows and we use the
standard lubrication approximation [27] to derive a 1D solute conservation equation from the above
model. More precisely, we use a standard Taylor-like perturbation method, as reviewed for instance
in Young and Jones’ work on shear dispersion [20], and expand the concentration field as

ϕ(x, z, t ) = ϕ0(x, t ) + Pe2ϕ1(x, z, t ), (22)

where ϕ0(x, t ) is the transverse-averaged concentration profile, i.e., ϕ0(x, t ) = 〈ϕ(x, z, t )〉 with the
same averaging as in Eq. (20), and Pe2ϕ1 � ϕ0. Appendix A presents the detailed derivation leading
ultimately to the following transport equation for the mean concentration field ϕ0:

∂ϕ0

∂t
+ ∂ϕ0

∂x
= ∂

∂x

(
Deff

∂ϕ0

∂x

)
, (23)

assuming t � Pe2, δ � Pe, and Pe2ϕ1 � ϕ0 [20]. The range of validity of these conditions will be
discussed later on in Sec. III D.

The dispersion coefficient Deff is given by

Deff = 1 + (PeRa)2

α

(
∂ϕ0

∂x

)2

+ βPe2 	 1 + (PeRa)2

α

(
∂ϕ0

∂x

)2

, (24)

where β = 1/210 and α = 362880. The first term corresponds to the dispersion of the solutes due
to the axial velocity distribution caused by the density gradient, as discussed in the Introduction,
whereas the second is the traditional Taylor-Aris term induced by the Poiseuille flow. There are no
coupling terms in the geometry under study, between buoyancy and Taylor-Aris dispersion, owing to
the symmetry along the plane z = 1/2, as already noted in Ref. [20]. Equations (23) and (24) finally
lead to Eqs. (4) and (5) with real units as we will assume that the Taylor-Aris term is negligible
in our configuration, i.e., βPe2 � 1; see Sec. III D regarding the range of validity of our model.
Note importantly that despite the fact that the dispersion term due to buoyancy in Eq. (24) depends
explicitly on the Péclet number Pe in our dimensionless model, the latter actually does not depend
on the evaporation rate Ė due to the scale D/Ė used to define x; see Eqs. (17).

It should also be noted that many groups recently investigated the drying of droplets confined
between two circular parallel plates; see, e.g., Refs. [1–4,9]. Most of these works clearly reported
buoyancy-driven flows generated by the radial density gradients induced by solvent evaporation.
Interestingly, the same above calculations applied to this cylindrical geometry and for a binary
mixture, lead also to Eqs. (23) and (24) with α = 362880 but without the Taylor-Aris and advection
terms and with cylindrical coordinates. Our theoretical derivation does therefore not only apply to
the case of a slit, but also to this specific 2D configuration.

III. DYNAMICS OF THE SOLUTE CONCENTRATION

In the following, we now turn to a thorough analysis of the solute concentration process
in the confined drying experiment described in Fig. 1. More precisely, we will use the 1D
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advection-dispersion equation derived above, Eq. (23), to unveil both the expected regimes of solute
concentration and the relevant parameters impacting the solute mass transport. Equation (23) is
supplemented with the following initial and boundary conditions:

ϕ0(x, t = 0) = 0, (25)

lim
x→−∞ ϕ0(x, t ) = 0, (26)(

1 + ϕ0 − Deff
∂ϕ0

∂x

)
(x = 0, t ) = 0, (27)

where Eqs. (27) ensures the condition of zero solute flux through the free surface (nonvolatility of
the solute).

