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Dynamics and flow characterization of liquid fountains
produced by light scattering
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We present a detailed study of the dynamics of soft liquid interfaces undergoing viscous
stresses due to bulk flows generated by a momentum transfer from light to a turbid liquid.
Using a continuous laser wave, light-induced flow is observed and analyzed through the
deformability of very soft interfaces up to instability and jet formation. These dynamics
are investigated experimentally and numerically below and above the interface instability
threshold. Below instability, we show that the dynamics of the interface deformation at
short timescales does not vary with the parameters of the laser excitation. We confirm that
the mechanism responsible for the interface deformation is a nonlocal effect associated to
the viscous stress induced by the bulk flow. Then, we characterize the jetting instability
regarding the numerical velocity field within the jet, the jet radius and the fluid flow rate. A
satisfying agreement is obtained when comparing quantitatively experimental results and
numerical predictions. Our investigation illustrates how light can induce a bulk flow in a
turbid liquid, such as a suspension, and how this flow can be used to deform an interface
and produce well-controlled liquid jets.

DOI: 10.1103/PhysRevFluids.5.024002

I. INTRODUCTION

Light is able to set fluids in movement transiently or permanently by transfer of energy or
momentum. The most famous example is thermal Marangoni flow (called optocapillarity when
induced by light) due to heat transfer to the interface when a liquid layer absorbs light at the used
optical wavelength. It was widely studied experimentally, theoretically and numerically as it is easily
induced by a local laser-heating [1–4]. With the development of microfluidic toolboxes on the one
hand, and the enhancement of the surface to volume coupling contributions with miniaturization,
on the other hand, many efforts were concentrated towards the developments of optically induced
surface-tension-driven flows at the microscale. Among these examples, one can cite the control
of the spreading of films [5], the production of droplets [6], the manipulation of jets [7], or the
actuation of particles floating at a free surface [8]. The investigation of flows induced by laser
heating was further extended in bulk using absorbing suspensions [9–11] or at interfaces considering
light-sensitive surfactants [12].

However, as shown in the present study, light may also transfer momentum isothermally to
produce flows. We concentrate here on this totally different mechanism where thermal effects
are irrelevant. For this purpose the fluid system at work, a phase-separated liquid mixtures close
to criticality, has an extremely weak optical absorption at the used optical wavelength making
thermal effects negligible. Pure transfer of light momentum to a fluid can be set in a nonabsorbing
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liquid suspension and the mechanism is the following: when the liquid is constituted by randomly
distributed sub-wavelength particles in suspension or density fluctuations as in critical fluids, these
refractive index heterogeneities scatter the incident light beam which eventually loses forward
momentum during its propagation in the medium; this phenomenon corresponds to the well-known
critical opalescence in critical phenomena. As a consequence, momentum conservation produces a
density force, called scattering force, that sets the liquid in permanent motion. As optical absorption
is discarded, this density force should be only proportional to the wave momentum p = (nI/c)z
and to the beam attenuation � = (−1/I )dI/dz due to the liquid turbidity, with n the refractive
index of the medium, I the intensity of the laser beam and c the light celerity; � may also be
called extinction coefficient when dealing with subwavelength particle suspensions. The expected
scattering force density f scatt(r) is then proportional to (�nI/c)z for �L � 1, where L is the
thickness of the sample. As illustrated in a recent review [13], this scattering force at the level of the
suspended particles is at the origin of many theoretical and experimental works dedicated to particle
manipulations in fluids. A similar physical approach was also described controlling the advection of
small particles at free surfaces efficiently [14]. Skipetrov et al. [15,16] demonstrated that multiple
scattering events also drive bulk flow and measured the scatterer velocity by determining the
temporal autocorrelation function of the scattered electromagnetic field. Later, Casner and Delville
[17] strongly deformed very soft fluid/fluid interfaces in near critical thermodynamic conditions
using the optical radiation pressure. They evidenced a jetting instability at the tip of the interface
deformation with droplet production, both unexplained by the surface radiation pressure which
cannot actuate steady flows. In the absence of optical absorption, this effect was attributed to light
scattering [18] as the turbidity of the involved fluid system diverges close to a critical point. This was
confirmed analytically in the weak interface deformation regime by considering the viscous stress
exerted on the interface by the bulk flow. This scattering effect was further explored theoretically
and experimentally in stationary conditions to characterize the induced bulk flow [19]. Nonetheless,
in this last study, bulk scattering force and interfacial radiation pressure effects were collaborating
in the same direction, making difficult to discriminate the importance of each mechanism on the
resulting interface instability. Consequently a numerical investigation on pure scattering density
effects, based on a boundary element method (BEM), in the small deformation regime (i.e., when
the amplitude of the deformed interface is smaller than the beam waist) was developed to grasp the
properties of the induced bulk flow in permanent conditions [20]. Indeed, to discriminate between
radiation pressure and scattering bulk flow effects, Chraïbi et al. [21] investigated the resulting
jetting instability when the radiation pressure and the scattering force act in opposite directions.
This approach gave the opportunity to observe for the first time, how the viscous stress induced
by the scattering force alone can deform an interface, up to instability and jetting. Nonetheless,
these numerical investigations were limited to the features of the interface without characterizing
the flows.

The goal of the present work is to investigate the dynamic features of the flow in terms of interface
velocity and fluid flow rate as a function of the driving parameters which are the beam power and
fluid properties. We describe first mechanical forces induced by the laser beam and the experimental
setup. Then we study the dynamics of the interface in the small deformation regime when scattering
forces remain too weak to destabilize this interface. In a third part, we analyze the dynamics at
and beyond interface instability and we characterize the properties of the induced jets in terms of
numerical velocity field, radius and flow rate as a function of the excitation. A summary of the
physical properties and of the dimensionless numbers used in the present study is presented in
Appendix B. This investigation gives a first opportunity to quantitatively compare experiments and
numerical simulations to understand how light can trigger flow and jetting in nonabsorbing liquid
suspensions; the detailed calculation of the scattering force resulting from the momentum transfer of
the incident light to a turbid media in the Rayleigh scattering regime (i.e., for particles or refractive
index fluctuations very small compared to the optical wavelength) is presented in Appendix A.

We may note at the end of this introduction that, even if our investigation is entirely dedicated
to liquid flows induced by mechanical effects of nonabsorbing light, acoustic radiation pressure and
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streaming, historically known well before the laser invention, can as well deform interfaces and
produce flows. While mechanisms may be slightly different, strictly speaking richer in acoustics
because the optical impedance is usually reduced to refractive index contrast, the spirit is exactly
the same. Interface deformation by the radiation pressure was nicely demonstrated in acoustics by
Hertz and Mende [22] and much later with lasers by Ashkin and Dziedzic [23]. Thus acoustically
driven flow [24,25], interface instability and jetting [26], and droplet production [27,28] have for a
long time been a subject of interest, unveiling universal behaviors triggered by radiation pressure
regardless of the nature of the exciting wave, whether mechanical and longitudinal (acoustics) or
electromagnetic and transverse (optics).

