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Depending on the reflectional and rotational symmetries of annular combustors for
aeroengines and gas turbines, self-sustained azimuthal thermoacoustic eigenmodes can
be standing, spinning, or a mix of these two types of waves. These thermoacoustic
limit cycles are unwanted because the resulting intense acoustic fields induce high-cycle
fatigue of the combustor components. This paper presents a new theoretical framework for
describing, in an idealized annular combustor, the dynamics of the slow-flow variables,
which define the state of an eigenmode, i.e., if the latter is standing, spinning or mixed.
The acoustic pressure is expressed as a hypercomplex field and this ansatz is inserted into
a one-dimensional wave equation that describes the thermoacoustics of a thin annulus.
Slow-flow averaging of this wave equation is performed by adapting the classic Krylov-
Bogoliubov method to the quaternion field to derive a system of coupled first-order
differential equations for the four slow-flow variables, i.e., the amplitude, the nature angle,
the preferential direction, and the temporal phase of the azimuthal thermoacoustic mode.
The state of the mode can be conveniently depicted by using the first three slow-flow
variables as spherical coordinates for a Bloch sphere representation. Stochastic forcing
from the turbulence in annular combustors is also accounted for. This new analytical model
describes both rotational and reflectional explicit symmetry-breaking bifurcations induced
by the nonuniform distribution of thermoacoustic sources along the annulus circumference
and by the presence of a mean swirl.

DOI: 10.1103/PhysRevFluids.5.023201

I. INTRODUCTION

One of the environmental challenges for civil aircraft transportation is the necessity to signif-
icantly reduce emissions of nitrogen oxides NOx, which cause toxic pollution in the vicinity of
airports and contribute to the formation of ozone in the high atmosphere. A technical solution for
this problem is to burn lean fuel-air mixtures made as homogeneous as possible, which prevents
near-stoichiometric hot-spots where NOx are produced, and which has also the advantage of
reducing soot formation and unburned hydrocarbons. These flow conditions can be obtained by
injecting the fuel in the compressed air well upstream the flame, as it is done in the combustors
of modern gas turbines for power generation. The problem is that robust anchoring of these lean
premixed flames over a wide range of operating conditions is extremely challenging to achieve in
compact aeroengine combustors. In addition, the thermoacoustic stability is significantly reduced
with these flames, because they are more sensitive to flow perturbations. In particular, they exhibit
strong heat release rate response to acoustically induced modulation of mixture composition or
velocity field. Thermoacoustic instabilities are induced by the constructive linear and nonlinear
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coupling between flames and combustion chamber acoustics. They yield high-amplitude limit cycles
which reduce the lifetime of the hot gas path parts because of the induced vibrations, or in the worst
case destroy them during a sudden catastrophic event. The phenomenon has been known and studied
for more than a century, in particular, with the early works of Rayleigh [1] showing the importance
of the phase between the oscillations of heat release Q̇′ and of the acoustic pressure pa upon the
thermoacoustic oscillation in the stability of the system. His famous criterion for instability is∫

T

∫
V

pa(x, t )Q̇′(x, t ) dx dt > 0, (1)

where T is the acoustic period and V the volume of the combustor. This criterion results from
the acoustic energy balance and it is a necessary, but not sufficient condition to get an instability
[2]. A strong research effort aims at understanding the fundamental phenomena associated with
thermoacoustic instabilities. In this context, numerous studies have been conducted about ther-
moacoustic instabilities in annular combustor geometries which are very common for land-based
gas turbines and aeroengines. Annular combustion chambers for aeroengines are more compact
and light-weighted, and produce more uniform temperature distribution at the turbine inlet than
can-annular combustors. A fascinating aspect of thermoacoustic instabilities in annular combustion
chambers is that they display pairs of azimuthal eigenmodes that yield standing or spinning
thermoacoustic waves depending on the system symmetries. The measurements of Krebs et al.
[3] and Noiray et al. [4] on large gas turbines for power generation featuring annular combustors
show the existence of spinning waves propagating at the speed of sound in the azimuthal direction,
standing modes with fixed or slowly varying nodal line direction, and mixed modes resulting from
the combination of spinning and standing waves. However, the root causes of these observations are
not fully understood, although thermoacoustics of annular combustors has been for several years the
topic of intense research [5].

