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On-off switching of vortex shedding and vortex-induced vibration
in crossflow past a circular cylinder by locking or releasing

a rotational nonlinear energy sink

Antoine B. Blanchard
Department of Mechanical Engineering, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, USA

Arne J. Pearlstein *

Department of Mechanical Science and Engineering, University of Illinois at Urbana–Champaign,
Urbana, Illinois 61801, USA

(Received 31 August 2019; accepted 28 January 2020; published 20 February 2020)

We show how fully developed vortex-induced vibration (VIV) of a linearly sprung
circular cylinder can be completely suppressed, i.e., driven to zero asymptotically in time,
by release of a rotational nonlinear energy sink, consisting of a mass rotating about the axis
of the cylinder and a dissipative element damping the rotational motion of the mass. (The
nonlinear energy sink is located either inside the cylinder or beyond the spanwise extent
of the flow, with which it thus interacts only through inertial coupling to the rectilinear
motion of the cylinder.) We also show that VIV can be turned on by locking up the rotating
mass. Once VIV is suppressed or turned on, no further action or energy input is required.
Thus, this approach provides a true switch. Applications for flow control and for turning
mixing on or off are discussed.
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I. INTRODUCTION

For a linearly sprung circular cylinder in crossflow, we have recently shown that introduction
of a rotational nonlinear energy sink (NES) consisting of (a) a mass rotatable at fixed radius about
the axis of the cylinder and (b) a dissipative element that damps rotational motion of that mass can
have profound effects on the flow and cylinder vibration [1,2]. The NES either is inside the cylinder
or lies beyond the spanwise extent of the flow, and so has no direct contact with the flow, exerting
its influence only through its inertial coupling to the rectilinear rigid-body motion of the cylinder.
Among the results found by Tumkur et al. [1] and Blanchard et al. [2] are (a) partial stabilization
of the wake during a significant fraction of a slowly decaying chaotic cycle, during which a well-
defined vortex street gives way to an elongated wake with much less unsteadiness and much lower
cylinder vibration amplitude, and (b) coexistence of multiple long-time solutions (including multiple
unsteady two-dimensional long-time solutions) for a wide range of combinations of the Reynolds
number and a dimensionless spring constant.

An important question raised by that work is whether vortex shedding and vortex-induced
vibration (VIV) can be completely suppressed (asymptotically driven to and maintained at zero) in
a controllable way. That would make it possible to switch off (and possibly switch on) the effects of
shedding and vibration at will, as might be desired in mixing applications in low-Reynolds-number
flows [3,4].
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FIG. 1. Linearly sprung cylinder in crossflow with rotational NES.

In what follows, we show, at relatively low Reynolds numbers, that it is indeed possible
to completely suppress shedding and vibration by means of a rotational NES. Specifically, by
switching the rotatable mass from locked (so that it translates rectilinearly with the cylinder, but
cannot rotate) to unlocked (so that it is free to rotate about the axis of the sprung cylinder), one can
transition from a state of time-periodic vortex shedding and cylinder vibration to a state in which
the flow is steady and the cylinder is motionless. Similarly, shedding and vibration can be turned on
by locking the NES mass, which leads to a transition from steady flow and no cylinder vibration to
a situation characterized by VIV and enhanced wake unsteadiness.

The remainder of the paper is organized as follows. We briefly present the formulation and
computational approach in Sec. II, followed by the results in Sec. III, a discussion in Sec. IV, and
conclusions in Sec. V.

II. FORMULATION AND APPROACH

A. Physical model

The physical problem is identical to that considered by Tumkur et al. [1] and Blanchard et al.
[2] and is shown schematically in Fig. 1. A Newtonian fluid with constant density ρ f and kinematic
viscosity ν flows past a linearly sprung circular cylinder with diameter D. The cylinder is allowed to
move transversely with respect to the mean flow, restrained by a linear spring with spring constant
Kcyl per unit length of span. The NES consists of two components. First, an attached mass is allowed
to rotate about the cylinder axis. Second, a viscous damper retards the rotation of the attached
mass with a torque linearly proportional to the latter’s angular velocity (with coefficient CNES). As
discussed previously [1,2], any distributed mass is dynamically equivalent to a point or line mass
a distance r0 from the axis, with the ratio of the distributed rotating mass to the concentrated mass
depending on the radius of gyration of the distributed mass and the radial location of its center of
mass.