In the framework of this 1D model, the global solute mass balance Eq. (21) reads∫ 0

x→−∞
ϕ0(x, t )dx = t . (28)

Finally, an important feature of the concentration field is its spatial extent δ as illustrated in Fig. 1,
and we define the latter according to

δ(t ) = −
∫ 0
−∞ xϕ0(x, t ) dx∫ 0
−∞ ϕ0(x, t ) dx

= −1

t

∫ 0

−∞
xϕ0(x, t ) dx. (29)

A. Scaling analysis

We first use a standard method [28] to derive the scaling laws of the model defined by the
governing equation Eq. (23), along with the initial and boundary conditions Eqs. (25)–(27). The
global mass balance Eq. (28), which implicitly contains the governing equation and its boundary
and initial conditions, provides a first scaling law:

ϕ0δ ∼ t . (30)

A second scaling law is provided by Eq. (23), which can be written as a relation between four
positive terms:

∂ϕ0

∂t
+ ∂ϕ0

∂x
= ∂2ϕ0

∂x2
+ (PeRa)2

α

∂

∂x

(
∂ϕ0

∂x

)3

. (31)

Owing to the boundary condition Eq. (26), the order of magnitude of these four terms is

ϕ0

t
;

ϕ0

δ
;

ϕ0

δ2
;

(PeRa)2

α

ϕ3
0

δ4
. (32)

As time goes by, different regimes are encountered depending on what couple of terms dominates
in Eq. (31). As all the terms of this equation are positive, the balance of the different orders of
magnitude reads

max

(
ϕ0

t
,

ϕ0

δ

)
∼ max

(
ϕ0

δ2
,

(PeRa)2

α

ϕ3
0

δ4

)
, (33)

and one therefore expects four different regimes, systematically reviewed in the following.

1. Diffusive regime D1

We define this regime as the one corresponding to ϕ0

t ∼ ϕ0

δ2 in Eq. (33). Combining this relation
with Eq. (30) yields

δ ∼ √
t and ϕ0 ∼ √

t, (34)

t � 1 and
PeRa√

α
� 1. (35)
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2. Diffusive regime D2

This regime corresponds to ϕ0

δ
∼ ϕ0

δ2 and thus to

δ ∼ 1 and ϕ0 ∼ t, (36)

t � 1 and t �
(

PeRa√
α

)−1

, (37)

and D2 can thus only be observed when PeRa � √
α.

3. Dispersive regime C1

This regime corresponds to ϕ0

t ∼ (PeRa)2

α

ϕ3
0

δ4 , and after calculation to

δ ∼
(

PeRa√
α

)1/3√
t and ϕ0 ∼

(
PeRa√

α

)−1/3√
t, (38)

t �
(

PeRa√
α

)2/3

and

(
PeRa√

α

)
� 1. (39)

4. Dispersive regime C2

This last regime corresponds to ϕ0

δ
∼ (PeRa)2

α

ϕ3
0

δ4 , leading after calculation to

δ ∼
(

PeRa√
α

)2/5

t2/5 and ϕ0 ∼
(

PeRa√
α

)−2/5

t3/5, (40)

t �
(

PeRa√
α

)2/3

and t �
(

PeRa√
α

)−1

. (41)

The above scaling analysis reveals the importance of the dimensionless parameter PeRa. When
PeRa � √

α, the sequence of regimes is D1 → D2 → C2 with two transition times tD1→D2 ∼ 1 and

tD2→C2 ∼
(

PeRa√
α

)−1

. (42)

For this range of PeRa, we found at small timescales the classical scenario of Fedorchenko
and Chernov [17] expected without buoyancy and displayed in Fig. 1(c): the square-root
growth δ ∼ √

t (δ ∼ √
DT with real units) of a diffusive layer reaching after a transient t ∼ 1

(T ∼ D/Ė2), a constant value δ ∼ 1 (δ ∼ D/Ė ) owing to the competition between solute diffusion
and evaporation-driven advection. On longer timescales, however, the solute concentration gradient
steadily increases, and buoyancy can no longer be ignored (transition D2 → C2).

When PeRa � √
α, dispersion caused by buoyancy always dominates diffusion in the solute

mass transport, and the sequence of observed regimes reduces to C1 → C2 with a transition
at tC1→C2 ∼ (PeRa/

√
α)2/3. Importantly, this scaling analysis also demonstrates that solutes are

always dispersed at long timescales in a steadily increasing diffusive layer following δ ∝ t2/5.

