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Directional motion of vibrated sessile drops: A quantitative study
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The directional motion of sessile drops can be induced by slanted mechanical vibrations
of the substrate, which induce drop deformations combining both axisymmetric and
antisymmetric modes. In this paper, we establish quantitative trends from experiments
conducted within a large range of parameters, namely, the amplitude A and frequency f of
the forcing, the liquid viscosity η, and the angle between the substrate and the forcing axis
α. These experiments are carried out on weak-pinning substrates. For most parameters
sets, the averaged velocity 〈v〉 grows linearly with A. We extract the mobility, defined
as s = �〈v〉

�A . It is found that s can show a sharp maximal value close to the resonance
frequency of the first axisymmetric mode fp. The value of s tends to be almost independent
on η below 50 cSt, while s decreases significantly for higher η. Also, it is found that for
peculiar sets of parameters, particularly with f far enough from fp, the drop moves in the
reverse direction. Finally, we draw a relationship between 〈v〉 and the averaged values of
the dynamical contact angles at both sides of the drop over one period of oscillation.

DOI: 10.1103/PhysRevFluids.5.023601

I. INTRODUCTION

The ability to put liquid in motion on a substrate is a challenge in many practical applications,
like surface cleaning or homogeneous liquid dispersal. Such handling of small liquid samples is
crucial for the development of laboratory-on-chip platforms for chemical reactions or biological
analysis [1]. However, droplet mobility is hindered by pinning forces at the drop contact-line, which
originates from physical and chemical imperfections of the substrate, this issue being especially
dramatic when the volume of the drop is small enough so that this pinning overcomes most
motile forces [2,3]. This microscopic-originating retention is in practice often quantified by the
macroscopic apparent receding and advancing angles θr and θa, which delimit the range for static
equilibrium. In the particular case of drops of colloidal suspensions, pinning at contact-line leads
to the (often undesired) formation of “coffee-stains” during evaporation [4]. These limitations can
be tackled with various means, like the use of superhydrophobic surfaces [5,6], electrowetting [7],
a combination of both [8], or Leidenfrost drops on ratcheted surfaces [9,10].

Several studies have evidenced that mechanical vibrations of the substrate can induce drop
motion [11–19], as well as particle resuspension [20]. These phenomena have generic features, in
common with other related situations: the generation of surface waves on thin films by external
vibrations [21], the nonharmonic response of drop subjected to MHz ultrasonic surface waves
inducing both their motion and low-frequency oscillations [22], or the crawling motion of sessile
droplets on solid surfaces via acoustic radiation pressure [23].
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FIG. 1. Successive deformations of a droplet V = 10 μl of a glycerin/water solution of η = 31.5 cSt,
subjected to a substrate vibration of f = 50 Hz and A = 0.67 mm along a direction of α = 60.6◦ with respect to
the horizontal. The phase φ = π

2 corresponds to the highest vertical and most leftward position of the substrate,
while φ = 0 and π correspond to the central position and maximal platform velocity. The drop experiences a
net displacement of �x along the x axis, over one period.

Figure 1 shows the shapes and positions of a drop on a horizontal substrate subjected to slanted
unbiased vibrations. Pictures are taken at successive phases from 0 to 7π/2. As the drop responds
harmonically, the successive shapes of its free-surface are identical with each other at the same
phase (mod. [2π ]) of the forcing. A net motion �x appears over one period, from right to left on
Fig. 1. During one period, the drop free-surface experiences strong and asymmetric deformations,
which induce unbalanced Young forces at contact-lines [13]. The left and right positions of the
contact-line show back-and-forth motion, often of much faster velocity than the averaged velocity
of the rectified motion of the droplet.

The aim of the present study is to seek for constitutive laws to enable a better understanding
of the underlying mechanisms. To do so, we quantify the influence of the main control parameters
and of physical quantities on the droplet response to vibrations and its resulting net motion. We
present extensive results within a large span of frequency, amplitude of vibrations, angle between the
substrate and axis of vibration, drop volume and liquid viscosity. We extract the amplitude threshold
for drop motion, and the drop mobility quantified by the relationship between the net averaged
velocity 〈v〉 and the amplitude or acceleration of the forcing. Importantly, we carry out experiments
with low friction substrate [small contact angle hysteresis (CAH)], which lowers the acceleration
threshold to observe droplet’s motion, together with facilitating quantitative comparison with
existing models.

One of the surprising features of the directional motion is that it does not require bias in the
vibration nor anisotropy in surface texture or chemistry. Previous studies [13,14] showed that if the
vibration is slanted with respect to the substrate, the drop can respond with both symmetrical and
asymmetrical modes, and underlined the importance of the coupling between both modes. This was
further confirmed by Noblin et al. [15], who operated with two decoupled vibrating benches and
emphasized the role of phase shift between the symmetric and asymmetric forcing. Very recently,
Sartori et al. [19] showed a strong correlation between the direction and velocity of motion, and the
phase-shift between the forcing vibration and the oscillations of the basal radius.