The dimensionless equations are identical to those considered previously [1,2] and are given by

∂v
∂τ

+ v · ∇v = −∇p + 1

Re
∇2v, (1a)

∇ · v = 0, (1b)

d2y1

dτ 2
+

[
2π

g∗
n

Re

]2

y1 = εpr̄0
d

dτ

[
dθ

dτ
sin θ

]
+ 2CL

πm∗ , (2a)
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dτ 2
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where velocity, time, and length (including cylinder displacement) are scaled with the cylinder
diameter D and freestream velocity U , the Reynolds number is defined by Re = UD/ν, θ is
the angular position of the NES mass, and CL is the lift coefficient. We take θ = 0 to coincide
with the positive y axis. As earlier [1,2], we choose the other dimensionless parameters to be
independent of U . They are a density ratio m∗ = ρb/ρ f , a dimensionless natural frequency g∗

n =
D2

√
Kcyl/(Mcyl + MNES)/2πν of the linear spring (e.g., in vacuo), the ratio εp of the NES mass per

unit length to the sum of the total mass per unit length of the cylinder (the nonrotatable part and the
attached rotatable mass), a dimensionless radius r̄0 = r0/D, and a dimensionless damping parameter
ζ = CNESD2/νr2

0 MNES. Here the effective density of the cylinder is ρb = (Mcyl + MNES)/(πD2/4),
where Mcyl and MNES are the masses of the nonrotatable part of the cylinder and the NES,
respectively, in each case divided by the spanwise extent of the flow. We note that placing the
NES beyond the span of the flow relaxes the constraints on NES design discussed by Tumkur et al.
[1] and that placing some of the nonrotatable mass beyond the span allows high values of m∗ in
liquids without resorting to tungsten or other very dense metals. Compared to a more common
nondimensionalization using U ∗ = U

√
(Mcyl + MNES)/Kcyl/D = Re/2πg∗

n, variation of U in our
approach affects only Re, rather than Re and U ∗.

B. Computational approach

The computational method closely follows that in our earlier work [1,2]. We use the open-source
Navier-Stokes solver Nek5000 [5] on a computational domain extending 24D in the cross-stream
direction and 48D in the streamwise direction, with the nondisplaced cylinder center located 12D
away from the inlet boundary and equidistantly from the sidewalls. In our production runs, the
mesh consists of ne = 3614 spectral elements with polynomial order N = 5 and the time-step size
is 
τ = 10−3. The domain size, mesh topology, and time-step size are identical to those used by
Tumkur et al. [1] and similar to those used by Blanchard et al. [2] and ensure adequate convergence
of the results. As in our previous work, the time-step size used is sufficiently small that no fluid-
structure interaction iteration is necessary.

C. Fully developed standard VIV

When the NES is locked, VIV occurs as if the cylinder is a single rigid body, and we refer to the
long-time time-periodic solution as fully developed standard VIV. We compute that flow using an
inlet transient asymmetric about y = 0,

vin(y, τ ; α) = ex

{
[1 + αe−(y−1)2/2]

[
1 − τ

25

] + τ
25 for 0 < τ < 25

1 for τ � 25,
(3)

along with a compatible initial condition v(x, y, 0) = vin(y, 0; α). The inlet transient becomes a
uniform steady inlet condition in finite time (at τ = 25), thus allowing us to excite VIV (with the
degree of asymmetry of the imposed disturbance being governed by α). The uniform inlet flow to
which the transient provides a smooth transition in finite time is consistent with VIV solutions and
with a steady, symmetric, motionless-cylinder (SSMC) solution

vx(x, y, τ ) = vx(x,−y, τ ), (4a)

vy(x, y, τ ) = −vy(x,−y, τ ), (4b)

p(x, y, τ ) = p(x,−y, τ ), (4c)

where the vorticity distribution is antisymmetric about y = 0. Compared to imposing an initial
condition at τ = 0 in the domain and a uniform inlet condition thereafter, our approach has the
advantage that there is no incompatibility at (x, τ ) = (xin, 0) where xin is the location of the
upstream boundary of the computational domain. Our approach can be thought of as a variation on
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FIG. 2. Effect of a rotational NES (with ζ = 4/3 and r̄0 = 0.3) on the stability of the steady, symmetric,
motionless-cylinder solution for εp sin2 θs = 0 (green open circles), εp sin2 θs = 0.15 (orange open squares),
εp sin2 θs = 0.3 (purple open triangles), and εp sin2 θs = 0.6 (pink open diamonds). The horizontal line at
Re = 46.05 is the critical value for the fixed cylinder.

the use of persistent inlet excitation [6,7], but with a finite duration, since persistent inlet excitation
would not allow an SSMC solution.