II. LIGHT-INDUCED FORCES AND EXPERIMENTAL SETUP

A. Mechanical effects of light in bulk and on interface

1. Bulk flows driven by light scattering in turbid liquids

As qualitatively mentioned in the Introduction, the density force f scatt(r) should be proportional
to the wave momentum, p = (nI/c)z, and to the beam attenuation � = (−1/I )dI/dz, here
corresponding to the turbidity since optical absorption is discarded. The main steps of its calculation
are the following: First, we need to determine the light field scattered by the liquid heterogeneities.
It linearly depends on the structure factor S = 〈|δρ |2〉 that describes the correlation between density
fluctuations δρ. Moreover, S is calculated within the Ornstein-Zernike approximation, usually
considered for light scattering in critical fluids. Then, as illustrated in Appendix A, we can deduce
the fraction of scattered intensity I (q, Ro)/I0 at a distance Ro from the small scattering volume V of
interest:

I (q, Ro)
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In Eq. (1), I0 is the incident beam intensity, q = |ki − ks| = 2ki sin θ/2, where ki and ks are,
respectively, the incident and the scattered optical wave vectors, λ0 is the optical wavelength in
vacuum, and θ is the scattering angle. ξ and 	 are the size and the concentration of the scatterers,
and χT is the isotherm compressibility. (qξ )2 can as well be written as (qξ )2 = α(1 − cos θ )
with α = 2(2π

√
εrξ/λ0)2 and εr = n2. Finally, φ represents the angle between the polarization

of the incident wave and the scattering direction ks. When an incident photon, of momentum h̄ki

is elastically scattered by a refractive index heterogeneity with an angle θ , its momentum in the
direction ki decreases by a factor h̄ki(1 − cos θ ) and the difference is transferred to the fluid, giving
birth to the scattering density force f scatt(r) that sets the fluid in movement. Integration over a sphere
of radius Ro of h̄ki(1 − cos θ ) corrected by the fraction of scattered intensity [Eq. (1)] finally gives
the average light momentum lost in the direction of propagation ki. Then, from Newton’s second
law, we deduce the corresponding scattering force density:

f scatt(r) = nI (r)
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where f (α) = 1/α4[8/3α3 + 2α2 + 2α − (2α2 + 2α + 1) ln(1 + 2α)]. This density force is, as
expected, proportional to the wave momentum and to the turbidity � = (

π3

λ4
0
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∂εr
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)2
kBT χT f (α).

At low Reynolds number, the Stokes equation easily sets an order of magnitude of the resulting
axial velocity: vscatt = πω2

0 f scatt/η, where η is the shear viscosity and ω0 is the laser beam waist.
Typical values of vscatt in our near-critical systems are in the range vscatt = (10−5–10−4) ms−1. When
directed normal to a fluid interface, this scattering velocity induces in turn a normal viscous stress
η∂v/∂z ∼ ηv/Lc ∼ σ/Lc, where Lc ∈ [0.1–1] mm is the typical lengthscale associated with the
flow which scales like the smallest dimension of the container [20]. In our two-fluid systems, we
typically get η∂v/∂z ∼ (10−5–10−3) Pa. As a consequence, observation of micrometric interface
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deformations by scattering forces requires a Laplace pressure (and buoyancy) of the same order of
magnitude. Such a balancing condition suggests use of low interfacial tension systems and explains
the choice of phase-separated near-critical mixture considered in the present investigation since
tension σ as low as (10−8–10−7) N m−1 can be achieved.

2. Optical radiation pressure at fluid interfaces

As soon as a fluid interface is present and interface deformation is under investigation, a second
unavoidable mechanical effect of light is expected to occur experimentally: interface deformation
by the optical radiation pressure. If this interface separates two dielectric liquids of different index
of refraction ni,t (subscripts i and t refer here to incidence and transmission), then the photon
momentum p = h̄ki = nihν/c, where hν is the photon energy, is not conserved when traveling from
one liquid to the other. The resulting mismatch gives birth to a radiation pressure applied to the
interface to conserve momentum. This optical radiation pressure is a function of the incident and
transmitted angles θi and θt at the interface. The elementary variation of the normal and tangent
momentum components at the interface [29] is obtained by counting (i) the momentum given to the
interface by an incident photon, (ii) the momentum picked to the interface by a reflected photon, and
finally (iii) the momentum picked to the interface by a transmitted photon. Then, it can be deduced
that (i) in the absence of dissipation, there is no momentum transfer parallel to the interface and (ii)
for a laser wave with an incidence angle θi, the expression of the optical radiation pressure is:

�Rad = ni cos2 θi

[
1 + R(θi, θt ) − tan θi

tan θt
T (θi, θt )

]
I

c
n, (3)

where n is a unit vector normal to the interface and, R(θi, θt ) and T (θi, θt ) = 1 − R(θi, θt ) are the
classical reflection and transmission Fresnel coefficients in electromagnetic energy. By developing
the expression of R(θi, θt ), it appears that �Rad is always normal to the interface and directed towards
the liquid of smallest index of refraction whatever the direction of beam propagation; in our case
from fluid 2 to fluid 1 (see Fig. 1). The stationary height h(r) of the interface deformed by the
optical radiation pressure can as well be found by balancing buoyancy (ρ1 − ρ2)gh(r) and Laplace
pressure �Laplace(r) = −σκ (r), on the one hand, and radiation pressure �Rad(r), on the other hand.
At normal incidence, on the beam axis and for close indices of refraction �rad ≈ (n2 − n1)I0/c,
where I0 = 2P/(πω2

0 ) is the beam intensity at r = 0 and P is the injected power. For typical values
of refractive index (n2 − n1) = 10−2 − 10−3, power P = 1 W and beam waist ω0 = 10−5 m, we
find �rad ≈ (10−2 − 10−1) Pa. While the characteristic length of the flow induced by the scattering
force is Lc, i.e., the smallest size of the container, the one characterizing the radiation pressure is ω0

the laser beam waist as I (r > ω0) ≈ 0 and thus �rad(r > ω0) ≈ 0.