Therefore, both the asymmetric “rocking” and symmetric “pumping” modes are required to
produce a directional motion. Indeed, while the rocking mode allows for the dynamical contact angle
to reach values beyond the range of CAH [θr, θa], the symmetric mode prescribes a modulation of
the height and base radius, as shown on Fig. 1, where the drop is successively flattened and pushed
rightward, then stretched and pushed leftward. It turns out that a stretched drop is more compliant
to lateral forcing than a flattened one [13], which enhances the asymmetry and enables a nonzero
averaged lateral force on the drop. The resulting motion over one period is to the left. If submitted to
the same forcing, then a pendant drop down the substrate would move to the other direction [13,14].
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To explain and quantitatively predict this directional motion, theoretical and numerical studies
were proposed, mostly in situations of vertically vibrated drops climbing up inclines: Benilov and
coauthors first considered the case of a two-dimensional (2D) flat viscous drop [24] responding
quasistatically to periodic forcing, then that of flat inviscid drops [25], and finally of thick drops
(static contact-angle θS � 0) [26]. The main conclusions of the studies were that: (1) some inertia is
required to obtain realistic (i.e., comparable to experiments) acceleration threshold for climbing [25]
and (2) θS plays a crucial role in the climbing threshold, generally a large θS favors climbing for
low enough frequency, whereas it penalizes climbing for high enough frequency. At odds with the
aforementioned approaches, John and Thiele [27] addressed the problem of a flat climbing drop
using lubrication approximation, especially in the quasistatic limit (i.e., low frequency: the drop
responds in phase with the vibrations). Their model could capture realistic orders of magnitude
for climbing. In a very recent paper, Bradshaw and Billingham [28] investigated the situation of
thick inviscid drops, where the effect of viscosity was embedded in the relationship between the
dynamical contact-angle and the contact-line velocity, also including a pinning force due to CAH.
Following a previous study [29] in the situation of thin tridimensional (3D) drops, the far-reaching
results in Ref. [28] showed realistic trends, especially concerning the nontrivial influence of the
forcing frequency and the CAH. While all of these studies were carried out with bidimensional
(2D) drops, Ding et al. [30] considered 3D drops with full Navier-Stokes equations and diffuse
interface model to account for free-surface and contact-line dynamics. They obtained shapes with
unprecedented realism and quantitative trends that suggested the importance of the nonlinear
response of the wetted area over one period.

Also recently, Borcia et al. [17] and Sartori et al. [18] addressed the vibration-induced motion
of two-dimensional sessile drops with phase-field numerical methods, with comparisons to exper-
iments. Although CAH could not be included within these models, they could capture realistic
behavior, especially in the influence of viscosity, wetting-conditions [17], or even the occurrence of
parametric forcing with a drop responding at half the forcing frequency [18].

Based on the compared analyses of the aforementioned (sometimes contradictory) approaches,
the need for exhaustive and quantitative experimental results to validate the aforementioned models,
is crucial. Especially, two main issues remain and our experiments aim to provide insights to address
them:

First, the relative importance of viscosity and inertia is unclear. The aforementioned theoretical
studies propose two opposed models where either viscosity is neglected [24–26] or embedded in
a contact-line friction [28,29], or inertia is neglected [27]. While the sequence of Fig. 1 suggests
that a phase shift between the substrate vibrations and the drop deformations is required to produce
an averaged asymmetry, it has been shown that very viscous drops oscillating in phase with the
substrate also exhibit a net mean motion [27], although at much smaller velocity.

Second, it is unclear to what extent one can relate the averaged unbalanced Young’s force—based
on the contact-angles at the front and the rear of the drop, to the net velocity. Previous measurements
showed an empirical relationship between the capillary number Ca and the unbalanced Young force
evaluated over one period [13], but this point required further confirmations over a larger range of
parameters and with conditions closer to an ideal situation, in which the CAH-based friction force
could be as small as possible [19].

The paper is organized as follows: Section II describes the experimental setup. Section III
illustrates qualitatively the phenomenon under study. Section IV presents the different experimental
results. Section V proposes some discussion and interpretations of the results and conclude about
the main trends.

II. EXPERIMENTAL SETUP

The experimental setup is depicted in Fig. 2 (top). A function generator (7) (Rigol-A4162)
together with a power amplifier (8) (Labworks PA141) prescribe a time-periodic signal to a vibration
generator (5) (Labworks ET 141). The mechanical vibration is transmitted to an axis on which a
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FIG. 2. Top: Sketch of the experimental setup: a droplet of glycerin/water mixture (4) is deposited on
a chemically-treated glass slide (3), which is fixed on an inclinable vibration generator (5). Vibrations are
prescribed by a function generator (7) with an amplifier (8), that delivers a signal synchronized to a high-speed
camera (6) with optical zooms of various magnification. The drop is lighted from the back by a halogen lamp
(1) projected on a diffuser screen (2). Bottom left: Definition of time-varying drop contact-line positions x f

and xb and dynamical contact angles θ f and θb. In this example, the drop motion is from right to left. Bottom
right: An example of contact-line positions x f and xb as a function of time, showing the superimposition of a
periodic back-and-forth motion and a directional averaged one.

substrate [glass slide (3)] is mounted and glued with epoxy resist on a plexiglass plate attached to
the vibration axis. The amplitude and frequency of vibrations are the main control parameters of
the experiment. The plate displacement over time is then A cos(ωt ) along the axis of vibration.
This leads to a periodic acceleration through the same direction in phase opposition with the
displacement, which maximal value a = Aω2. The axis of vibration makes an angle α with the
horizontal, that is varied within [0◦, 90◦].

A droplet of volume V (4) is gently deposited on the substrate. The liquid is a mixture of water
and glycerin, with percentage in mass of glycerin varying from 40 to 90 %, resulting in a kinematic
viscosity η varying from 5.9 to 191 cSt, but weakly varying density ρ and surface tension γ .
Within this range, the viscosity is large enough to prevent the splitting of the drop under vibrations.
We dismissed pure glycerin which shows significant drift (decrease) in viscosity when exposed to
ambient air during the time of experiments, as it quickly absorbs ambient water vapor.