In what follows, we take m∗ = 10. Except where otherwise stated, ζ = 4/3 and r̄0 = 0.3.

III. RESULTS

A. Stability boundaries

To identify conditions under which NES release might completely suppress cylinder vibration
and vortex shedding, we first determine conditions under which the SSMC solution is stable with
an NES and unstable without one.

For fixed values of m∗, ζ , and r̄0, Tumkur et al. [1] and Blanchard et al. [2] used the approach
of Zielinska and Wesfreid [8] to establish a stability boundary in the Re-1/g∗

n plane for NES-less
and NES-equipped linearly sprung cylinders, with the base state an SSMC solution. For the NES-
equipped case, Tumkur et al. [1] showed analytically that the linear stability of an SSMC solution
depends only on Re, 1/g∗

n, m∗, ζ , and a combined parameter εp sin2 θs (where θs is the steady NES
angular position), whereas the full nonlinear dynamical response depends on Re, 1/g∗

n, m∗, ζ , εp,
r̄0, and the initial value of θ .

Figure 2 shows four stability boundaries corresponding to εp sin2 θs = 0, 0.15, 0.3, and 0.6,
computed using the inlet transient (3) with α = 10−4. The combined parameter εp sin2 θs was varied
by setting θs = π/2 and changing εp accordingly. As discussed previously [1,2], the base flow was
judged to be linearly stable only if the long-time solution computed using the full nonlinear Eqs. (1)
and (2) was an SSMC solution with the final value of θ tending to its initial value as α → 0. On the
other hand, situations in which the long-time solution was unsteady or was an SSMC solution with
θ differing more than infinitesimally from its initial value were deemed linearly unstable.

For each value of εp sin2 θs, the stability boundary divides the Re-1/g∗
n plane into two parts. On

the side that includes Re = 0, the SSMC solution is stable, while on the other side it is not. Figure 2
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shows that the stability boundaries for the NES-less and NES-equipped cases are qualitatively
similar, being single valued for sufficiently large and small values of 1/g∗

n and triple valued in
an intermediate range of 1/g∗

n. As εp sin2 θs increases, the stability boundary deviates more strongly
from that for the NES-less case, in what appears to be a continuous deformation of the NES-less
boundary. The double-Hopf point (denoted by B for the NES-less case in Fig. 2) shifts to larger
values of 1/g∗

n as εp sin2 θs increases, with (1/g∗
n)B assuming values of 0.119, 0.128, 0.140, and

0.172 for εp sin2 θs = 0, 0.15, 0.3, and 0.6, respectively. Figure 2 also shows that for increasing
values of εp sin2 θs, the right turning point C moves to larger values of Re and 1/g∗

n, while the left
turning point D is displaced to larger values of 1/g∗

n and smaller Re. For sufficiently small 1/g∗
n,

the stability boundaries for the NES-less and NES-equipped cases coincide with the fixed-cylinder
stability boundary for all values of εp sin2 θs considered. In the limit 1/g∗

n → ∞, the upper branch
of the stability boundaries (denoted by D-E in the NES-less case) appears to slowly approach the
fixed-cylinder stability boundary as εp sin2 θs increases.

For each nonzero value of εp sin2 θs, there is a portion of the Re-1/g∗
n plane in which the SSMC

solution is linearly stable in the NES-equipped case and is unstable with no NES. Figure 2 shows
that this NES-stabilizable portion of the Re-1/g∗

n plane grows with increasing εp sin2 θs and that a
large part of the region below Re = 46.05 (the stability boundary for a fixed cylinder) in which the
NES-less case is unstable is rendered stable in the NES-equipped case for εp sin2 θs = 0.6. It is in
the NES-stabilizable portion of the Re-1/g∗

n plane where we investigate whether cylinder vibration
and vortex shedding can be completely suppressed by release of an NES or triggered by locking the
NES.