B. Numerical simulation of the 1D advection-dispersion model and asymptotic solutions

To illustrate the above scaling analysis, Fig. 3(a) displays the temporal evolution of the thickness
of the diffusive layer δ, calculated from the numerical resolution of Eqs. (23)–(27) for a wide range
of PeRa ranging logarithmically from 10−2 to 104.

Except for PeRa � √
α, these curves display three regimes: an initial growth of the diffusive layer

following δ ∼ √
t (regime D1), a constant plateau δ 	 1 reached at t 	 1 (regime D2), followed

again by the growth of δ at longer timescales according to δ ∝ t2/5(regime C2). The departure from
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FIG. 3. (a) Numerical solution δ vs. t of the 1D advection-dispersion model Eqs. (23)–(27) for different
PeRa: 10−2, 100, 102, and 104 (from dark to light blue). The magenta dashed line is the theoretical prediction
Eq. (44) in the diffusive regimes D1 and D2. The black lines are the approximations Eq. (45) for the dispersive
regime C2. (b)–(d) ϕ(x, t ) vs. x computed from Eqs. (23)–(27) at PeRa = 1. (b) Regime D1: t < 0.5; (c) D2:
1 < t < 100; and (d) C2: t > 1000. In panels (b) and (c), the analytical solutions given by Eq. (B1) (black
lines) are superimposed with the numerical resolution. In panel (d), black lines correspond to the approximate
solution Eq. (C5).

the regime D2 to the regime C2 occurs at a critical time which decreases for increasing PeRa. For
PeRa � √

α, the regime D2 of constant diffusive layer does not exist, and the initial regime C1
for which we observe again δ ∝ √

t , does not collapse with the other curves in the regime D1.
Figures 3(b)–3(d) illustrate the specific case PeRa = 1, for which the sequence of the three different
regimes D1 → D2 → C2 is easily revealed.

All these numerical results are obviously in line with the scaling analysis reported in Sec. III A,
but one should go beyond the scaling laws Eqs. (34)–(41) to predict quantitatively the range of
parameters for which the solute mass transport is dominated by diffusion only.

When diffusion dominates mass transport (regimes D1 and D2), Eq. (23) reduces to the following
linear advection-diffusion equation:

∂ϕ0

∂t
+ ∂ϕ0

∂x
= ∂2ϕ0

∂x2
. (43)

The analytical solution of this advection-diffusion equation has been derived by Fedorchenko and
Chernov [17] see Eq. (B1) in Appendix B. This analytical solution superimposes perfectly on the
profiles computed numerically from Eq. (23) at small timescales; see Figs. 3(b) and 3(c). We also
computed δ versus t from this analytical solution:

δ(t ) = −t2 + [t (4 + t ) − 4]erf
(√

t
2

)
4t

+ (2 + t )
√

t exp
(− t

4

)
2
√

πt
, (44)

see the magenta dashed line in Fig. 3(a).
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In the dispersive regime C2, we used the integral method [29] to approximate the concentration
profiles. The detailed calculation and the resulting approximations are given in Appendix C; see, in
particular, Eq. (C5) from which we computed δ(t ):

δ(t ) = 52/533/5

7

(
PeRa√

α
t

)2/5

. (45)

Both δ versus t and concentration profiles perfectly superimpose on the solutions computed
numerically, see Figs. 3(a) and 3(d), respectively.