The volume V is chosen small enough for the drop to adopt the shape of a spherical cap, at
rest: the static Bond number Bo measuring the relative magnitude of gravity and capillarity forces,
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Bo = ρgV 2/3/γ remains smaller than one. In practice, we opted for a volume of 10 μl (Bo between
0.65 and 0.84, depending on the percentage of glycerin) for most of the experiments reported in this
paper. It will be explicitly mentioned when experiments are carried out at different volumes.

The droplet motion and deformations are recorded either from the side or from above, with
a high-speed camera [Photron SA3 (6)] operating at 1000 or 2000 fps and with optical zooms
together with extension tubes, both ensuring a magnification of a few microns per pixel (for the
recording of local deformations) to a few tens of microns per pixel (for the recording of the drop
net motion). Figure 2 (bottom left) shows the side view of the drop, and its successive footprints
taken after several periods, and at the same phase, with the absolute positions of the left (front) and
right (back) contact-lines (x f ) and (xb), the corresponding dynamical contact angles (CA) (θ f ) and
(θb) and the net displacement during each period �x. Figure 2 (bottom right) shows an example of a
time-evolution of (x f ) and (xb), evidencing both the back-and-forth motion and the net displacement
with averaged velocity 〈v〉 = �x. f .

The substrate are glass slides coated with a self-assembled monolayer (SAM) of a low surface
energy fluoropolymer. Octadecyl-trichlorosiloxane (OTS) makes covalent bonds on activated Si-O.
The activation is ensured by Oxygen Plasma treatment, and the glass slides are then kept several
hours in a solution 10−3 M of OTS in Hexane. The whole process is carried out in a class 1000
clean room. This treatment allows for weak retention force with reproducible, homogeneous and
long-lasting properties. The resulting advancing and receding CAs are, respectively, θa = 107◦ and
θr = 86◦.

III. DROPLET DYNAMICS: A QUALITATIVE DESCRIPTION

Since directional displacement originates from a time-averaged symmetry breaking in the drop
shape, it is of primary importance to characterize how the free-surface responds to external
vibrations. From the pioneering studies of Rayleigh and Lamb [31], inertiocapillary modes of a
freely suspended sphere have eigenfrequency fn:

fn = 1

2π

(
n(n − 1)(n + 2)γ

ρR3

) 1
2

, (1)

with n is the mode number and R is the drop radius.
However, real situations involve more complex effects, in which several questions remain

unanswered [12,32–44]. Especially, our situation of a sessile drop shows qualitative and quantitative
differences with Eq. (1) [12,33,34,36,37,39–43]. First, the contact with the substrate enables a
nondegenerated translational mode (n = 1) with finite frequency [12,33]. This is the rocking mode
(i.e., the drop rocks from left to right), excited when the drop is subjected to lateral forces. The

eigenfrequency of the rocking mode is also proportional to ( γ

ρV )
1
2 [12] with a prefactor depending on

the wetting conditions [34,44]. Second, the complex dynamics of contact-lines, involving significant
pinning force on real substrates, can generate stop-and-go dynamics [45]. Generally, the problem is
treated by prescribing ad hoc conditions, that relate the instantaneous contact-line velocity and the
macroscopic deformation at the vicinity of the contact-line, as stated for instance in [28,29,36,46].
Our choice of a low-friction substrate aims to minimise this complexity as much as possible.
Third, the finite value of the frequency prescribes that within a (unsteady) viscous BL of thickness
δ = ( 2ν

ω
)
1/2

, the motion of fluid is in phase with that of the substrate. Above this layer, the fluid
follows the plate oscillations, but with a phase lag due to inertia, which can influence in turn
the motion of contact-lines x f (t ) and xb(t ). Therefore, substrate-induced constraints influence the
symmetric Rayleigh-Lamb modes and the values of fn [33,35,44].

We measure the frequencies of the two first eigenmodes by recording the transient response
of the free-surface deformations following a “kick,” i.e., a step of acceleration by the shaker. To
excite independently the pumping and rocking modes, we impose either vertical (α = 90◦) or
horizontal (α = 0◦) forcing. We take drop volume V in a range encompassing widely the values
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FIG. 3. Eigenfrequencies of symmetric pumping mode (n = 2) and asymmetric rocking mode (n = 1)
versus drop volume, deduced from transient relaxation dynamics of drops after an initial kick. The lines
represent a fit by the power law f ∼ V −1/2.

taken in experiments. Figure 3 shows the eigenfrequencies versus V for the lowest order pumping
and rocking modes, which confirms the decrease of f with V via a power-law of exponent −1/2.
The prefactor is smaller for the rocking mode (asymmetrical, n = 1) than for the pumping mode
(symmetrical, n = 2).

The eigen frequency for the first asymmetric rocking mode is then empirically determined by

fr = βr

(
γ

ρV

) 1
2

(2)

and for the first symmetric pumping mode, it yields a similar relationship:

fp = βp

(
γ

ρV

) 1
2

. (3)

The coefficients βr and βp are, respectively, equal to 0.95 ± 0.01 and 0.47 ± 0.01. As stated
above, they should depend on the wetting conditions [34,44], an effect which is is not addressed in
this study and to some extent on the viscosity η [44].