In addition to the data from practical gas turbine combustors, numerical and experimental studies
in academia shed light on the nonlinear dynamics of azimuthal thermoacoustic eigenmodes and can
be used to put the theoretical findings of the present paper into perspective. Regarding numerical
simulations, Wolf et al. [6] performed compressible reactive large eddy simulations (LES) of a
whole annular helicopter-engine combustor. In this numerical work, the observed azimuthal mode
is first standing, then mixed, and then standing again, and the angular position of the standing modes
drifts at the azimuthal velocity of the mean flow. Nevertheless, the simulated physical time is not
long enough to draw conclusions about the predominance of spinning or standing modes. Regarding
experiments, one can for instance refer to the work performed using academic annular combustors at
atmospheric pressure—effects of equivalence ratio [7], presence of baffles [8], turbulent bluff-body
flames without swirl [9], with laminar flames [10,11]—and at elevated pressure [12,13].

The present work falls in the category of low-order modeling approaches, where the annular
combustor is approximated by a one-dimensional (1D) waveguide. In previous studies using this 1D
simplified description, the acoustic field has been projected onto orthogonal basis formed by pairs
of degenerate standing modes [4,14,15] or spinning modes [16], which we now briefly explain.
Regarding the former modeling strategy, Noiray et al. [4,15] proposed a nonlinear theoretical
model of the spinning/standing/mixed mode dynamics by projecting the azimuthal thermoacoustic
eigenmodes on orthogonal standing waves. This projection is truncated to keep only one degenerate
pair of azimuthal standing modes of amplitudes A and B sharing the same wave number, which gives
a compact description of the modal dynamics when there is one dominant azimuthal thermoacoustic
mode in the combustor. This ansatz for the acoustic field is injected in a wave equation with
nonlinear thermoacoustic feedback. The wave equation is averaged in space and time to get slow-
time system of first-order differential equations for the amplitudes A and B and phase difference φ

of the two standing modes used for projecting the acoustic field. With a simple cubic nonlinearity
to describe the flame response, it is shown that sufficiently strong spatial nonuniformities in the
thermoacoustic coupling along the circumference of the annular combustor yields standing modes,
whereas a perfectly symmetric configuration leads to spinning modes. In Refs. [14,15], these
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theoretical findings are confirmed by time-domain simulations thanks to a reduced-order network
model of the thermoacoustic system, including experimentally measured flame transfer functions
and three-dimensional (3D) azimuthal modes computed with a finite-element Helmholtz solver.
Hummel et al. [16,17] proposed to use a different 1D nonlinear formalism where the azimuthal
mode is described as the sum of counterclockwise and a clockwise-spinning waves. Performing
spatial averaging and time averaging of the wave equation, they also conclude that limit cycle
spinning modes are stable for uniformly distributed thermoacoustic feedback, while standing modes
are unstable.

It should be emphasized that the low-order 1D model presented in this work predicts the
nonlinear dynamics of azimuthal thermoacoustic modes in an idealized annular chamber, but it
cannot be used to predict linear thermoacoustic stability or limit cycle amplitudes of a real-world
annular combustor. Such predictions can be achieved using reduced-order thermoacoustic network
models which include modeled or measured flame transfer functions and acoustic propagation in 3D
complex geometries—e.g., Refs. [18–21] for linear description of the annular thermoacoustics, with
stability analysis and investigation of symmetry breaking, Ref. [22] for computationally efficient
numerical methods to solve the associated nonlinear eigenvalue problem and Ref. [23] to perform
sensitivity analysis to perturbations in the heat release rate distribution, Refs. [24,25] for frequency
domain description of the thermoacoustics in annular combustors with measured and modeled
nonlinear flame feedback, and Refs. [15,26] for state-space description allowing for time and
frequency domain analysis.

Coming back to the 1D description adopted in this work, previous 1D studies from Ghirardo
et al. [27,28] use a general formulation with flame describing function for both static and dynamic
nonlinearities. They show that static nonlinearities associated with nonmonotonic describing
function gains can explain the occurrence of stable standing modes in perfectly symmetric annular
combustors. Another study from Ghirardo et al. [29] shows that a heat release model depending on
both the axial and azimuthal acoustic velocities is another possible explanation for stable standing
modes in rotationally symmetric chambers. In that regard, one can also refer to the interesting
experimental studies dealing with the response of flames to transverse acoustic forcing [30–34].