We did not find an approximate solution of the concentration profiles in the dispersive regime
C1. Nevertheless, we computed numerically the prefactor in Eq. (38) leading to

δ(t ) 	 0.55

(
PeRa√

α

)1/3√
t . (46)

C. Transition times

We define a criterion for evaluating quantitatively the critical time corresponding to the transition
from a diffusive regime, for which buoyancy-driven dispersion exists but has a negligible impact
on the solute transport, to a dispersive regime, for which buoyancy significantly disperses solutes
along the slit. We consider that this transition occurs when the ratio of the dispersion flux to the
height-averaged diffusive flux reaches a given value p. This condition reads

〈uxϕ〉 − ϕ0
∂ϕ0

∂x

= p, (47)

at a given abscissa x. We arbitrarily set p = 0.2 for all the calculations in the present work. In the
framework of the 1D advection-dispersion model, Eq. (47) turns to

Deff = 1 + p. (48)

Using the expression of the dispersion coefficient Eq. (24) and considering that the concentration
gradient is maximum at x = 0, Eq. (48) reads

PeRa

(
∂ϕ0

∂x

)
x=0, t=tD2→C2

= √
pα. (49)

The critical time tD2→C2 is computed by numerically solving Eq. (49), where the concentration
gradient at x = 0 is estimated from the analytical expression Eq. (B2), valid in the diffusive regimes
D1 and D2. This results in the diagram shown in Fig. 4, evidencing the transition from the diffusion-
dominated regimes D1 and D2 toward the dispersive regime (C2).

The 1D advection-dispersion model predicts that for PeRa � √
pα, buoyancy always dominates

solute transport, regardless of the time (regimes C1 and C2). In this range of parameters, we
estimated the transition time tC1→C2 from the cross-over of δ versus t in both regimes C1 and C2,
see Eqs. (45) and (46), leading to

tC1→C2 	 0.6

(
PeRa√

α

)2/3

. (50)

Figure 4 summarizes all these results and can therefore serve as a guide to predict the expected
transport regimes in a given experimental configuration using a single dimensionless parameter
PeRa.

D. Validity and limitations of the 1D advection-dispersion model

The 1D advection-dispersion model is based on several simplifying assumptions, whose validity
must be carefully checked to validate the results in a given configuration.
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FIG. 4. Diagram highlighting the different regimes of solute mass transport predicted by the 1D advection-
dispersion model, Eqs. (23)–(27). The thick line corresponds to tD2→C2 estimated from Eqs. (49)–(B2). The
shaded area corresponds to the diffusive regimes D1 and D2. The dotted line corresponds to the transition
between the dispersive regimes C1 → C2, estimated from Eq. (50). The red bullets represent the transition
from a diffusive to a dispersive regime, estimated with the 2D model, Eqs. (A1)–(A8), for Pe 	 0.252 and Ra
varying from 4 to 2000 [critical time estimated from Eq. (47)].

The assumptions required to validate Eq. (A11), on which the estimation of the dispersion term
in Eq. (A9) is based, are the following ones (see Appendix A):

t � Pe2, (51)

δ � Pe, (52)

Pe2ϕ1 � ϕ0. (53)

The last inequality Eq. (53) demands that the transverse dispersion time δ2/Deff remains longer than
the diffusion time across the channel height ∼Pe2 [20]. In addition, βPe2 � 1 is required to neglect
the Taylor-Aris contribution in Eq. (24). As β = 1/210 (1/

√
β 	 14.5), this last assumption is

always verified for Pe � 1 (i.e., Pe � 1 or Pe ∼ 1). In the remainder of this analysis, we will show
that Pe � 1 results in the validity of conditions Eqs. (51)–(53) from t = 0 to t → ∞ when PeRa �√

α (asymptotic case 1 in the following analysis), and from t � Pe2 to t → ∞ when PeRa � √
α

(asymptotic case 2).

1. Case 1

PeRa/
√

α � 1, corresponding to the succession of regimes D1, D2, C2, with a transition from
the diffusive regime D2 to the dispersive regime C2 at time tD2→C2 given by Eq. (42). We show in
Appendix D that conditions Eqs. (51)–(53) are always satisfied for times t � tD2→C2. Therefore, the
model is expected to describe correctly the dispersive regime C2. Conditions Eqs. (51)–(53) might
be wrong in regimes D1 or D2 (i.e., for t � tD2→C2). But no significant loss of accuracy is expected,
since buoyancy-driven dispersion is negligible in these diffusive regimes. Consequently, the 1D
advection-dispersion model is valid at all times, from t = 0 to t → ∞. This is illustrated in Fig. 5,
where the 1D advection-dispersion model is compared with the output of the 2D model defined
by Eqs. (A1)–(A8), for Pe 	 0.344 and Ra 	 910, leading to PeRa/