The sequence in Fig. 1 represents typical drop deformations under moderate forcing. Clearly,
the drop shape responds with a phase lag with respect to the excitation. The drop shows maximal
vertical stretching between π/2 and π , while the acceleration is maximal in the downward and
leftward direction for π/2. A priori, the phase lag can be different for the pumping and the rocking
modes: the drop presents the most left/right-asymmetric shape at a phase slightly after π , i.e., after
the phase related to the maximal upward stretching. It is related to that the thickness of the unsteady
BL δ is here smaller than the drop height h. Hence, to quantify the importance of inertia, one can
build a dimensionless BL thickness:

δ∗ = δ

h
=

(
ν

π f h2

) 1
2

. (4)

If δ∗ � 1, then the shear from the substrate vibration is entirely diffused in the liquid during a
period of oscillation: The whole drop responds in phase with the forcing. Conversely, if δ∗ � 1,
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then only a thin layer near the liquid-solid interface moves in phase with the plate. As our study
aims to quantify the influence of viscosity, our experimental range shall include these two extreme
situations, and of course the range in between, where δ∗ is of the order of one.

Another dimensionless number which is susceptible to influence the phase shift between
excitation and drop response is the ratio between the excitation frequency and the frequency of
the first symmetric eigenmode, namely, fp:

f ∗ = f

fp
. (5)

The Ohnesorge number quantifies the relative importance of viscous and capillary effects in
free-surface dynamics:

Oh = ν

(
ρ

γ R

) 1
2

, (6)

which for drop of typical volume 10 μl (R 	 1.68 mm) and the water/glycerin mixtures of
various composition, ranges from 0.0146 to 0.66.

IV. QUANTITATIVE RESULTS

Previous experiments [13–15,18,19] and numerical simulations [28–30] showed that directional
motion is induced providing the amplitude A (or maximal acceleration a) gets stronger than a
threshold Ath (respectively, ath, and that the averaged velocity 〈v〉) generally increases with the
forcing. The threshold originates from the CAH due to substrate imperfections. Overall, one can set
a general empirical law for the averaged velocity:

〈v〉 = s × (A − Ath)χ , (7)

where s can depend on viscosity, frequency, inclination angle α, and wetting conditions. The
exponent χ was found to be roughly equal to one in previous experiments [13,15,18,19], but more
recent numerical results showed better agreement with a quadratic behavior (χ = 2) for Eq. (7), in
the situation of weak forcing and low CAH [24–26,28,29], and a crossover toward a linear behavior
(χ = 1) at stronger forcing and/or larger CAH [30]. Other numerical results with no CAH were
consistent with χ between 1.5 and 2, the exponent being dependent on the CA [17]. On very slippery
surfaces, it was even found a saturation and decrease of 〈v〉 with A at strong forcing [19].

Given the relative discrepancy between the different previous results, our experiments aim to
extract the values of s, Ath, and χ with different values of the aforementioned parameters.

A. The influence of the angle between substrate and vibrations

We first address the dependence of 〈v〉 with respect to the slant angle α. Figure 4(a) shows the
mean drop velocity versus amplitude A, for a frequency of 50 Hz and for several values for the angle
α. It appears that data are well fitted by Eq. (7), with χ = 1. One extracts the values of both s and
Ath, versus α [Fig. 4(b)]. In Fig. 4(c), the coefficient s is plotted versus α. This suggests that the
drop mobility shows an optimum at α 	 60◦. Still, even if a sharp decrease of mobility is observed
as α → 0 and α → π/2, it is still possible to move drops by moderate vertical vibrations even for
nearly vertical or horizontal substrates.

Considering that both symmetric and asymmetric modes are required to produce a net motion, it
is indeed expected that as α approaches 0 or π

2 , Ath strongly increases, and actually almost diverges,
and also that s strongly decreases toward zero. Indeed for α = π

2 , only the axisymmetric pumping
mode is excited. Hence, although the contact-line can be unpinned, there is no way for the dynamical
contact-angles to be simultaneously larger than θa on the one side of the drop and smaller than θr

on the other side. However, for α = 0, only the rocking mode is excited: Although the drop center-
of-mass and the left and right positions of the contact-line move back-and-forth at the prescribed
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FIG. 4. (a) Time-averaged velocity of the drop center of mass versus amplitude of vibration, for different
angles α between the horizontal and the axis of vibrations. f = 50 Hz, V = 10 μl, and η = 31.5 cSt. (b) The
threshold amplitude Ath and (c) the coefficient s divided by fp of the linear variation of the velocity with A
plotted versus α (same parameters as (a) otherwise).

frequency, the time-averaged asymmetry of the drop shape is null. No net motion of the drop can
be noticed over several periods. Hence, a combination of both modes is required for a directional
motion.

Another interesting behavior is the quasi independence of Ath within the range α ∈ [20◦; 80◦]
[see Fig. 4(b)]. Comparing the threshold in acceleration (ath) to the effective capillary force build on
the CAH, Fcap = γπV 1/3(cos θr − cos θa), and represented by the dashed line in Fig. 4(b), it turns
out that it is slightly above this characteristic static value, and it is approximately equal to 2.2 times
the gravity acceleration. Above 80◦, ath sharply increases with α, and below 20◦ the increase is even
sharper. Let us mention that for α below roughly 5◦, the accuracy of measurements is impacted by
the limitation of our vibrating bench: The motion departs from a purely rectilinear motion, especially
at high amplitude.

No simple explanation can be proposed for the maximum being at 60◦. As stated above, the drop
requires both pumping and rocking modes to be excited with large enough amplitudes; therefore the
most natural intuition would have suggested this maximum to be around 45◦. Though, this maximum
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FIG. 5. (a) Drop velocity versus amplitude under the same vibration frequency ( f = 40 Hz) and liquid
viscosity (η = 28.8 cSt), with three different drop volume V = 2, 5, and 10 μl. The dimensionless frequency
f ∗ is respectively 0.22, 0.37, and 0.49. For f ∗ = 0.22, a backward motion is observed within a large range of
amplitude. (b) Drop velocity versus amplitude in a situation of backward motion. Drop volume V = 10 μl, f
= 120 Hz ( f ∗ = 1.48), and η = 7.1 cSt.

is found to be of a rather plat profile around 60◦ and, similarly to Ath, the variation of s with α is
relatively weak between 20◦ and 80◦.