Most of the theoretical findings from 1D models that are based on projection of the acoustic
field onto pairs of orthogonal standing or spinning modes have not yet been validated with well-
controlled experiments and these two modeling approaches have shortcomings. First, the nature
of the acoustic oscillations in the annular chamber (spinning, standing, or mixed) is not a phase
space variable but a derived quantity. Second, the phase space is ill-posed for both approaches,
because when the amplitude of one of the modes vanishes, the phase difference between these
modes becomes undetermined. These two shortcomings have been raised by Ghirardo and Bothien
[35] who proposed an alternative quaternion-based projection of the acoustic field, which results
in a well-posed phase space. We show in the present paper that an additional limitation of the
aforementioned projections is overcome by using the hypercomplex ansatz from Ref. [35]. Indeed,
it allows us to describe both the reflectional symmetry breaking when a mean flow exists in the
annulus and the rotational symmetry breaking when the thermoacoustic sources are not uniformly
distributed along the annulus. In this context, the present work aims at (i) describing the nonlinear
stochastic dynamics of azimuthal thermoacoustic modes in a simplified annular chamber with a
new theoretical model, to address shortcomings of the models available in the literature, and (ii)
explaining the different types of symmetry breaking bifurcation that are observed in these systems
with this unified framework. Our starting point is the quaternion formalism introduced in Ref. [35]
to represent azimuthal waves. In Sec. II, we derive an azimuthal wave equation for the acoustic
pressure including mean flow effects and thermoacoustic sources. In Sec. III, we briefly introduce
some properties of the quaternion algebra and the quaternion representation of the acoustic pressure
field in a thin annular combustor. In Sec. IV, the quaternion formalism is introduced into the wave
equation which is spatially and temporally averaged to obtain a dynamical system for the slow-
flow variables. The attractors of the symmetric system are discussed in Sec. V. Sections VI to IX,
respectively, deal with situations where the nonlinear flame response is delayed, where turbulent
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FIG. 1. Simplified geometry of a thin annular combustor. σ is a poloidal cross-section on which the wave
equation is averaged.

forcing is present, and where the symmetry of the thermoacoustic system is broken by a nonuniform
distribution of the thermoacoustic feedback from the flames around the annulus and by the presence
of a mean swirl.

II. THERMOACOUSTIC WAVE EQUATION IN THIN ANNULUS WITH MEAN SWIRL

A. 1D thermoacoustic wave equation

In this part, we present a model for thermoacoustic instabilities in an idealized annular combustor.
The combustion chamber is modeled as a thin annulus of mean radius R, of thickness δR, with
R � δR, and of length Z . The geometry considered for the annular chamber is given in Fig. 1.
The response of the flame is modeled with a 1D distribution of heat release rate Q̇(t,�), with t the
time, and � the azimuthal coordinate. The chamber features a uniform mean flow ū = Ue� + V ez,
corresponding to a simple swirling motion. The Mach number of this mean flow is low, therefore
quadratic terms in the Mach number are neglected. The temperature and entropy gradients are not
considered, as well as the entropy fluctuations and unsteady conduction phenomena. With these
assumptions, the thermoacoustic wave equation for the linearized pressure perturbations p′(x, t ) is

�ū p′ = γ − 1

c2

(
∂Q̇′

∂t
+ U

R
∂Q̇′

∂�

)
, (2)

where x is the position vector, c the speed of sound, γ the heat capacities ratio, Q̇′ refers to the
linearized perturbations of the heat release rate, and

�ū ≡ 1

c2

(
∂2

∂t2
+ 2ū · ∇ ∂

∂t

)
− ∇2

is the convected wave operator. The details of the derivation of this equation are provided in
Appendix A. The strong simplifications leading to Eq. (2) prevent any quantitative modeling of
the thermoacoustic stability in a practical configuration. However, as explained in the Introduction,
our aim is not to establish a model for quantitative prediction of the thermoacoustic dynamics
in a real configuration, but to derive a model which governs the thermoacoustic dynamics in an
idealized annular chamber with uniform temperature distribution and without vorticity and entropy
disturbances.