√
α 	 0.52. The agreement is

almost perfect for both ϕ0 and δ, from short to long times. An exception is the weak loss of accuracy
of the 1D advection-dispersion model for the estimation of ϕ0 close to the boundary at x = 0
[see the inset in Fig. 5(a)], because the lubrication theory does not fit the boundary condition
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FIG. 5. (a) Average dimensionless concentration profiles ϕ0(x, t ) for both the 2D model (same parameters
as in Sec. II B leading to Pe 	 0.344 and Ra 	 910), and the solution of the advection-dispersion Eq. (23) for
PeRa 	 313 (black dotted lines), at times t 	 2.29×10−3, 2.29×10−2, 0.229, 2.29, and 22.9. The inset shows
a zoom close to the drying interface x = 0. (b) Extent of the diffusive layer δ defined by Eq. (29) for the 2D
model and the 1D model (black dotted line) with the same parameters as in (a).

Eq. (A5). As expected, the discrepancy between both models is limited to a region whose extent
is of the order of Pe (the height of the slit h scaled by the reference horizontal length D/Ė ).

2. Case 2

PeRa/
√

α � 1, corresponding to the succession of the dispersive regimes C1 and C2. We show
in Appendix D that Eqs. (51)–(53) are all verified as soon as t � Pe2. The 1D advection-dispersion
model must therefore be used carefully in this case, because this condition is not valid at the
beginning, for short times since Pe � 1. This point is illustrated in Fig. 4, where the transition
from the diffusive to the dispersive regimes has been determined with the 1D advection-dispersion
model (thick continuous line) and with the 2D model defined by Eqs. (A1)–(A8) (red bullets). In the
latter case, we set Pe 	 0.252 and Ra has been varied from 4 to 2000. The critical times estimated
with the 2D model are close to the estimates given by the 1D advection-dispersion model, except
for the two highest PeRa, corresponding to the succession of the C1-C2 regimes in the 1D approach.
The 2D model shows that a diffusive regime always exists at small times, whereas the 1D model,
which is not valid at short times t � Pe2, erroneously predicts that the dispersive regime begins
from t = 0.

IV. CONCLUSION AND DISCUSSIONS

In the present work, we investigated the role of buoyancy-driven free convection on the solute
mass transport in a model experimental configuration: solvent evaporation from a dilute mixture
confined in a horizontal slit. To quantify the impact of buoyancy, we derived a 1D advection-
dispersion equation as traditionally done in the context of shear dispersion. This equation displays a
dispersion coefficient Deff to account for buoyancy-driven flows; see Eq. (5). Solute mass transport
remains dominated by diffusion as long as(

gβsh4

νD

∂�0

∂X

)2

� α, (54)

with real units, where α = 362880. We then performed a complete analysis of the expected regimes
in the configuration shown in Fig. 1, and we showed in particular that the solutes transport is always
dominated by buoyancy-driven dispersion at long timescales leading to a continuously increasing
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diffusive layer as δ ∝ T 2/5. A critical point of our model is the assumption of constant mutual
diffusion coefficient and viscosity during the solute concentration, and observing the different
regimes predicted above may be challenging in a single experiment (see, for instance, the case
explored in Fig. 2 and the associated discussion). Equation (5) can be easily modified to include
a slowing down of the evaporation rate and a nonconstant mutual diffusion coefficient at high
solute concentration, as done for instance in Ref. [30] in a similar configuration for polymer and
surfactant solutions, but without buoyancy. Nevertheless, the different regimes predicted above, and
their associated scaling laws, could be impacted by these effects.