3. Experimental system required for the resolution of the induced interfacial forces

Four main conclusions can then be advanced from the previous orders of magnitude. The first two
are related to the mechanical effects of light. (i) Radiation pressure cannot be avoided experimentally
when investigating scattering effects on interfaces because classically the two phases in contact
have different indices of refraction. (ii) As radiation pressure is expected to be larger than the
normal viscous stresses due to scattering forces, even at low refractive index contrast, the best
way to investigate scattering effects thus needs an experimental configuration where both effects
act in opposite direction to partly disentangle them. The two other conclusions are important for
setting experimental conditions. (i) Turbid liquids are necessary for the observation of scattering
effects, either real suspensions or fluctuating systems. (ii) Considering the order of magnitude of
the expected induced normal viscous stress on the interface, a balance with the Laplace pressure
(and possibly buoyancy) necessarily requires very low interfacial tension systems. Fulfillment of
both conditions led us to choose phase-separated liquid mixtures close to criticality described in the
following part.
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FIG. 1. (a) Illustration of the experimental setup. Le is a convergent lens with a focal length Fe = 80 cm, M
are mirrors and O is an Olympus 10X objective with long working distance. (b) Schematic coexistance curve of
the phase-separated near-critical microemulsion. (c) Picture of a deformed interface by a laser beam. It shows
the deformation inherent to radiation pressure (downward in the center of the picture), the one induced by the
scattering force, and the emergence of a shoulder due to antagonist effects. The red arrows represent the eddies
induced by the scattering force. (d) Height variation of the shoulder with the injected power. The gray region
represents the jetting regime.
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B. Phase-separated near-critical fluid system and experimental setup

To investigate light scattering stresses on liquid interfaces, we used the near-critical two-phase
equilibrium state of a micellar phase of a microemulsion. The microemulsion is composed of
water, oil (toluene), surfactant (sodium dodecyl sulfate, SDS), and co-surfactant (n-butanol-1).
At low ratio of water and surfactants, thermodynamic equilibrium leads to the formation of a
supramolecular binary liquid mixture composed of a suspension of water nanodroplets coated by
a shell of surfactants, the micelles, dispersed in an oil continuum; soluble on both water and oil,
the co-surfactant is used for reducing the hydrophilic/lipophilic balance of SDS and thus allowing
the formation of micelles. For the chosen composition (mass fractions in %wt: water, 9%, toluene,
70%, SDS, 4%, butanol, 17%), the micelles radius is about 4 nm [30]; this value is small enough to
keep the mixture slightly translucent at room temperature. As for any liquid mixture, our micellar
solution presents a line of liquid-liquid critical points, here associated with a reverted coexistence
curve [31]; see Fig. 1(b). It has also been demonstrated that this microemulsion belongs to the
universality class (d = 3, n = 1) of the Ising model [32], implying that mechanical effects of light
analyzed in such a system are expected to happen for any isotropic liquid in the same way. At the
chosen composition, the critical temperature is Tc 	 35◦ C. Above Tc, the mixture separates in two
micellar phases of concentrations 	1 and 	2 (respectively, rich and poor in micelles), illustrated by
the schematic phase diagram shown in Fig. 1(b). Fluids 1 and 2 denote, respectively, the bottom and
top phases as illustrated in Fig. 1(c). As for any system close to criticality, some properties, in the
two-phase region, present divergent scaling laws or vanishing behaviors that are characteristic of
second-order phase transition. Here the order parameter is the contrast of concentrations (	1-	2).
Important quantities for the present investigation are:

(i) The correlation length of density fluctuations in the two-phase region which is involved in the
fraction of scattered intensity and then in the scattering density force,

ξ− = ξ−
0

(
T − Tc

Tc

)−0.63

, with ξ−
0 = 2 nm. (4)

(ii) The susceptibility involved in the turbidity, and then in the scattering density force,

χ− = χ−
0

(
T − Tc

Tc

)−1.24

, with χ−
0 = 1.344×10−6 Pa−1. (5)

(iii) The interfacial tension involved in the Laplace pressure,

σ = σ0

(
T − Tc

Tc

)1.26

, with σ0 = 5×10−5 N m−1. (6)

(iv) The density contrast involved in buoyancy,

(ρ1 − ρ2) = �ρ0

(
T − Tc

Tc

)0.325

, with �ρ0 = 53.625 kg m−3. (7)

(v) The contrast of indices of refraction involved in radiation pressure,

(n1 − n2) = �n0

(
T − Tc

Tc

)0.325

, with �n0 = −0.0451. (8)

And finally (vi) the capillary length involved in the optical Bond number Bo = (ω0/lc)2,

lc =
√

σ

(ρ1 − ρ2)g
= lc0

(
T − Tc

Tc

)0.47

, with lc0 = 3.1×10−4 m. (9)

Also of importance is the shear viscosity of the two phases ηi(T ) = [1.46 − 0.014(T − 237)]
(1 + 2.5	i )10−3 Pa s which depends on the concentration of the micellar phase 	i=1,2 = 	0 ±
�	0/2[(T − Tc)/Tc]0.325 with 	0 = 0.11 and �	0 = 0.275. These scaling also show another
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advantage in using such fluid systems: the above-mentioned properties can be tuned continuously
just by changing the temperature of the system. In the present study, we chose �T = T − Tc =
0.5, 1.5, 1.9 K. Finally, the optical absorption of the mixture αa ≈ 3×10−4 cm−1 at the used
wavelength (λ0 = 532 nm in vacuum) is weak enough to discard, for the investigated temperatures,
the laser heating side effects such as thermoconvection and Marangoni flows.

The experimental setup is illustrated in Fig. 1(a). It consists in focusing a vertical laser beam
on the horizontal fluid interface of the two-phase sample contained in a thermally controlled fused
quartz cell (40×10×2 mm3). The light beam is provided by a continuous wave frequency doubled
Nd3+-YAG laser in the TEM00 mode. As the beam intensity, involved in both the scattering force and
theradiation pressure,depends on both the beam power and waist, the setup allows for the variation
of both quantities. Power is directly controlled by the power supply of the laser and the optical
transmission of the setup. For the waist variation, we use the following scheme. The lens Le forms a
first waist along the optical path and moving the prism Pr allows variation of the optical path between
Le and the microscope objective O (Olympus 10X, long working distance) used to focus the beam
at the interface. Using a focal lens Fe = 80 cm, the range of accessible beam waists in the sample is
ω0 ∼ (3–14) μm. With these values, the corresponding Rayleigh length, i.e., the length over which
the beam can be assumed to be almost cylindrical, is always larger than 100 μm, thus allowing
numerical simulations to be confidently performed using cylindrical nondiverging laser waves. Note
finally that the beam waist altitude inside the sample varies with the optical path between the lens
Le and the objective O, so the cell is mounted on a vertical translation stage to precisely set the
chosen beam waist on the interface; this is done by observing the beam propagation in the sample
using its scattering by the micelles (or the density fluctuations). As the index of refraction of the
phase 	1 is smaller than that of 	2 on the one hand, and since we want to set opposing scattering
and radiation pressure effects, on the other hand, the laser beam is chosen to be incident from the
phase 	1 and propagates upward. The temperature T is controlled with a stability of ±0.05 K using
a PID. An example of deformation of the interface separating the two phases 	1 and 	2 above Tc is
illustrated in Fig. 1(c); both scattering and radiation pressure effects are observed, acting in opposite
directions as expected. This interface is illuminated by a white light source and deformations are
grabbed using a large-chip high-speed CMOS camera. To prevent saturation of the chip, the field
scattered in the sample is partially or completely suppressed using colored glass filters in front of
the camera. A typical example of experiment is presented in Fig. 1(d). By increasing the beam
power, for given waist and T − Tc, the interface is increasingly deformed in both vertical directions:
(i) due to the refractive index contrast between the two phases, the radiation pressure produces a
deformation downward with a typical radial size comparable to the beam diameter, and (ii) a much
wider deformation in the direction of propagation, i.e., upward, due to scattering forces on both
liquid phases; this larger wideness is due to scattering effects and not only depends on beam intensity
but also on hydrodynamic boundary conditions. Note also on snapshots that interface shapes due
to radiation pressure become nonlinear when increasing the beam power [33]. As scattering and
radiation pressure effects are chosen to be antagonist to disentangle them as much as possible,
the curve presented in Fig. 1(d) shows the shoulder height with the laser power. What we call the
shoulder is the place where the contribution of scattering flows versus radiation pressure stresses
is the largest [see Fig. 1(c)]. For the chosen conditions, it appears that this shoulder height starts
to behave nonlinearly for incident power between P = 0.5 W and P = 1.0 W. Above this range,
the height increases more rapidly and eventually the interface deformation becomes unstable at the
shoulder location for some well-defined threshold power, giving birth to an off-axis stable jet.