To obtain a 1D equation for p′, Eq. (2) is averaged over a poloidal cross section σ = Z δR. The
averaging operator is denoted 〈·〉σ . For instance, the acoustic pressure pa(�, t ) associated to pure
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azimuthal thermoacoustic modes can be approximated by

〈p′〉σ = 1

Z δR

∫ Z

0

∫ R+δR/2

R−δR/2
p′(r,�, z, t ) drdz = 1

σ

∫
σ

p′(r,�, z, t )dσ. (3)

This averaging is performed on Eq. (2). Focusing first on the left-hand side of this equation, one can
write

〈�ū p′〉σ = 1

c2

∂2 pa

∂t2
+ 2

U

c2

∂2 pa

∂�∂t
− 〈∇2 p′〉σ . (4)

The last term can be rewritten as

〈∇2 p′〉σ = 1

σ

∫
σ

∇2
r,z p′ dσ + 1

σ

∫
σ

1

r2

∂2 p′

∂�2
dσ, (5)

where ∇2
r,z is the 2D Laplace operator in the slice S. The divergence theorem gives

1

σ

∫
σ

∇2
r,z p′ dσ = 1

σ

∫
l
∇r,z p′ · n dl, (6)

where l is the contour of σ and n is the outwards normal. Considering the specific acoustic
impedance Zb(x, ω) of the annulus boundary, with ω = 2π f being the angular frequency, the local
boundary condition for the acoustic pressure is

∇r,z p̂a · n = − iω

Zbc
p̂a, (7)

where p̂a is the acoustic pressure in the frequency domain. The boundary delimiting annular
combustion chambers comprise the outlets of the burners, the hard walls of the inner and outer
liners and the high-Mach turbine inlet. The latter two exhibit very high resistance and negligible
reactance, and the impedance of the burners defines the acoustic coupling between the chamber and
the compressor-outlet plenum [36]. In this work, we present an analytical model for the dynamics of
pure azimuthal thermoacoustic modes in combustion chambers, and we focus on situations where
the acoustic coupling with the plenum can be neglected. We thus neglect the reactance and consider
a purely resistive specific impedance, i.e., Zb ∈ R, at the annulus boundary. Consequently, Eq. (7)
can be rewritten in the time domain as

∇r,z pa · n = − 1

Zb c

∂ pa

∂t
. (8)

We assume that the integrated acoustic losses at the annulus boundary can be modeled by a simple
term involving an effective, uniform positive specific resistance, i.e., Zb(x, ω) = Ze > 0, and we
obtain from Eqs. (6) and (8)

1

σ

∫
σ

∇2
r,z p′ dσ ≈ − α

c2

∂ pa

∂t
, (9)

with the linear damping coefficient α = lc/(σZe) which sets the acoustic energy losses at the
annulus boundaries. In the last term of Eq. (5), 1/r2 can be replaced by 1/R2 and factorized out of
the integral because the thickness of the chamber is small compared to the radius R. Equation (5)
becomes

〈∇2 p′〉σ ≈ − α

c2

∂ pa

∂t
+ 1

R2

∂ pa

∂�2
, (10)

and the spatial averaging applied to Eq. (2) gives the following 1D convected wave equation with
damping and unsteady heat release rate source:

∂2 pa

∂t2
+ 2

U

R
∂2 pa

∂�∂t
+ α

∂ pa

∂t
− c2

R2

∂2 pa

∂�2
= (γ − 1)

〈
D̄Q̇′

Dt

〉
σ

. (11)
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B. Thermoacoustic feedback

In the previous section, we averaged the left-hand side of Eq. (2) over a poloidal cross section
σ of the annular combustion chamber. Now, we focus on the averaging and the modeling of the
right-hand side, which contains the heat release rate source term. Thermoacoustic instabilities
result from the two-way coupling between the acoustic field and the flames. One of the many
coupling mechanisms is as follows: in the case of an acoustically stiff fuel injection, an acoustically
modulated air mass flow through the burner will induce equivalence ratio modulations. The latter
are convected toward the flame front, reach it after a convective delay and induce heat release rate
oscillations Q̇′. Depending on the delay, these oscillations, which constitute a source term of the
wave equation, destructively or constructively interact with the acoustic field which produced them.
In the following paragraph, we will use a minimal model to account for the heat release rate response
Q̇′ to the acoustic field pa. Considering the 1D convected wave equation in frequency domain

(iω)2 p̂a + 2iω
U

R
∂ p̂a

∂�
+ iωα p̂a − c2

R2

∂2 p̂a

∂�2
= (γ − 1)