Note also that our work focused on the case of a slit, and we included in the above calculation
the dispersion due to the Poiseuille flow, see the Taylor-Aris term in Eq. (24). Moreover, there are
no coupling terms between buoyancy and Taylor-Aris dispersion owing to the symmetry of the
geometry investigated, and we had therefore neglected the dispersion due to the Poiseuille flow.
Interestingly, the case of a capillary tube with a finite width (as a square or a circular cross-section)
should deserve further attention. Indeed, a calculation similar to that performed above for such
geometries can be carried out, but density gradients in the transverse dimension lead to transverse
flows that couple to the longitudinal dispersion. To our knowledge, Chatwin and Erdogan [19] were
the first to mention this subtle point when studying the dispersion of a solute flowing in a straight
circular tube in the presence of buoyancy. They even showed that these transverse flows could
decrease the buoyancy-induced longitudinal dispersion for a given range of parameters. For capillary
tubes, one cannot also exclude (possibly nonnegligible) coupling terms between Taylor-Aris and
buoyancy-driven dispersions in the configuration shown in Fig. 1. We hope in a near future to
investigate these subtle issues in detail.

Beyond the specific configuration investigated in the present work, different microfluidic tools
have recently been developed to measure accurately the mutual diffusion coefficient of liquid
mixtures owing to the very precise control of experimental conditions and mass transport at
small scales [31–33]. In this context, Eq. (5) makes it possible to rigorously estimate the impact
of buoyancy on such measurements. More specifically, experiments exploiting drying to induce
concentration gradients, similarly to the experiment shown in Fig. 1, were even recently reported
to measure mutual diffusion coefficients of various complex fluids, namely, copolymer solutions
[1] and charged colloidal dispersions [4,16]. For the latter case, the rheological properties of the
colloidal dispersions strongly evolve with the colloid (solute) concentration up to reaching the
formation of colloidal glasses at a concentration below the colloid close-packing. Nevertheless,
buoyancy-driven flows were clearly evidenced in the liquid regime [4], and rough estimates using
Eq. (54) clearly indicate that buoyancy plays an important role for mass transport, casting some
doubts on the coefficient values reported in Ref. [4] at low colloid concentrations.

Beyond these measurements of mutual diffusion coefficients, our work may be also of interest
to evaluate the impact of buoyancy-driven dispersion for any other microfluidic configuration
generating concentration gradients. In particular, many recent works focused on diffusiophoresis,
i.e., the transport of colloidal particles induced by solute concentration gradients [34–36]. The role
of buoyancy in such experiments was even investigated recently in detail by Gu et al. [8]. Using
scaling arguments, they identified conditions for which buoyancy negligibly impacts solute mass
transport, leading to an inequality similar to Eq. (54) but with a significantly different numerical
constant (962 = 9 216 instead of α = 362 880 for a slit). Our theoretical development based on a
standard pertubative approach [20] may therefore help to refine the range of parameters for which
buoyancy-driven dispersion does not play any role in such experiments. Diffusiophoretic effects are
moreover expected to play a crucial role in evaporating liquid mixtures of colloids of different sizes,
possibly leading to stratified materials [18]. We also hope that our simple model of uni-directional
drying may be relevant to evaluate the role of buoyancy in similar configurations, in particular when
gradients are orthogonal to gravity as in evaporation-induced propagating fronts in drying liquid
films [37].
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APPENDIX A: DERIVATION OF THE ADVECTION-DISPERSION EQUATION

Using the dimensionless variables given by Eqs. (17), Eqs. (8)–(10) read(
Pe2 ∂2

∂x2
+ ∂2

∂z2

)
ux = ∂ p

∂x
, (A1)

Pe2

(
Pe2 ∂2

∂x2
+ ∂2

∂z2

)
uz = ∂ p

∂z
+ Raϕ, (A2)

∇.u = 0, (A3)

∂ϕ

∂t
+ u.∇ϕ =

(
∂2

∂x2
+ 1

Pe2

∂2

∂z2

)
ϕ. (A4)