In the following part, we describe the physical system and the numerical method used.

III. PHYSICAL MODEL

To solve numerically the deformation of an initially flat interface by the scattering force, we use
a boundary element method [20]. The Reynolds number being small (Re ≈ 10−4 [19]), we solve the
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FIG. 2. Experimental evolution of the deformation of an initially flat interface under the mechanical effects
of a laser beam. The laser is turn-on at t = 0 s. This experiment was performed in a near-critical two-phase
microemulsion at T − Tc = 1 K, where Tc is the critical temperature. The beam power is P = 308 mW and the
beam waist is ω0 = 9.8 μm. The green arrow denotes for the direction of propagation of the incident laser wave
while the three others show where the manifestation of both the radiation pressure (red arrow from the large to
the low refractive index phase, n2 > n1) and the scattering force (blue arrows in the direction of propagation of
the wave) induce visible effects on the fluid interface. The scattering deformation being wider than the radiation
pressure one, the global deformation shows a circular shoulder indicated by the black arrow.

Stokes equation and the mass conservation in each liquid phase:

0 = −∇pi + ηi�vi + f scatt
i ,

0 = ∇ · vi. (10)

Considering the axisymmetry of the laser-fluid interaction, we introduce cylindrical coordinates
(r, θ , z) of the orthogonal basis (er, eθ , ez). The z axis is taken positive in the direction of
propagation of the laser beam and the origin z = 0 is set on the initially flat interface. The
subscript i = 1, 2 denotes for the liquid phases 1 and 2 (see Fig. 2). The corrected pressure
term pi contains the hydrostatic pressure and the gravitational component pi = p′

i + ρigh. ηi and
vi = vzi(r, z)ez + vri(r, z)er are, respectively, the viscosity and the velocity field of the fluid phase i
and f scatt

i is the scattering force density. The detailed calculation of this force for single scattering
from Rayleigh scatterers is given in Appendix A. Equation (2) can be rewritten in a compact form
as

f scatt
i = �i

ni

c
Iez, (11)

where �i is the turbidity coefficient and niI/c is the light momentum in the liquid phase i. For
the temperatures imposed experimentally, �T = T − Tc = 0.5, 1.5, 1.9 K, we have �1 = 136 m−1,
102 m−1, and 92 m−1. One can note also that �2 ≈ �1 close to a critical point. I (r) = I0 exp−2(r/ω0 )2

is assumed as nondivergent during its propagation inside the whole sample. The stress balance at
the interface is given by

[T1 − T2] · n = [σκ − �ρgh(r)].n, (12)
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with Ti = −pI + ηi(∇vi + ∇tvi ) the hydrodynamic stress tensor corrected by the pressure term and
n a unit vector normal to the interface directed from fluid 1 to 2. Finally, we impose continuity of
the velocity at the interface, we use a Lagrangian description to track the interface motion and we
consider a classical no-slip condition at the container boundaries.

dx
dt

= v(x), v1 = v2, at the interface,

v1 = v2 = 0, at the solid boundaries. (13)

As we focus here on the dynamic effects of the scattering force over the interface, we did not
include in our calculations a possible coupling with radiation pressure effects (already investigated
numerically in stationary conditions and for small amplitude deformations [20]). Moreover, to
focus on the effects of turbidity, we choose to consider η1 = η2 in our simulations which is
totally consistent with experiments in phase-separated near-critical mixtures as η1/η2 ∈ [1.07, 1.11]
for the range of temperature investigated here. We choose for the dimensions of the cylindrical
numerical container of height 2L and radius R to consider L = L1 = L2 = 150ω0 for the liquid
layer thicknesses and R = 60ω0 for their radial extension. These dimensions were chosen to
discard as much as possible boundary effects due to finite volume of calculation. In addition,
the radial extension is always larger than 4lc where lc = √

σ/(�ρg) is the capillary length. The
length 4lc gives a confident distance from which one can consider the interface dynamic free of
container sidewalls influence. We introduce two dimensionless numbers, an optical Bond number
Bo = (ω0/lc)2 = (�ρgω2

0 )/σ which describes the effects of buoyancy over capillarity with ω0 the
beam waist as characteristic length (since we cannot discard radiation pressure experimentally),
and a capillary number Cai = ηi(∂vzi/∂z)/(σ/Lc) to represent the balance between viscous and
interfacial stresses at the interface. As vzi depends on ω0 for |r| � ω0 (see Figs. 4 and 6 in Ref. [20]),
we can deduce from Eq. (10) that ηi�vzi ∼ ηivzi/ω

2
0 ∼ f scatt

i . Strictly speaking, it means that the
capillary number Cai is space dependent due to the radial variation of the laser beam intensity and

thus Cai = (2ni�i )/(πcσ )Pe−2( r
ω0

)2

. Besides, due to the inherent experimental radiation pressure
surface effects (not considered for the sake of simplification in the simulations) on the beam axis
that opposes to scattering interface deformations, the largest observable manifestation of scattering
flows appears at the shoulder r ≈ ω0 as �rad(r ≈ ω0) ≈ 0 (see Fig. 2 for maximum hump amplitude
and Fig. 4 for the jetting instability). Thus, as experimentally the jet is formed on the shoulder
of the deformation we would like to compare the viscous stress and the Laplace pressure at this
location. However, as it is not obvious to determine exactly the initial position of the jet nor the
local viscous stress in situ, we decided to compute the experimental capillary number at r ≈ ω0

to get quantitative comparisons between experimental and numerical results; it is then given by
Cai = (2ni�i )/(πcσ )P/e2. Indeed, as the jet is misaligned with the beam axis, defining a “centered“
capillary number leads to irrelevant experimental thresholds capillary numbers (Cath ∈ [5−10]
[21]).