B. Complete suppression of fully developed vortex shedding and VIV

We begin by computing the fully developed standard VIV solution with the NES mass locked in
a fixed position, from which it will later be released. (In all that follows, the NES mass is released
with zero angular velocity.) For Re = 24, 1/g∗

n = 0.3, and εp = 0.3 (in the NES-stabilizable region),
Movie 1 [9] and the first 1500 convective time units of Figs. 3(a)–3(e) show that when the NES is
released from θrelease = π/2 at τ = 696.46 (well into the fully developed standard VIV regime),
there is a rather quick transition to an SSMC solution. [Figures S1(a)–S1(e) [9] show the first
1500 convective time units of each time series in more detail. The remainder of the time series
in Figs. 3(a)–3(e), i.e., for 1500 � τ � 4000, is discussed in Sec. III C.]

The physical mechanism is as follows. Immediately after the mass is released, rotation begins,
with inertial coupling to the rectilinear motion of the cylinder leading to energy transfer from the
cylinder to the rotating mass. In less than 50 convective time units, the NES mass rapidly swings
through several multiples of 2π , dissipating a significant amount of kinetic energy from the cylinder
motion, whose amplitude is reduced by nearly 85% between τ = 696.46 and 741.46 [Fig. 3(a)].
The NES continues to bleed off kinetic energy from the cylinder motion as the cylinder becomes
asymptotically motionless. As the rectilinear motion ceases, the NES mass settles at a steady
angular displacement of about θs = 9.25π [Fig. 3(b)], corresponding to an SSMC solution with
εp sin2 θs ≈ 0.230. Figure 2 shows that for Re = 24 and 1/g∗

n = 0.3, the SSMC solution is linearly
stable for εp sin2 θs > 0.15, so this final state is a finite distance from the stability boundary.

It is useful to consider how the capability to completely suppress cylinder vibration and vortex
shedding depends on the phase of cylinder vibration (φrelease) at which NES release occurs. (Here
φrelease = 0 and φrelease = π are the phases at which y1 = −A and y1 = A, respectively, where A
is the amplitude of cylinder vibration.) For θrelease = (2n + 1)π/2 (n an integer), it is sufficient to
investigate values of φrelease in the range [0, π ) because of symmetry. (Details are shown in the
Supplemental Material [9].) For θrelease �= (2n + 1)π/2, one must consider the full range [0, 2π ) of
φrelease.

Table I shows results for 35 values of 0 � φrelease < π , with the largest gap between values being
0.05. For the values investigated, complete suppression was found in three subranges. (No attempt
was made to systematically delineate the subranges of φrelease in which complete suppression can
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FIG. 3. Time series for Re = 24 and 1/g∗
n = 0.3, where a rotational NES with εp = 0.3 is released

from θrelease = π/2 at τ = 696.46 (corresponding to φrelease = 0.113π ) and locked at τ = 1500: (a) cylinder
displacement, (b) NES angular displacement, (c) NES angular velocity, (d) lift coefficient, and (e) drag
coefficient.

be achieved and so there might be more.) In each such subrange, εp sin2 θs exceeds 0.116 ± 0.001,
the critical value that we compute for Re = 24 and 1/g∗

n = 0.3. We can interpret the release phase
φrelease as specifying an initial condition (with velocity and pressure fields, and a cylinder position
and velocity) for the evolution of the NES-equipped case beginning at the release time. In this
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TABLE I. For Re = 24 and 1/g∗
n = 0.3, performance of a rotational NES (with εp = 0.3) released from

θrelease = π/2 as a function of the phase of cylinder motion at which release occurs (φrelease).