The dimensionless initial condition is ϕ(x, z, t = 0) = 0 and the dimensionless boundary conditions
are

ux(x = 0, z, t ) = 1, (A5)(
∂uz

∂x

)
(x = 0, z, t ) = 0, (A6)

(
1 + ϕ − ∂ϕ

∂x

)
(x = 0, z, t ) = 0, (A7)

ϕ(x → −∞, z, t ) = 0, (A8)

along with the dimensionless counterpart of Eqs. (11) and (12) at the solid walls.
Averaging the transport Eq. (A4) over the height h leads to, with the help of Eq. (22),

∂ϕ0

∂t
+ ∂ϕ0

∂x
+ Pe2 ∂〈uxϕ1〉

∂x
= ∂2ϕ0

∂x2
. (A9)

Subtracting this last relation to Eq. (A4) results in

∂ϕ1

∂t
+ (ux − 1)

Pe2

∂ϕ0

∂x
+ u.∇ϕ1 − ∂〈uxϕ1〉

∂x
= ∂2ϕ1

∂x2
+ 1

Pe2

∂2ϕ1

∂z2
. (A10)

The continuity Eq. (A3) imposes the scaling uz ∼ ux/δ, and Eq. (A10) therefore leads to

∂2ϕ1

∂z2
	 (ux − 1)

∂ϕ0

∂x
, (A11)

assuming t � Pe2, δ � Pe, and Pe2ϕ1 � ϕ0 [20].
Similarly, the leading-order terms in the Stokes equation Eqs. (A1) and (A2) lead to the horizontal

component of the velocity field:

ux(x, z, t ) = uP
x (z) + uB

x (x, z, t ),

uP
x (z) = 6z(1 − z), (A12)

uB
x (x, z, t ) = −Ra

12

∂ϕ0

∂x
z(2z − 1)(z − 1),

checking both the global mass balance Eq. (20) and the no-slip boundary conditions on the solid
walls. The term uP

x is simply the Poiseuille flow induced by solvent evaporation, whereas the

024201-15



SALMON AND DOUMENC

second term uB
x , known as the Birikh profile [38], corresponds to the flow induced by buoyancy;

see Fig. 1(a). Notice that the velocity field Eq. (A12) does not fit the boundary condition Eq. (A5).
This is a usual drawback of the lubrication theory which results in a loss of accuracy in the vicinity
of the interface at x = 0, see Sec. III D for a discussion.

ϕ1 can now be evaluated from Eq. (A11), assuming the no-flux boundary condition at z = 0 and
z = 1, and imposing 〈ϕ1〉 = 0. Using the linearity of Eq. (A11), we look separately for the solutions
ϕP

1 and ϕB
1 due to the Poiseuille flow and buoyancy, respectively; i.e.,

∂2ϕP
1

∂z2
= (

uP
x − 1

)∂ϕ0

∂x
, (A13)

∂2ϕB
1

∂z2
= uB

x

∂ϕ0

∂x
. (A14)

After calculation, one finds

ϕ1(x, z, t ) = ϕP
1 (x, z, t ) + ϕB

1 (x, z, t ),

ϕP
1 (x, z, t ) = ∂ϕ0

∂x

(
z3 − z4

2
− z2

2
+ 1

60

)
, (A15)

ϕB
1 (x, z, t ) = − Ra

1440

(
∂ϕ0

∂x

)2

(12z5 − 30z4 + 20z3 − 1).

This relation combined with the velocity profile given by Eq. (A12) can now be used to calculate
the dispersion term 〈uxϕ1〉 in Eq. (A9), leading to Eqs. (23) and (24).

APPENDIX B: FEDORCHENKO AND CHERNOV ANALYTICAL SOLUTION
IN THE DIFFUSIVE REGIMES

Fedorchenko and Chernov [17] derived the analytic solution of Eq. (43) with the initial and
boundary conditions given by Eqs. (25)–(27):

ϕ0(x, t ) =
√

t

π
exp

(
− (t − x)2

4t

)
+ 1

2

{
exp(x)(1 + x + t )erfc

(−(t + x)

2
√

t

)
− erfc

(
t − x

2
√

t

)}
.