In the next section, we describe the dynamics of the deformed interface by scattering forces
before the jetting instability threshold. We made the choice hereafter to present all capillary numbers
using Ca1 as one should note that close to a critical point, where scattering effects are the largest,
Ca2 ≈ Ca1 ≡ Ca.

IV. BELOW THRESHOLD

It was previously demonstrated that the scattering force density can produce small deformations
[20] of a soft liquid/liquid interface by inducing bulk flows in turbid media in the form of toroidal
eddies. Typical pictures of the dynamics of a small amplitude deformation is depicted Fig. 2. We
report on Fig. 3 the experimental (open symbols) and the numerical (dashed lines) evolution of the
shoulder height normalized by the beam waist with the viscocapillary time defined with the beam
waist as length scale τ = (ω0η2)/σ (the viscous reference velocity of the interface is Uσ = ω0/τ )
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FIG. 3. Dynamics of the interface shoulder at different Bond numbers (with, from top-left corner to bottom-
right one, ω0 = 2.7, 5.3, 7.5, 9.8 μm) and for several capillary numbers (with P = 346.5 mW, 693 mW; P =
442 mW, 885.5 mW; P = 616 mW, 1232 mW; 616 mW, 1232 mW from top-left to bottom-right). Since
radiation pressure is also present, the measurements are taken on the shoulder of the deformation [see Fig. 1(c)],
where the scattering force effects are the most visible. All these results were obtained at T − Tc = 1.5 K. Open
symbols are experimental data and are fitted (plain lines) with Eq. (14). Dashed lines are numerical simulations
considering scattering forces only.

for different Bond numbers (including beam waist variation) and for several capillary numbers
(including beam power variation). The experimental capillary numbers are calculated as discussed
in the previous section and the corresponding injected powers are given in the figure caption. Two
regimes are noticeable on the experimental dynamics. First, at short times, the interface is deformed
by the viscous stress induced by the scattering force in the direction of propagation of the laser
beam. Then, at longer times, the interface is pulled back in the opposite direction by radiation
pressure. Figure 3 shows clearly that the radiation pressure is involved in the long-time process as
the numerical deformations (which take into account only scattering force) simply grow and reach
a stationary state. As the timescales observed experimentally are well separated, we propose an
empirical law which considers the addition of the deformation induced by the scattering force and
the pull back due to radiation pressure:

h(t ) = α
[(

1 − e(− t
τ1

)) − β
(
1 − e(− t

τ2
))]

, (14)

with α, β, τ1, and τ2 four fitting parameters. The empirical law (plain lines in Fig. 3) describes well
the experimental measurements. We obtain two characteristic times, τ1 which corresponds to the
effect of the scattering force at short timescales and τ2 assigned to the second slower phenomenon
related to radiation pressure. For all the dynamics we find τ1 ∈ [0.45, 0.65] s which scales like
Lc/v

scatt [20], with Lc, the smallest dimension of the container and vscatt = ( f scatt
i πω2

0 )/ηi =
(2Pni�i )/(cηi ). The fact that τ1 is independent of the beam waist ω0 expresses again the nonlocal
feature of the interface deformation induced by the scattering force. Additionally, the timescale
associated to the numerical dynamics τnum ∈ [0.7, 0.9] s is close to the experimental one and shows
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FIG. 4. Temporal evolution of the deformation of the soft liquid interface followed by its destabilization
and emergence of a microjet. T − Tc = 1.5 K, P = 1540 mW, and Bo = 8.6×10−2, with ω0 = 7.5 μm. At time
t = 0 s the laser is turned on. The white arrow highlights the emergence of a liquid tip at the shoulder of the
deformation which turns into a microjet in the wave propagation direction; note that this jet is shifted regarding
to the beam axis due to the fact that it is constituted by the liquid phase of smallest index of refraction. It seems
to be centered at the end of the movie, but it had just moved in front of the camera; the shoulder is still present.

that τ1 is associated to the scattering force. Conversely, τ2 ranges from a few to tens of seconds. It has
been demonstrated in previous studies that deformations induced by significant radiation pressure
act as liquid wave guides [33] with complex adaptation of the incident spatial field distribution. A
given number of eigenmodes of the field is guided into the deformation which modifies in turn the
radiation pressure. Depending on the beam power and waist, this modified field may pull the central
deformation from an equilibrium z position to another. Reaching a new stationary state may take
time as the field and the interface continuously adapt to each other. This complex nonlinear behavior
of the radiation pressure [33] can explain the decreasing of the height amplitude observed at long
times in Fig. 3.

In the following, we will see that when we increase sufficiently the capillary number above a
threshold value denoted Cath, the scattering contribution becomes large enough to destabilize the
interface. A “fountain” jet emerges on the shoulder of the deformed interface as illustrated in Fig. 4.
Statistically, this jet can form in any place on the circular shoulder. However, in the experiments
the jetting breaks the symmetry, and therefore it becomes impossible to directly simulate the real
system because of the axisymmetry of our simulation. As introduced before, (i) we discard radiation
pressure effects which do not produce stationary flow, (ii) we choose to keep simulating liquid jets
centered on the propagation axis of the laser beam, and (iii) we compare numerical results with
experimental ones considering their respective capillary numbers.

V. BEYOND THRESHOLD

As a validation of our approach, we compare the dynamics of experimental and numerical
jets. We plot in Fig. 5 the evolution of experimental and numerical deformations actuated by
the scattering force using the viscocapillary time. We then compare experimental dynamics with
several predicted ones for different capillary numbers. Following the discussion in the Sec. III and
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FIG. 5. Comparison between the height evolution of experimental jets (filled dots) and numerical ones
(lines). Both experimental jets were obtained at T − Tc = 1.5 K and the Bond number are calculated with
ω0 = 7.5, 9.8 μm. The experimental dynamics (see Fig. 4) are considered at short times on the shoulder of the
deformation and then at the apex of the jet. Experimentally, we do not observe jets larger than h/ω0 > 10 due
to the limited size of the camera chip. Numerically the height of the interface is taken at r = 0 as we discarded
radiation pressure effects.

considering a spatially dependent capillary number, the computed numerical dynamics correspond
to different radial positions where the jet would be induced experimentally. As expected the best
match is retrieved in Fig. 5 by considering a shoulder at r

ω0
≈ 1, which is in agreement with the

experimental jet position. Then, to get experimental capillary numbers comparable with numerical
ones, we choose in the following to always consider Caexp at r/ω0 = 1.