τrelease φrelease/π Long-time solution εp sin2 θs τ0.01 τnl

696.016 0.000 quasiperiodic
696.212 0.050 quasiperiodic
696.408 0.100 quasiperiodic
696.456 0.112 SSMC 0.271 218.11 111.54
696.460 0.113 SSMC 0.230 249.03 125.54
696.486 0.120 quasiperiodic
696.508 0.125 quasiperiodic
696.604 0.150 quasiperiodic
696.802 0.200 quasiperiodic
696.998 0.250 quasiperiodic
697.194 0.300 quasiperiodic
697.390 0.350 quasiperiodic
697.442 0.363 quasiperiodic
697.490 0.375 quasiperiodic
697.588 0.400 SSMC 0.223 230.17 100.41
697.784 0.450 SSMC 0.275 154.09 88.22
697.948 0.492 SSMC 0.233 146.92 102.06
697.980 0.500 SSMC 0.232 146.89 102.02
698.176 0.550 SSMC 0.273 153.71 87.82
698.374 0.600 SSMC 0.265 191.44 103.63
698.422 0.612 SSMC 0.169 298.19 105.58
698.472 0.625 quasiperiodic
698.570 0.650 quasiperiodic
698.598 0.657 quasiperiodic
698.726 0.690 quasiperiodic
698.766 0.700 SSMC 0.200 229.48 111.23
698.806 0.710 SSMC 0.298 184.04 89.19
698.844 0.720 quasiperiodic
698.962 0.750 quasiperiodic
699.160 0.800 quasiperiodic
699.356 0.850 quasiperiodic
699.454 0.875 quasiperiodic
699.552 0.900 quasiperiodic
699.600 0.912 quasiperiodic
699.748 0.950 quasiperiodic

one-parameter subspace of the initial condition space, Table I suggests that the subranges in which
complete suppression occurs are continuous, rather than fractal or riddled [10].

For values of φrelease for which suppression is not achieved, release of the NES is immediately
followed by a large reduction in rectilinear amplitude, followed by an interval of slow growth. This
eventually leads to a quasiperiodic long-time solution with rms displacement of 0.1045 ± 0.0005,
slightly less than that for NES-less fully developed standard VIV (0.1934) and with significant
rotation of the NES mass. [See Fig. 4 for 0 � τ � 2000, Movie 2 [9], and Figs. S2(a)–S2(e) and
S3 [9] for release from θrelease = π/2 and at τ = 698.57, which corresponds to φrelease = 0.65π .]
These solutions (for 0 � τ � 2000) correspond to the quasiperiodic solutions found by Blanchard
et al. [2] for Re = 24 and 1/g∗

n = 0.3 using a rotational NES that is unlocked beginning at τ = 0.
To characterize performance in cases for which cylinder vibration is completely suppressed, we

define τ0.01 as the elapsed time between release of the NES mass and the last time that the maximum
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(a)

(b)

(c)

(d)

(e)

FIG. 4. Time series for Re = 24 and 1/g∗
n = 0.3, where a rotational NES with εp = 0.3 is released

from θrelease = π/2 at τ = 698.57 (corresponding to φrelease = 0.65π ) and locked at τ = 2000: (a) cylinder
displacement, (b) NES angular displacement, (c) NES angular velocity, (d) lift coefficient, and (e) drag
coefficient.

cylinder excursion exceeds 1% of the prerelease amplitude. (We do not use an exponential decay rate
because the process is initially significantly nonlinear.) Table I shows that when suppression occurs,
τ0.01 depends strongly on the phase of the cylinder motion at which the NES is released, with a
more than twofold difference between the smallest (146.89) and largest (298.19) values of τ0.01.
Dispersion in τ0.01 values is due to failure of this measure to account for the regime transition that
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FIG. 5. Time series for maxima of cylinder displacement for Re = 24, 1/g∗
n = 0.3, εp = 0.3, θrelease = π/2,

and φrelease = 0.112π (red circles), φrelease = 0.5π (green squares), and φrelease = 0.612π (blue triangles).
Each symbol corresponds to a maximum of y1. The lines connecting consecutive symbols merely facilitate
visualization and should not be thought of as the result of interpolation between data points.

occurs in the suppression process. Figure 5 shows that release of the NES is followed by an interval
during which the amplitude of y1 decays nonexponentially, with strongly nonlinear dynamics. After
just a few time units, oscillations in y1 have become so small that nonlinear effects are no longer
significant and the dynamics are approximately linear. From this point forward, the decay in y1 is
exponential (Fig. 5), with decay rate depending significantly on εp sin2 θs.