B. The influence of the excitation frequency

1. Backward motion for specific values of f ∗

Vibration-induced directional motion of drops has been observed over a large range of excitation
frequency f [13–15,18,19], providing f is of the same order of magnitude as the first eigenfre-
quencies of the inertia-capillary modes of the drop, namely fr and fp, and potentially f2p and f2r

the resonance frequencies of the second-order pumping and rocking modes. For this reason, the
value of volume V is supposed to rule the dependence of 〈v〉 (or s and Ath on f ), as both fr and
fp are dependent on V ; see Eqs. (2) and (3). Hence, we will consider the dimensionless excitation
frequency f ∗ defined in Eq. (5).

We first underline the influence of V (through f ∗) on the drop velocity. Figure 5(a) shows the
averaged velocity 〈v〉 versus A for three different volumes 2, 5, and 10 μl. It is striking that V has a
stark influence on 〈v〉: for the same forcing (A, f ), not only the onset of directional motion changes,
but also the direction of the motion can be reversed. The backward motion corresponds to a drop of
2 μl and f = 40 Hz ( f ∗ = 0.22), and is typical for small values of f ∗ and moderate A. It is also
observed for different f and V providing f ∗ < 0.25.

A reverse motion is also observed when f ∗ takes values around 1.5. Figure 5(b) shows the drop
velocity versus A, for f = 120 Hz and V = 10 μl ( f ∗ = 1.48). This backward motion appears
as A is set above a relatively low threshold value (Ath 	 0.2 mm in the typical situation depicted
here) and that contrary to the previous situation ( f ∗ 	 0.2), the velocity does not become positive at
high A. Let us also notice that this high frequency backward motion is observed only for relatively
low viscous liquids (here, η = 7.1 cSt). Figure 6 (top) shows a typical sequence of drop shapes
at different phases during backward motion. Obviously, the drop deformations are mainly due to a
higher order mode, but they still combine symmetric and asymmetric modes.

We showed on purpose the successive shapes during three periods of substrate oscillations: it
is clear that the shape of the drop appears identical every two periods (for instance, at φ = π

2
and φ = 9π

2 ): the drop responds at f /2. The period doubling results from a parametric instability.
Indeed, when excited on a vibrating substrate of low CAH (weak pinning), drops experience a
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FIG. 6. Top: Sequence of successive droplet shapes at relatively high forcing frequency f ∗ = 1.48 ( f
= 120 Hz), V = 10 μl, and low viscosity η = 7.1 cSt. The drop experiences a backward motion (toward
the right) corresponding to measurements presented in Fig. 5(b). Remarkably, the drop responds with period
doubling—the shapes appear identical every two periods, induced by a parametric instability. Bottom left:
Drop velocity versus f ∗ for a constant acceleration a = 2.1 g and 4.5 g, with the dominant mode corresponding
to each peak. Bottom right: Simplified sketch of the overall dynamics within the whole range of f ∗ with
corresponding modes.

time-modulation of their radius, and in turn a time-modulation of their resonance frequency. This is
the main ingredient for a parametric instability to occur to the drop free-surface which, in the case
of vertical vibrations, leads to triplon states or star shapes [38,47]; as far as we could investigate,
this parametric response and the peculiar successive shapes of Fig. 6 (top) are necessary conditions
to observe the backward motion of the drop at high f ∗, which are satisfied only in a narrow range
of f ∗; see Fig. 6 (bottom).

This strong dependence of the drop mobility on f ∗ is revealed by measuring 〈v〉 versus f ∗
under constant acceleration a. Figure 6 [bottom (a) and (b)] shows the results for two values of
a: a = 2.1 g within the range 0.8 < f ∗ < 2 and a = 4.5 g within the range 1.8 < f ∗ < 4.2. The
reason for taking two values for a, is that 〈v〉 has too small values for a = 2.1 g and f ∗ > 2.
These measurements essentially illustrate how strong the drop velocity can depend on f ∗, and how
it is related to the excitation of the different modes. The vertical plain and dashed lines point out
the resonance frequencies of the modes (1) to (4), the rocking mode of lower frequency is not
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FIG. 7. (a) Velocity of the drop center of mass versus acceleration a = Aω2, for different frequencies f
from 20 to 160 Hz. Drop volume V = 10 μl and viscosity η = 28.8 cSt. Angle α = 60◦. (b) Dimensionless
mobility coefficient for V = 5 and 10 μl, same conditions as (a) otherwise. (c) The amplitude threshold versus

f
fp

for V = 5 and 10 μl. (d) The acceleration threshold ath renormalized by V 1/3 f 2
p versus f

fp
for V = 5 and

10 μl.

represented here. Thus, it is striking how these resonances are related to the maxima of velocity
with f ∗ in either the forward or backward motions.

2. Quantitative study in a model situation

We now focus on the more common forward motion in the range of f ∗ roughly between 0.2 and
1.8. We quantitatively investigate the influence of f for this model situation, where only positive
values of 〈v〉 are obtained. Figure 7(a) shows 〈v〉 versus a, for different values of frequency f , from
20 to 160 Hz. The angle α is kept at 60◦. These results suggest that data can mostly be well fitted
by taking the Eq. (7) with χ = 1.