In the next sections, we describe the different properties of the induced experimental and
numerical liquid microjets. We compare the velocity field inside the jets computed numerically
with an analytical model, characterize their radii and finally determine the resulting fluid flow rates.

A. Velocity

To calculate the fluid flow rate through the numerical jets, we computed the bulk velocity field
by BEM.

We observe on Fig. 6 an experimental jet with a corresponding numerical one superimposed on
the same image [Fig. 6(a)] and the same numerical jet plotted along with the streamlines of the
induced velocity field [Fig. 6(b)] obtained with a capillary number Ca = 1.08. Disregarding the fact
that the experimental jet is misaligned with the laser beam, both jets are very similar and extremely
thin (few micrometers in diameter).

As expected from mass conservation, we observe the formation of toroidal flows which scale as
the smallest dimension of the container (here the radial extension) in each liquid phase. The same
kinds of flows can be observed experimentally (see Fig. 1 of Ref. [20]). Note that by linearity of the
Stokes Eq. (10) the velocity is proportional to f scatt and thus to Ca. To validate the computed velocity
field, we also calculated analytically the hydrodynamic velocity we would obtain considering a
perfect cylindrical jet [19]. We consider the flow into the jet as a viscous incompressible steady
laminar flow for which the velocity field has only radial dependence along the z axis. Furthermore,
as the scattering force also depends on r along z, Eq. (10) implies ∂r pi = 0 which tells us that the
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FIG. 6. Analysis of the hydrodynamic velocity field. (a) Experimental image of a jet induced by the
scattering force and the corresponding simulated profile at T − Tc = 1.5 K, Bo = 8.6×10−2 (ω0 = 7.5 μm),
and Ca = 1.07 (P = 1540 mW). (b) Numerical flow pattern of the velocity field at Bo = 8.6×10−2 and
Ca = 1.07. (c) Comparison between the velocity field at the cross-section represented by the dashed red line
in (b) with the analytical solution obtained for a perfect cylindrical jet.

corrected pressure only depends on z. Then by taking the divergence of Eq. (10), one finds ∂2
z pi = 0.

So the pressure gradient is constant in both liquid phases ∂z pi = Ci.
To obtain the whole expression of the pressure, we use Eq. (12). For r � ω0, and at z = 0, the

interface is flat (curvature is null) and the amplitude of the hydrodynamic velocity field is negligible
[see Fig. 6(b)], so Eq. (12) gives us p1(z = 0) = p2(z = 0) = p0 the pressure at z = 0. Finally, as all
terms of Eq. (12) are invariant along z axis, p1(z) − p2(z) should also be constant. Hence, we must
choose C1 = C2 = C. We can now rewrite Eq. (10) in a dimensionless form with the characteristic
lengths chosen earlier:

1

r

d

dr

[
r

d

dr
vzi(r)

]
= C − Cai

αi
e−2r2

, (15)

αi =
{ η2

η1
if i = 1,

1 if i = 2.
(16)

By integrating these equations in each liquid phase, we get the following coupled equations:

vz1(r) = C

4

(
r2 − r2

1

) + Ca1

4α

[
Ei(−2r2)

2
− Ei

(−2r2
1

)
2

− ln

(
r

r1

)]
, (17)

vz2(r) = C

2

{
1

2

(
r2 − r2

3

) − r2
2 ln

(
r

r3

)}
+ Ca2

4

[
Ei(−2r2)

2
− Ei

(−2r2
3

)
2

− e−2r2
2 ln

(
r

r3

)]
, (18)
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FIG. 7. Variation of the microjet radius with the capillary number for different Bond numbers; correspond-
ing to the experimental beam waists ω0 = 4.4, 4.8, 5.5, 6.4, 3.0, 3.9, 4.4, 5.9, 7.1 μm. Numerical jet radii are
represented by dashed lines and experimental ones with open (T − Tc = 1.5 K) and filled (T − Tc = 1.9 K)
symbols. Inset (a): Same data normalized by their value at the jetting threshold Rth and Cath in log-log plot.
Inset (b): Evolution of the numerical viscous stress at the jet interface, normalized by the viscosity, with the jet
radius for the Bo numbers considered numerically (same color code).

with Ei the exponential-integral function and C, r1, r2, and r3 four unknowns which are calculated
numerically by considering (i) the continuity of the tangential velocity at the interface, (ii) the
continuity of the shear stress at the interface, (iii) a no-slip condition on the domain boundaries, and
(iv) a flow rate outside the jet (into the liquid phase 2) equal to zero due to mass conservation. We
plot in Fig. 6(c), the comparison between the numerically calculated velocity over a cross-section
of the jet and the corresponding analytical solution. These velocity profiles match perfectly.

B. Radius

We need now to characterize the jet radii. Experimentally and numerically, as the jets are never
perfectly cylindrical, the reported radii are taken as the mean ones of the most cylindrical part of
the jets. Thus, we plot in Fig. 7 the variation of the jet radii with the capillary number; the insets
show (a) their variation from the threshold of jet formation in a logarithmic scale with Rth and
Cath, respectively, the radius and the capillary number at the threshold and (b) the viscous stress
on the jet interface. We retrieve a good agreement between numerical and experimental results
despite some dispersion into the measurements of the experimental radii and a small systematic
overestimation of the numerical jet radii. Furthermore, Fig. 7(a) shows that the jet radius, relatively
to its threshold value, increases linearly with the capillary number and do not depend on the Bond
number which therefore demonstrates again the nonlocal nature of the scattering force. Simple
scaling arguments can be given to explain this linear behavior. We assume that the radial viscous
stress on the jet interface should have a negligible variation so that ∂vz/∂r ∼ A with A a constant.
By definition of the capillary number on a cylindrical jet with small interface fluctuations, we have
Ca = η(∂vzi/∂r)/(σ/Rjet ) and therefore Ca ∼ A × Rjet. Finally, increasing the beam power, i.e.,
Ca, will lead to a proportional increase of Rjet to avoid any subsequent increase of the viscous stress
which is maintained constant at the interface. This is demonstrated numerically in Fig. 7(b), where
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FIG. 8. (a) Variation of the numerical (dashed lines) and (b) experimental (open symbols) fluid flow rates
with the capillary number for different Bond numbers. The insets show the same data normalized by their
value at the threshold. The plain black line in both insets is a fit of the whole set of curves according
to Q/Qth = a0 × (Ca/Cath)3 with a0 = 1.87 for BEM results and a0 = 0.59 for experimental ones. All the
experimental results plotted here were obtained at T − Tc = 1.5 K and their Bond numbers are calculated with
ω0 = 3.0, 4.4, 5.5, 6.4, 7.1 μm. The snapshot shows an example of droplets train emitted at the tip of a jet, and
how they are fitted with an ellipse to calculate their volume.

we plotted the viscous stress normalized by the viscosity on the jet interface as a function of its
radius; we observe that ∂vz/∂r is constant for Rjet/ω0 � 1.