This transition from nonexponential to exponential decay calls for another measure of perfor-
mance. We define τnl as the elapsed time between release of the NES mass and the beginning
of exponential decay, determined as follows. Over each of a series of overlapping time intervals
[τi, τi + 60], we fit the model

yfit (τ ) = Ai exp[−ai(τ − τi )] (5)

to the local maxima of y1(τ ), with τi ranging from 600 (nearly 100 time units before NES release)
to 1200 (well into the asymptotic regime) in increments of 2. In intervals during which decay of y1

is clearly exponential, the interval contains about ten maxima of y1. For each interval, we assess the
goodness of fit (5) by computing the residual measure ‖yfit (τk ) − y1(τk )‖2/A, where τk corresponds
to a local maximum of y1 in the interval. The residual should be small in intervals of exponential
decay and large in intervals of strongly nonlinear behavior. We take τnl to be the largest value of
τi for which the residual exceeds 0.05. With this measure, the NES performance is based solely
on how quickly the NES suppresses nonlinear effects. In contrast to τ0.01, the quantity τnl is not
affected by the exponential rate of approach to the SSMC solution, which depends on Re, 1/g∗

n,
and εp sin2 θs. Table I shows that there is less variability in τnl than in τ0.01, suggesting that when
suppression occurs, nonlinear reduction of VIV amplitude by energy transfer to the rotating mass,
followed by dissipation, is approximately independent of φrelease.

The combination of density ratio (m∗ = 10) and NES parameters (ζ = 4/3, r̄0 = 0.3, and
εp sin2 θrelease = 0.3) considered above is one for which we have already determined a stability
boundary (Fig. 2). However, there is nothing unique about these values or the values of 1/g∗

n (0.3)
and Re (24) considered. Indeed, the approach should work for any combination of m∗, ζ , r̄0, εp, and
1/g∗

n for which there is a range of Re between the lower branches of the stability boundaries for
the NES-less case (εp = 0, corresponding to the green open circles in Fig. 2) and an NES-equipped
case (εp sin2 θrelease > 0). This is supported by the results shown in Figs. S4(a)–S4(e) [9] (m∗ = 10,
ζ = 1, r̄0 = 0.25, εp = 0.4, and θrelease = π/2), a case for which we have no stability boundary and
where complete suppression is achieved with 1/g∗

n = 0.2 and Re = 35, using φrelease = π/4. With
the indicated choices of m∗, ζ , r̄0, εp, and 1/g∗

n, only three trial simulations were required to identify
a Reynolds number and release phase leading to complete suppression.
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C. Switching on vortex shedding and VIV

It can also be shown that for any combination of Re and 1/g∗
n in the NES-stabilizable range,

cylinder vibration and vortex shedding can be switched on after an SSMC solution has been reached.
This is done by locking the NES rotating mass, which is tantamount to turning off inertial coupling
between NES rotational motion and cylinder motion in (2). (When the NES mass is locked, its
angular position is constant and its angular velocity is zero for all times.)

For Re = 24, 1/g∗
n = 0.3, and εp = 0.3 (the same combination of parameters for which complete

suppression was demonstrated in Sec. III B), Fig. 3 shows that release of the NES from θrelease = π/2
at τ = 696.46 leads to complete VIV suppression and ultimately to an SSMC state, as discussed in
Sec. III B. By τ = 1500, the magnitudes of the cylinder displacement, NES angular velocity, and lift
coefficient have decreased to below 10−5, 10−5, and 10−4, respectively. At that time, the NES mass
is locked and remains locked thereafter. Locking the NES mass has the effect of severing inertial
coupling between NES rotation and cylinder motion, as for the εp = 0 case. As the combination
(Re, 1/g∗

n) = (24, 0.3) lies on the unstable side of the NES-less stability boundary (Fig. 2), a linear
instability sets in and the trajectory at long times settles into a fully developed standard VIV solution
(Fig. 3). This shows that in the NES-stabilizable part of the Re-1/g∗

n plane, where the SSMC solution
is unstable for the NES-less case, it is possible to switch on VIV at will by locking the NES so that
it has no dynamical effect on the cylinder motion and the flow.

IV. DISCUSSION

While it is clear that linear stability of the SSMC solution depends on εp sin2 θs, but not on r̄0 or
independently on εp or θs, it is not clear how suppression of cylinder vibration and vortex shedding
depends on r̄0, εp, or θrelease. Even if one were to perform a Floquet analysis of the fully developed
(time-periodic) standard VIV solution, that would reveal only information about its linear stability
and not about the long-term solution to which it will evolve if unstable. The dependence of VIV
suppression on these parameters and φrelease can be investigated computationally, with expectations
about the experimental realizability of the long-time solutions being similar to those discussed by
Blanchard et al. [2].