In Fig. 7(b), the dimensionless mobility s
fp

is plotted versus f
fp

. Let us mention that when 〈v〉
slightly deviates from a linear dependence with A and a, for instance at strong amplitude A for
f = 30 or 110 Hz, only the data at moderate A are considered for the determination of s. These
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experimental results suggest an optimum of mobility for f
fp

	 1.1 for both the tested volumes (it
corresponds roughly to f = 90 Hz at V = 10μl). This maximum is much sharper for V = 5 μl than
for V = 10 μl. Even considering that fp is lower for 5 μl than for 10 μl by a factor of

√
2, it turns

out that smaller drops have a much sharper dependence on frequency around fp. The value of fR is
about half that of fp.

Then, we extract the threshold Ath versus f ∗, that is plotted in Fig. 7(c) for V = 5 and 10 μl. We
also plot the threshold in acceleration ath, divided by a characteristic acceleration V 1/3 f 2

p build on
the drop size, versus f ∗. The values of Ath correspond to the threshold for forward motion. When
f ∗ < 0.25, as seen in Fig. 5, this forward motion is preceded by a backward motion of smaller
velocity at A < Ath. The backward motion can exist within a relatively large range of A, considering
the large values of Ath in this range of low f ∗. Let us remark that the backward motion at larger
f ∗ (	1.5) is not observed here, as we chose a value of η (=28.8 cSt) large enough to dismiss the
parametric forcing shown in Fig. 6 (top).

While Ath variations are essentially within the range f ∗ < 0.5 (or f < fr), converging to a
constant small value at higher frequency, ath experiences a sharp increase above a value of f between
fr and fp (corresponding to f ∗ 	 0.75), where it reaches its minimal value Fig. 7(d). To make
the two data sets for both volumes to collapse with each other, Ath is plotted versus f / fp. Such a
rescalling is obtained for ath, by dividing it by the characteristic acceleration V 1/3 f 2

p .
If we briefly come back to the question of the determination of the exponent χ , given the

aforementioned discrepancy between existing experiments and models (some of them indeed predict
this linear dependence while others predict χ between 1.5 and 2), then we can conclude here that
the averaged velocity 〈v〉 generally follows a linear relationship (χ = 1) with forcing amplitude
A (or acceleration a) for fixed f ∗ and δ∗. Still, some of our measurements showed possible larger
values for χ , slightly higher than 2 in a narrow range of f ∗ around 1.5, see Ref. [48]. This is clearly
different from quadratic laws predicted by theoretical and numerical studies [24–26,28,29]. Though,
we do not have clear explanation for this nonintuitive behavior.

C. The influence of viscosity

We now present quantitative results of the dependence of the average velocity 〈v〉 on the viscosity
η, keeping V and f constant respectively at 10 μl and 50 Hz ( f ∗ = 0.67). Let us first note that
liquid viscosity has little influence on the shape and resonance frequency of the drop eigenmodes—
although it influences the amplitude of deformations. Viscous shear is one of the main source of
the friction force experienced by a drop moving on a substrate, both along the liquid-solid interface
and near the contact-line. Furthermore, viscosity is supposed to influence the thickness of the BL
δ—then the ratio δ∗ of liquid thickness that responds in phase with the substrate vibrations, see
Eq. (4).

Figure 8(a) presents 〈v〉 versus (A − Ath) for several values of η, varying from 5.9 to
191.5 cSt. The threshold Ath is plotted versus η in Fig. 8(b). The dependence of Ath on η is very
weak, and only a slight increase with η can be noticed above 50 cSt.

It turns out that η has a significant influence on the drop mobility through the coefficient s. As
previously, 〈v〉 increases linearly with A, so that we keep χ = 1 in Eq. (7), see Fig. 8(a). The general
trend is that a higher η slows down the drop for the same forcing ( f and A or a). At 50 Hz, δ

ranges from 0.486 mm (for 5.9 cSt) to 2.76 mm (for 191.5 cSt), and taking the drop shape as a
hemispherical cap, h = R = ( 3V

2π
)
1/3

and V = 10 μl, δ∗ ranges from 0.29 (for 5.9 cSt) to 1.64 (for
191.5 cSt).

Figure 8(c) shows a decrease of the mobility s with viscosity, but only in the higher range of η.
At a simplified level of description, one could state that within a range of low viscosity, s is almost
constant with η (with only a slight decrease). The crossover occurs around 50 cSt, hence for δc 	
1.41 mm, or δ∗

c 	 0.83.
We propose a qualitative explanation for these two distinct behaviors. At relatively high viscosity,

the dissipation occurs in the whole volume (within a liquid height h). The order of magnitude of the
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FIG. 8. (a) Average velocity of the drop center of mass versus amplitude of vibration, for different angles α

between the horizontal and the axis of vibrations. f = 50 Hz, V = 10 μl. Extracted from these results, (b) the
amplitude threshold versus dynamic viscosity, and (c) the mobility coefficient s versus viscosity in log-log plot.

momentum per unit volume relative to the forcing term scales as ρA2ω2

h , while the order of magnitude
of viscous shear opposing the forcing scales as η v

h2 , so that the balance between the two terms leads
to an order of magnitude for the averaged velocity:

η
〈v〉
h

∼ ρA2ω2, (8)

hence, an averaged velocity that scales with the inverse of η. Conversely at relatively low viscosity,
the dissipation only takes place in a layer of thickness δ < h and reads η

〈v〉
δ2 . Therefore, substituting

the expression of δ it yields

〈v〉 ∼ A2ω

h
, (9)

023601-13



MAXIME COSTALONGA AND PHILIPPE BRUNET

hence an averaged velocity independent on viscosity. Of course, this reasoning remains qualitative,
as this does not take into account the influence of the frequency emphasized in Fig. 7, which
involves the eigenmodes of the drop. In this sense, the amplitude A here should be considered
as the amplitude of the drop oscillations (taken at the center of mass or at the free-surface) rather
than the forcing amplitude A, and should include a dependence on f like A ∼ AξF ( f ), where ξ is a
positive exponent. The scaling of 〈v〉 ∼ Aχ , with experiments showing χ 	 1, tends to suggest that
ξ should roughly equal 1

2 . Finally, the dissipation at the contact-line is not included in this qualitative
reasoning, given the relatively low CAH resulting from the SAM coating.