Once simulated jet radii and flows are characterized, we calculate next the fluid flow rates and
compare them to the experimental ones.

C. Fluid flow rate

Experimentally the fluid flow rate is calculated by measuring the volume of the drops emitted at
the tip of the microjet during several seconds. The total volume ejected is then divided by the whole
measurement time to obtain the corresponding mean flow rate [19], see the snapshot on Fig. 8. To
determine the numerical fluid flow rate, we integrate the computed fluid velocity over a cross-section
of the cylindrical jet:

Q = 2π

∫ Rjet

0
vz1rdr. (19)

As Rjet ∝ Ca and vz ∝ Ca we should expect the fluid flow rate to be proportional to Ca3. This cubic
dependence of the fluid flow rates with the capillary number is retrieved numerically and the same
order of magnitude is observed when comparing with the experiments; thus qualitative agreement
is illustrated in Figs. 8(a) and 8(b).

However, discrepancies in amplitude between experimental and numerical fluid flow rates are
observed. They probably come from the fact that experimentally we determine the fluid flow rates
by considering the emitted volume of fluid at the tip of the jet and not inside a jet cross section.
On the one hand, the break-up at the jet tip and then the emission of droplets are affected by the
Laplace pressure through the interfacial tension. On the other hand, when a droplet is ejected, the
jet undergoes a recoil which can affect the hydrodynamics in a more complex way than the one
considered in this article. Moreover, these discrepancies can also come from several other factors.
For example, the chosen dimensions in the simulations allow us to discard any boundary effect but
it may not always be true in the experiments. Indeed, due to the jet length, the droplets are ejected
close to the top wall of the cell where the axial velocity decreases quickly. Additionally, if the laser
is focused on the interface close to the radial boundaries (which is the case in the experiments
to improve optical contrast) it may also affect the hydrodynamic by reducing the fluid flow rates.
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Nonetheless, it was found in reference [19], with a different configuration (when the resulting stress
of the radiation pressure and the scattering force are both collaborating in the same direction), that
the experimental fluid flow rate increases as Ca2.63, which is close to our numerical results; in this
collaborating configuration, the jet is much more stable as the laser beam propagates into it and
stabilizes it by mode guiding.

In further works it could be interesting to try to simulate dripping jets to characterize numerically
the fluid flow rate through ejected droplets, to have a better understanding of the present discrepan-
cies.

VI. CONCLUSION

We described experimentally and numerically the whole dynamics of deformations of soft
interfaces by light scattering density forces up to instability and the emergence of liquid fountains.
We first analyzed the dynamics of interface deformations below instability threshold and measured
the associated characteristic times. Using an empirical expression which fits well with the whole
set of experimental dynamics, we showed that deformations are initially induced by a nonlocal
effect which corresponds to the viscous stress exerted by the bulk flow triggered by the momentum
transfer of light in turbid liquids. In a second part, increasing the amplitude of the bulk flows driven
by light scattering, we described the interface behavior above its instability threshold at which liquid
microjets emerge. We characterized their radius evolution and demonstrated that it increases linearly
with the capillary number. By computing the hydrodynamic velocity field flowing through the jets,
we were able to determine the numerical fluid flow rate which increases as the cube of the capillary
number and compare it to the experimental ones.

All the results presented here bring important new insights in the area of light-actuation of
fluids in general and describe a unique way for triggering jets by light at low Reynolds number.
Even if our experiments were performed in near-critical fluids to control the medium turbidity and
then the amplitude of the scattering force, scattering forces effects can be generalized to any type
of nonabsorbing suspension. In Ref. [34] the authors already shown probable manifestations in
colloidal solutions and we already demonstrated scattering effects in so-called turbid L3 phases [21].
Consequently, scattering forces through momentum transfer from photons to turbid fluids proves to
be an efficient way for setting fluid suspensions in movement in the microworld without using any
sort of pump or mechanical parts and the present investigation quantify the capabilities of such a
contactless optical actuation.
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APPENDIX A: SCATTERING EFFECTS IN TURBID LIQUIDS

In this section we present the calculation of the scattering force due to the interaction of an
incident laser wave with a turbid fluid. Let us consider a dielectric and isotropic fluid, with a
mean dielectric constant 〈ε(r, t )〉 = εl = ε0εr , in which an incident plane wave is propagating
within the form E i(r, t ) = niE0exp[i(ki · r − ωit )], of polarization ni, of frequency ωi and of wave
vector ki = (ωi/c )̂ki. The fluid is assumed as turbid meaning that the local dielectric constant
includes a fluctuating part such as: ε(r, t ) = εl + δε(r, t ). Furthermore, the dielectric medium is
considered as nonabsorbing so that the interaction of the incident wave with the scatterers is
elastic and the number of scatterers is considered as sufficiently low to neglect multiple scattering
events.
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1. Expression of scattered field and intensity

We consider that the amplitude of the field scattered by the fluctuations δε is significantly weaker
than the incident field. The scattered field as well as the incident field satisfying the Maxwell
equations, one can obtain the expression of the scattered field in the Born approximation [35],

ES (R, t ) = E0

4πεl R
exp[i(k f R − ωit )]k f

[
k f × ni

∫
V

d3rexp[i(qr)]δε(r, t )

]
, (A1)

where R is the distance between the turbid medium and the detector, k f the wave vector in the
direction of R and q = ki − k. Considering geometric arguments, one can rewrite Eq. (A1) as

ES (R, t ) = k2
f E0

4πεlR
exp[i(k f R − ωit )]δε(q, t )(cosϕk̂ f − ni ), (A2)

where ϕ represents the angle between the polarization of the incident wave ni and the scattered
wave vector direction k̂ f . The scattering intensity is related to the autocorrelation function of the
scattering field ES , such as

〈E∗
S (R, 0) · ES (R, t〉 = k4

f |E0|2
16π2ε2

l R2
〈δε(q, 0)δε(q, t )〉exp(−iωit )|cosϕk̂ f − ni|2, (A3)

where 〈A〉 = limT →∞(1/T )
∫ T

0 A(t )dt . Thus, the spectral density of the scattered light measured by
a detector placed at a distance R is given by

I (q, ω f , R) ≡ 1

2π

∫ +∞

−∞
dtexp(iω f t )〈E∗

S (R, 0) · ES (R, t )〉. (A4)

After some developments, one can write the total scattering intensity as

I (q, ω f , R) =
[

I0k4
f sin2ϕ

16π2ε2
l R2

]
〈|δε(q)|2〉, (A5)

with I0 = |E0|2 the intensity of the incident wave and 〈|δε(q)|2〉 representing the scattering
properties of the turbid medium. After the evaluation of the term 〈|δε(q)|2〉 in Eq. (A5) in the
Ornstein-Zernike approximation [35] for quasicritical fluids, one comes up with