From a practical standpoint, it is relatively simple to release the rotating mass at a prescribed time
or even at a prescribed phase in the cylinder motion, either using an electromagnet or mechanically.
On the other hand, locking the rotating mass instantaneously (as we have in Sec. III C) is an
idealization, because its angular velocity cannot be made zero instantaneously. The rotating mass
can be brought to rest by a frictional torque larger than the term on the right-hand side of Eq. (2b), by
a magnetic torque, or by mechanical stops that pop up (inside the cylinder or beyond the spanwise
extent of the flow) at azimuthal positions bracketing the current angular position of the rotating
mass, which they then approach from each side. Fortunately, in the locked case (equivalent to an
NES-less cylinder), the fully developed standard VIV solution appears to be globally attracting in
this part of the parameter space [11], so there is good reason to believe that switching on cylinder
vibration by locking the rotating mass should not depend on how the latter is decelerated.

If in an experiment or application it is not possible to sense the phase of cylinder vibration and
to time the release of the rotatable mass accordingly, then one can pursue the following strategy.
First, release the rotatable mass at some arbitrary phase. If suppression is not achieved within a
reasonable time, judgeable by, say, τnl, then the mass can be relocked (at τ = 2000 in Fig. 4), with
the expectation that the resulting quasiperiodic (or temporally more complex [2]) flow will revert
to fully developed standard VIV, as shown in Fig. 4 for 2000 � τ � 3000. The release can then be
repeated, and if suppression is not achieved, the rotating mass can be locked again and the process
repeated until successful. Provided at least one subrange of φrelease for which complete suppression
occurs has nonzero width, this approach will ultimately succeed.

The ability to release or lock a rotatable mass (e.g., using an electromagnet) provides a way to
switch off or switch on flow-induced vibration in a crossflow at low Re. As such, it enhances the
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potential to use flow-induced vibration to promote thermal mixing, or chemical mixing and reaction
[3,4]. We note that once the rotatable mass is released or locked, no further actuation or energy input
is required. Thus, this approach provides a true switch.

While the complete suppression described above is possible only between the lower branches
of the stability boundaries for an NES-equipped and NES-less cylinder (and hence below the fixed-
cylinder stability boundary just below Re = 50), it is clear from our earlier work [1] that a rotational
NES can significantly reduce the amplitude of VIV at higher Re. Because turning on or off the
rotational NES does not move a stability boundary across the operating point in the Re-1/g∗

n plane,
it is not clear whether there will be any effect of the release phase or locking phase, as there is at
lower Re.

From a switching standpoint, the clear advantage of using a rotational NES rather than direct
proportional damping of the rectilinear motion of the vibrating cylinder is as follows. Direct
proportional damping is frequently taken to be an approximate model of the dissipative motion
of an imperfectly elastic spring or other restraint. It is clear that dissipation in the restraint cannot
easily be used as a switch, because that would require one to turn the inelasticity on or off at will.
Alternatively, one could imagine a perfectly elastic restraint, with the damping being accomplished
by dissipative motion of an element connected (separately from the restraint) to the cylinder. In
principle, this can be done using, say, a viscoelastic attachment or a rigid attachment whose motion
dissipates energy by means of dry friction, motion through a viscous fluid, or piezoelectrically.
However, any of these approaches is mechanically more complex than the rotational NES discussed
above.

V. CONCLUSION

The stability boundaries that we have computed previously [1,2] and in Sec. III A show that it is
possible for a motionless linearly sprung circular cylinder in crossflow at Re < 50 to be stabilized
or destabilized by a rotational nonlinear energy sink consisting of an attached mass whose rotation
about the cylinder axis is linearly damped. For combinations of Re and 1/g∗

n in this NES-stabilizable
range (between the lower branches of the stability boundaries of the NES-less and NES-equipped
cases), complete suppression of fully developed VIV can be achieved by releasing the rotatable
mass of the NES from an initially locked position, and cylinder vibration and vortex shedding can
be turned on by locking the rotatable mass so that it has no dynamical effect on the cylinder motion
and the flow. This provides a mechanism to switch on and off the effects of shedding, vibration, and
unsteadiness at will.
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