V. DISCUSSIONS

A. Comparisons with existing models

Our measurements carried out over a large span of α, f , and η show that when subjected to
slanted vibrations, sessile droplets always experience a directional motion providing the forcing
amplitude is strong enough. In most situations, the motion is oriented toward the direction that
corresponds to that of the substrate displacement during its upward-moving phase (i.e., toward the
left in the configuration of Fig. 1). Incidentally, this corresponds to the climbing motion observed in
Refs. [13,14] for vertical vibrations of a tilted substrate.

In the light of these results, we can come back to the first question stated at the end of the
introduction, namely the influence of the relative importance of viscosity and inertia in the drop’s
inner flow, which can be quantified by δ∗, and its influence on the mobility (in optimal conditions). A
related question is that of the “minimal ingredients” to get directional motion at relatively moderate
forcing.

Measurements at high viscosity, i.e., δ/h > 1, show that when the drop responds quasistatically
and in phase to the forcing, directional motion remains possible above a forcing threshold
comparable to threshold values measured for much lower viscosities, although the drop velocities
remain relatively small. These measurements confirm the results by John and Thiele [27], who
showed that the minimal ingredient for directional motion relied on the successive flattening and
stretching of the shape over one period, while the drop rocks left and right, which remains true for
a viscous drop. These deformations then lead to a nonlinear mobility and anharmonic response for
the drop.

On the other side, the recent model with inviscid drops by Bradshaw and Billingham [28]
includes dissipation through contact-angle hysteresis and more complex laws for dynamical wetting
that involve multiple-valued contact-line velocities versus contact-angle. These studies evidenced
an optimal value of CAH at roughly 5◦, a feature which was experimentally observed for sessile
droplets displaced by asymmetric vibrations [16], although for a slightly larger optimal CAH
value. The other approach described in Ref. [29], also by Bradshaw and Billingham, showed that
neglecting both viscous and inertial effects still enables directional motion. Hence, this quasistatic
equilibrium between gravity and surface-tension forces, although in a situation difficult to reproduce
in experiments, could also constitute a situation with “minimal ingredients” for directional motion.

About the question on a value of δ∗ for optimal mobility, our experiments are only partly
conclusive. The results of Fig. 8(c) show that s remains almost constant below η = 50 cSt
(δ∗

c = 0.83), which suggests that for a fixed value of A, the dimensionless velocity 〈Ca〉 = η〈v〉
γ

is maximal around δ∗
c . The averaged motile force per unit length being proportional to the product

η〈v〉, this motile force seems to reach a maximum near δ∗
c , suggesting that a subtle balance in the

relative importance of inertia and viscosity is required for this optimum.
As shown experimentally by Noblin et al. [15], the phase-lag between the pumping and rocking

modes response can be tuned to obtain optimal mobility. In our experiments, this phase-shift should
depend on both the dimensionless quantities f ∗ and δ∗, in a nontrivial way. However, in the present
situation, the phase-lag cannot be controlled. The influence of this phase-shift on the optimum of
mobility is here suggested by the dependence of the mobility s/ fp on the reduced frequency f ∗
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[Fig. 7(b)], where the optimal was found for f ∗ = 1 and which was also found for a nearby value
in Ref. [28]: this situation optimizes the response of the pumping mode over the rocking one. Still,
we can attempt to address this point in more details by having a deeper look on the dynamics of the
contact lines [xb(t ) and x f (t )] and its relation to the time-evolution of the dynamical CAs [θb(t ) and
θ f (t )].

B. Relationship between global motion and unsteady contact-line dynamics

What is clear from a coarse observation of the time-evolution of xb(t ) and x f (t ) [Fig. 2 (bottom)],
is that these two positions generally vary with distinct amplitude and phase-shift (with respect to
the forcing vibration). This is a direct consequence of the aforementioned phase-shift between the
pumping and rocking modes.

When one attempts to be more quantitative regarding the measured phase-lag between contact-
line velocity and contact-angle time-evolutions, let us recall that experiments by Sartori et al. [18]
did not evidence any obvious correlation with the drop motion. This absence of clear trend was also
noticed in our own experiments, carried out at different viscosity and various f ∗, as described in
more detail in Ref. [48].

The only fact that remains recurrent in most of the aforementioned experimental studies, is that
the relationship between contact-line velocity and dynamical CAs shows complex behavior taking
nonsingled values [13,45,46,49,50]. This complexity was included in numerical models [28] and
was shown to increase the efficiency of the directional motion, particularly in the presence of
CAH. This complex behavior is generally out of the scope of usual contact-line hydrodynamical
theories [2,3,51,52].