I (q, ω f , R) =
[

I0k4
f sin2ϕ

16π2ε2
l R2

]∣∣∣∣∂εl

∂ρ

∣∣∣∣2

β−1ρχT 〈N〉
⎡⎣ 1

1 + ( q
q0

)2

⎤⎦, (A6)

where β = 1/(kBT ), χT is the isotherm compressibility and q−1
0 = ξ the correlation length of

density fluctuations. As ρ = 〈N〉/V , with 〈N〉 the average number of scatterers in volume V of
the scattering medium, εl = ε0εr and k f = (2π

√
εr )/λ0 = (2πn)/λ0 (λ0 being the wavelength of

the incident beam in vacuum), we can write

I (q, ω f , R)

I0
= π2

λ4
0

(
ρ

∂εr

∂ρ

)2

kBT χT

⎡⎣ 1

1 + ( q
q0

)2

⎤⎦ V

R2
sin2ϕ. (A7)

In the Eq. (A7) we consider ρ which is not really a density but rather a number of scatterers
per unit volume. In the case of a binary mixture, the volume fraction of scatterers is thus simply
ρvi = (〈N〉vi )/V = 	 (vi is the volume of the scatterer i). Furthermore, by replacing the isotherm
compressibility by the osmotic compressibility (the pressure at work in a binary mixture being the
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osmotic pressure �), we obtain finally for the total scattering intensity in turbid media

I (q, ω f , R)

I0
= π2

λ4
0

(
∂εr

∂	

)2

kBT χT

⎡⎣ 1

1 + ( q
q0

)2

⎤⎦ V

R2
sin2ϕ. (A8)

2. Expression of the scattering force in turbid fluids

The fraction of scattered intensity in a binary mixture is given by Eq. (A8) with q =
|ki − k f | = 2kisin(θ/2) = (4π

√
εr/λ0)sin(θ/2) and (q/q0)2 = (qξ )2 = α(1 − cosθ ), where α =

2(2π
√

εrξ/λ0)2 (ξ being the correlation length of the density fluctuations of the medium). θ

represents the scattering angle whereas ϕ is the angle between the polarization of the incident wave
and the direction of the scattered wave vector. One can define as well ψ which reflects the angle
between the polarization of the incident wave and the scattering plane such as cosϕ = cosψsinθ .
Thus, Eq. (A8) can be written as

I (q, ω f , R)

I0
= AχT

[
1 − cos2ψsin2θ

1 + α(1 − cosθ )

]
V

R2
, (A9)

with A = (π2/λ4
0)[(∂εr/∂	)]2kBT .

When an incident photon carrying a momentum h̄ki is elastically scattered with an angle θ , its
momentum in the direction k̂i decreases by a quantity h̄ki(1 − cosθ ). This losses of momentum is
transferred to the medium giving birth to the scattering force allowing motion of the fluid. Thus,
the mean value of momentum lost per photon in the direction k̂i is given by the integration on the
surface of a sphere of radius R of the intensity lost in the direction k̂i by elastic scattering. This mean
value on the surface of radius R with the surface element R2dψsinθdθ = R2d� (with � the solid
angle) is

�p f = h̄k
∫ 2π

0
dψ

∫ +1

−1
R2d (cosθ )

I (q, ω f , R)

I0
(1 − cosθ ). (A10)

After integration and mathematical manipulation, we obtain

p f = h̄kAV χT πg(α), (A11)

with the function

g(α) = 1

α4

[
8

3
α3 + 2α2 + 2α − (2α2 + 2α + 1)ln(1 + 2α)

]
. (A12)

If N represents the number of photons per surface and time units from an incident laser wave, then
the scattering force per unit volume can be expressed as f scatt = N�p f /V , and it becomes

f scatt = Nhν

√
εr

c
AχT πg(α). (A13)

Replacing in Eq. (A13) A by its expression given above and taking into account that I0 = Nhν, we
finally obtain the expression of the scattering force per unit volume applied to a turbid binary liquid
mixture as

f scatt(r) = nI0(r)

c

(
π3

λ4
0

)(
∂εr

∂	

)2

kBT χT g(α), (A14)

with I0(r) is the intensity of the incident Gaussian wave with wavelength in vacuum λ0.
Equation (A14) is valid as far as (i) the Ornstein-Zernike approximation is verified and (ii) scattering
remains elastic and single.
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TABLE I. Summarizing table of the physical parameters and dimensionless numbers used in the experi-
ments and simulations. With ξ−

0 = 2 nm, χ−
0 = 1.344 10−6 Pa−1, σ0 = 5 10−5 N m−1, �ρ0 = 53.625 kg m−3,

�n0 = −0.0451, lc0 = 3.1 10−4 m, 	0 = 0.11, and �	0 = 0.275.

Setup properties Temperature-dependent variables
Dimensionless

numbers

Correlation length ξ− = ξ−
0

(
T −Tc

Tc

)−0.63

Critical temperature
Tc = 308 K

Susceptibility χ− = χ−
0 ( T −Tc

Tc
)−1.24 Viscous time

τ = ω0η2
σ

Investigated temperature
range �T ∈ [0.5, 1.9] K

Interfacial tension σ = σ0

(
T −Tc

Tc

)1.26
Viscous velocity
Uσ = σ

η2

Beam waist Density contrast �ρ = �ρ0

(
T −Tc

Tc

)0.325
Optical Bond number

ω0 ∈ [3, 9.8] μm Bo = ω0
lc

2

Optical wavelength Refraction index contrast �n = �n0

(
T −Tc

Tc

)0.325
Capillary number

λ0 = 532 nm Cai = 2ni�iP
πcσ exp−2

Laser power
P ∈ [346, 1920] m W

Capillary length lc =
√

σ(
ρ1−ρ2

)
g

= lc0

(
T −Tc

Tc

)0.47

Shear viscosity
ηi(T ) = [1.46 − 0.014(T − 237)](1 + 2.5	i ).10−3

Volume fraction 	i=1,2 = 	0 ± �	0/2[(T − Tc )/Tc]0.325

Turbidity �i = (
π3

λ4
0

)(
∂εri
∂	i

)2
kBT χT f (α)

APPENDIX B: TABLE SUMMARIZING PHYSICAL PROPERTIES
AND DIMENSIONLESS NUMBERS

Table I summarizes all physical quantities used in the study. They are ordered in three category:
setup properties which characterize the phase-separated near-critical fluid system and the laser
beam; temperature-dependent variables which are related to the critical nature of the fluid system
and can be found in Ref. [19]; and dimensionless number which are made from both previous
categories and are used to characterize the response of the system to an excitation.
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