(B1)

The concentration gradient at the interface, used in Sec. III C, simply follows from the spatial
derivation of Eq. (B1) at x = 0:(

∂ϕ0

∂x

)
x=0,t

=
√

t

π
exp

(
− t

4

)
+

(
1 + t

2

)
erfc

(
−

√
t

2

)
. (B2)

From Eq. (B1), one can also calculate the extent of the diffusive layer using Eq. (29); see Eq. (44).

APPENDIX C: APPROXIMATE SOLUTIONS USING THE INTEGRAL METHOD
IN THE DISPERSIVE REGIME C2

At long timescales, the temporal and diffusive terms in Eq. (31) are negligible in the regime C2,
and concentration profiles obey the following partial differential equation in the growing diffusive
layer:

∂ϕ0

∂x
	 (PeRa)2

α

∂

∂x

(
∂ϕ0

∂x

)3

. (C1)
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We define ψ = (
∂ϕ0

∂x

)2
, and Eq. (C1) becomes[

3

2

(RaPe)2

α

∂ψ

∂x
− 1

]
ψ1/2 	 0. (C2)

As the concentration gradient steadily increases, ψ1/2 = 0, and one has thus

∂ψ

∂x
	 2

3

α

(RaPe)2
, (C3)

leading after integration to

ϕ0(x, t ) 	
√

8α

27

1

PeRa
[x + G(t )]3/2 + F (t ), (C4)

where F and G are two functions to be defined. We postulate following the integral method [29]
that the relation

ϕ0(x, t ) = 0 for x < −G(t ),

ϕ0(x, t ) =
√

8α

27

1

PeRa
[x + G(t )]3/2 + F (t ) for x < −G(t ) (C5)

is a good approximation of the solution providing that it verifies both the boundary condition
Eq. (27) and the global solute conservation Eq. (21), which leads to F 	 −1, and

G(t ) =
(

5

2

√
27

8α
PeRa t

)2/5

. (C6)

As shown in Fig. 3, this relation approximates well the concentration profiles in the dispersive
regime. From this approximation, we can finally calculate δ(t ) using Eq. (29) leading to Eq. (45).

APPENDIX D: VALIDITY OF THE 1D ADVECTION DISPERSION MODEL

We consider the two cases defined in Sec. III D.

1. Case 1

PeRa/
√

α � 1. We aim at demonstrating that if Pe � 1, then conditions Eqs. (51)–(53) hold for
time t � tD2→C2, where tD2→C2 is given by Eq. (42). The condition Eq. (51) is satisfied because
t � tD2→C2 � 1 and Pe � 1. Similarly, the condition Eq. (52) is true because t � tD2→C2 implies
δ � 1 [see scalings Eqs. (40) and (41)]. Using Eq. (A15) and assuming 1440 ∼ √

α, the condition
Eq. (53) reads

Pe
PeRa√

α

ϕ0

δ2
� 1. (D1)

Using scalings Eqs. (40) and (41), Eq. (D1) reduces to

Pe

(
PeRa√

α
t

)−1/5

� 1, (D2)

this condition being obviously true for t � tD2→C2.

2. Case 2

PeRa/
√

α � 1. We aim at demonstrating that if condition Eq. (51) is true, then conditions
Eqs. (52) and (53) are also true. δ � Pe (PeRa/

√
α)1/3 � Pe in the C1 regime [from scaling

Eq. (38) with t � Pe2], and δ � 1 in the C2 regime [from scaling Eqs. (40) and (41)], which
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proves the validity of condition Eq. (52). In the C1 regime, condition Eq. (53) turns to Eq. (D1) and
then to Pe t−1/2 � 1 [using scaling Eq. (38)], which is true for t � Pe2. In the C2 regime, condition
Eq. (53) still leads to Eqs. (D1) and (D2), the latter being true for t � Pe2.
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