Still, we attempted to grasp a quantitative measurement of the pumping mode response, via the
time-evolution of the basal diameter, namely (x f − xb). Figures 9(a) and 9(b) show the results for
two values of f ∗ and different forcing amplitude A. As expected, the peak-to-peak variations of
(x f − xb) grow with A. The time t = 0 corresponds to the maximal vertical position of the vibrating
bench, hence of A. Clearly, the phase shift, extracted from the time when (x f − xb) is maximal,
shows significant change with f ∗, while the dependence with A remains weak. Figure 9(c) shows
the maximal value of (x f − xb) with A, and Fig. 9(d) shows the phase-shift (as a dimensionless
time-lag t/T ) between (x f − xb) and the forcing vibrations, versus A. Let us note that for
f / fp = 1.48, the basal diameter showed period-halving and hence the phase-shift could not be
simply determined, as (x f − xb)(t ) can exhibit two distinct maxima: One is at t/T > 1 (the one
which is here plotted) and the other is close to t/T = 0. This situation corresponds to a drop with
backward motion; see Figs. 5(b) and 6(a).

While for f ∗ � 1, the time-lag remains between 0.6 and 0.7—hence, slightly later than a phase-
opposition, it almost reaches one (almost in phase) when f ∗ 	 1, hence close to the optimal of
mobility found in Fig. 7(b). Therefore, to the best of our knowledge, the optimal of mobility seems
to appear when the pumping mode responds in phase with the forcing, i.e., when the drop gets the
most flattened shape as the vibrating bench reaches its highest—and most leftward—position.

Let us now come back to the second question stated at the end of the Introduction, namely, the
relationship between the averaged drop dynamics and the unsteady one over one period. Indeed
in previous experiments [13], it was possible to relate 〈v〉 and values taken by θ f and θb over one
period. This relationship was rationalized by considering the averaged unbalanced Young force per
unit length of the contact line, over one period,

Fy = γ

T

∫ T

0
(cos θb − cos θ f )dt = γ 〈cos θb − cos θ f 〉, (10)

and equating it with the friction force based on the averaged velocity Fv = η〈v〉. While this
equilibrium neglects the fact that the velocity of the drop center of mass does not advance with a
constant velocity, stating Fv = Fy turns out to be fairly correct in practice, although with a prefactor
presumably of geometrical origin. In Fig. 10, we plotted the capillary number built on the averaged
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FIG. 9. (a, b) Time-evolution of the basal diameter (x f − xb), over one period and for various forcing
amplitude A. V = 10 μl and η = 7.1 cSt, and (a) f ∗ = 0.49, (b) f ∗ = 0.78. The time t = 0 corresponds to
the maximal position of the platform. (c) Maximal basal diameter versus A, for different f ∗. (d) Phase-shift
(expressed as dimensionless time-lag) between the basal diameter response and the forcing vibration, versus
A, for different f ∗. Insert: Time-lag versus f ∗ for A = 0.4 mm.

velocity 〈Ca〉 = η〈v〉
γ

, versus 〈cos θb − cos θ f 〉. We extracted the values of θb and θ f corresponding
with most of the measurements plotted in Fig. 8. The collapse of data for different values of η is
fair. It makes us confident that the relationship between 〈v〉 and (θb, θ f ), despite the complexity of
the time-dependence of the CAs, can be extended over a large range of viscosity and amplitudes.

VI. CONCLUSIONS

We conducted a quantitative experimental study on the direction motion of sessile drops
induced by slanted substrate vibrations, under frequencies typically lying in the range of the first
inertiocapillary eigenmodes of the drop. In the aim to obtain quantitative trends, especially suitable
to be compared with existing theories, our experiments spanned a large range of frequency and
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FIG. 10. Averaged capillary number versus the averaged difference of the cosines of back and front CAs.
Experimental conditions are the same as those described in the caption of Fig. 8.

viscosity. To some extent, we also investigated the influence of the angle α between the normal to
the substrate and the axis of vibration.

From our results, the main take-home messages are the following:
(1) For most experimental conditions, the averaged velocity 〈v〉 ∼ (A − Ath)χ , with χ = 1. We

then defined a natural mobility coefficient s = �〈v〉
�A and the threshold for motion Ath.

(2) The influence of α is very sharp only in the ranges of roughly 10 degrees from the limits 0◦
and 90◦, and otherwise is rather marginal.

(3) The dependence of the mobility s with f suggests a complex interplay between rocking and
pumping modes, in particular, with an optimal mobility found when f is slightly above fp.

(4) We observed a backward motion when f is smaller than 0.25 fp or within a narrow domain
around the higher order asymmetric mode f3 (generally around or above 1.5 fp). In the latter case,
the drop’s response exhibits a period halving, which originates from a parametric instability.

(5) The dependence in viscosity shows that s is almost independent on η if δ
h 〈δ∗

c 	 0.83 and that
〈v〉 scales as the inverse of η if δ

h 〉δ∗
c , hence within a domain of higher viscosity.

(6) No clear trend could emerge from measurements of instantaneous contact-line velocities and
dynamical CAs in terms of phase-shift of pumping and rocking modes with respect to the forcing
amplitude. At a qualitative level, the results confirm that, at least when δ∗ < 1 and for moderate to
large A, the dynamical CAs take nonsingled values with the contact-line velocity. Still, we could
extract the dynamics of the pumping mode via the time-evolution of the basal diameter (x f − xb): it
exhibits monotonic increase of its peak-to-peak variations with A, while the time-lag �t/T shows
weak dependence on A. This time-lag roughly increases with f / fp, and reach a value close to one,
i.e., the pumping mode in phase with the forcing vibration, near the optimum of mobility.

(7) The dimensionless velocity, the capillary number 〈Ca〉, shows a linear relationship with the
capillary force averaged over one period, built on the averaged difference between the cosines of
the back and forth dynamical angles θb and θ f . This confirms the trend from previous results [13],
and consolidates them over a large range of viscosity. This scaling allows one to make the collapse
of data for all the different tested liquid viscosities.
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