{
iω + U

R
∂

∂�

}
〈 ˆ̇Q〉σ , (12)

we would like to express the unsteady heat release as a function of the acoustic pressure
p̂a. Before elaborating further on this model, it is important to mention that, for gas turbine
applications, although the acoustic pressure pa is directly involved in the Rayleigh criterion given
in Eq. (1), its influence on the heat release rate oscillations from the flames is indirect. Indeed,
turbulent propagating flames are significantly affected by fluctuations of the reactants velocity
field and fluctuations of the local equivalence ratio, but very weakly by the acoustic pressure.
Considering that the former perturbations are caused by p̂a at the burners via their impedance
ρc Zbu(ω) = p̂a(xbu, ω)/ûa(xbu, ω), one can nonetheless express the coherent heat-release rate as
function of p̂a. Usually, this transfer function varies smoothly with the angular frequency and it
can be approximated by a complex constant over a frequency range that spans the width of the
thermoacoustic mode peak:

(γ − 1)〈 ˆ̇Q〉σ = (β + iυ ) p̂a, (13)

with (β, υ ) ∈ R2. In the time domain, it gives (γ − 1)〈Q̇′〉σ = βpa + (υ/ω)∂ pa/∂t . Since the time
derivative of 〈Q̇′〉σ acts as a source term in the wave equation, the term βpa will act as a linear
damping term, which will make the system more stable if β < 0 and less stable, if not linearly
unstable, if β > 0. The second term affects the oscillation frequency. In gas turbine combustors, it
usually results in a slight shift of the frequency of the thermoacoustic eigenmode from the one of
the corresponding acoustic eigenmode—the latter being a solution of the homogeneous problem
associated with Eq. (12). For the sake of simplicity, this term is omitted in the present model
and we just write that (γ − 1)〈Q̇′〉σ = βpa. This model leads to unphysical unbounded acoustic
pressure levels when the system is thermoacoustically unstable. In gas turbine combustors, when
the acoustic level rises, the flame response to acoustic perturbations is the main nonlinear element in
the thermoacoustic feedback loop, while acoustic propagation remains mostly linear. The response
at the fundamental frequency saturates, with a redistribution of the energy to the higher-order
harmonics in the power spectral density of the spatially integrated heat release rate. This differs
from thermoacoustic instabilities in rocket motors where nonlinear acoustics governs the limit cycle
amplitude [37]. A minimal model to account for saturation of the flame response in the case of
supercritical Hopf bifurcations [4,15,38] consists in adding a third-order term to the relationship
linking 〈Q̇′〉σ and pa:

(γ − 1)〈Q̇′〉σ = βpa − κ p3
a. (14)

In this expression, β and κ can be chosen constant in space in the case of a uniform azimuthal
distribution of heat release rate, or, as it is done in Ref. [15], they can depend on � to account for
asymmetries that are usually present in real combustors. In this paper, κ is assumed constant in the
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volume to simplify the derivations, and β is expressed as a Fourier series with real coefficients:

β(�) = β0

{
1 +

∞∑
m=1

cm cos[m(� − �m)]

}
. (15)

The angles �m are chosen so that all the cm are positive.
The simple cubic nonlinearity used in the expression Eq. (14) is not meant to give a predictive

description of the flame response: The thermoacoustic bifurcation diagram is defined by the details
of the nonlinear component of the flame response to acoustic perturbations in a given combustor.
Nevertheless, for flames exhibiting any sigmoid-type nonlinear response to acoustic perturbations,
the topology of stochastic super-critical Hopf bifurcations will not differ from the one obtained with
a simple cubic nonlinearity, at least in the vicinity of the bifurcation point (see, for instance, Figs. 2,
4, and 8 in Ref. [39], where the cubic nonlinearity is compared to an arctangent nonlinearity). In
the case of subcritical Hopf bifurcations, the topology of the bifurcation diagram is changed (see
Figs. 9 and 11 in Ref. [39]) and can only be described by using a more complex flame describing
functions [28]. Additionally, Eq. (14) cannot be used to represent dynamic nonlinearities involving
an amplitude-dependent delay of the flame response to acoustic perturbation, unlike the general
flame describing function considered in Ref. [28]. From now on, the subscript (·)a will be omitted
and p approximates the acoustic pressure of azimuthal eigenmodes at a given azimuthal position.
One finally obtains the 1D thermoacoustic wave equation in thin annulus with mean swirl:

∂2 p

∂t2
+ 2U

R
∂2 p

∂�∂t
+ α

∂ p

∂t
− c2

R2

∂2 p

∂�2
= β(�)

∂ p

∂t
+ U

R
∂[β(�)p]

∂�
− 3κ p2

(
∂ p

∂t
+ U

R
∂ p

∂�

)
. (16)

III. QUATERNION-BASED ACOUSTIC FIELD PROJECTION

The wave Eq. (16) involves several different timescales: A timescale associated to acoustic
oscillation, a timescale associated to the thermoacoustic growth rate, and a timescale associated
to convective phenomena due to the presence of the mean azimuthal flow. In practical applications,
the latter two are slow compared to the first one. The acoustic timescale will be referred to as
fast timescale, and the other two, as slow timescales. In the remainder of the paper, approximate
solutions of Eq. (16) will be derived using timescale separation to describe the thermoacoustic
instability on the slow timescales only. To that end, a quaternion-based acoustic pressure will
be used to unambiguously describe the state of azimuthal eigenmodes in the presence of spatial
asymmetries of the thermoacoustic feedback as well as in presence of a mean swirling flow. This
quaternion-based projection of the acoustic field has recently been proposed in Ref. [35]. It can
be linked to the concept of analytical signal x̃(t ) = A(t ) exp{i[ωt + ϕ(t )]} for monovariate signals
x(t ) oscillating at pulsation ω, with A(t ) representing the real-valued instantaneous amplitude of
the oscillation, and ϕ(t ) the real valued phase drift. The oscillations being quasiharmonic, A(t ) and
ϕ(t ) have to be slow compared to the oscillation frequency: This imposes the conditions ϕ̇ � ω and
Ȧ � ωA. A and ϕ constitute the complex embedding of the signal and they describe its evolution
on timescales that are large compared to an acoustic period. When the evolution of x is governed
by a second-order nonlinear oscillator equation, the method of Krylov-Bogoliubov [40] allows to
separate the slow scales from the fast oscillations and to obtain first-order differential equations for
A and ϕ. The concept of quaternion embedding was introduced in Ref. [41] and further developed
in Ref. [42] to represent a bivariate (or complex valued) signal in a similar way. The quaternion
embedding can be seen as an equivalent of the analytical signal for a bivariate signal. In the case of
almost harmonic perturbations, the quaternion embedding will be defined by a slow amplitude A, a
slow phase drift ϕ and two additional slow variables χ and θ characterizing the spatial dynamics: χ

will affect the ellipticity of the oscillations and θ , their direction. Ghirardo and Bothien showed in
Ref. [35] that this quaternion formalism is perfectly suited to represent azimuthal waves in annular
combustion chambers. They emphasize on the fact that this representation overcomes the problem
of ill-posedness of the phase in previously adopted projections on standing modes, e.g., [4,14] or on

023201-7



ABEL FAURE-BEAULIEU AND NICOLAS NOIRAY

counter-rotating modes [16]. In the quaternion representation, it is always possible to properly define
a temporal phase, making this representation very suited to model wave propagation phenomena
in annular or cylindrical elements, and we will show that another advantage of the quaternion
embedding is that it captures both rotational and reflectional symmetry breaking bifurcations.

A. Basic properties of the quaternions

This section presents very succinctly some properties of the quaternion algebra, which will be
referred to as H. This noncommutative algebra features three imaginary units i, j, k, such as i2 =
j2 = k2 = i jk = −1. It follows that i j = k, jk = i, ki = j and that, for instance, ji = −k. Every
quaternion can be written uniquely in its cartesian form:

∀ h ∈ H ∃ (a, b, c, d ) ∈ R4 h = a + bi + c j + dk, (17)

with a the real part of the quaternion h, which will be noted �(h). The i, j, k-imaginary parts b, c
and d are, respectively, designed as �i(h),� j (h),�k (h). The modulus is defined as

∀ (a, b, c, d ) ∈ R4 |a + bi + c j + dk| =
√

a2 + b2 + c2 + d2. (18)

A unitary quaternion is a quaternion of modulus 1. The pure imaginary units i, j, k are unitary
quaternions. The quaternion conjugate (q.c.) is

∀ (a, b, c, d ) ∈ R4 (a + bi + c j + dk)∗ = a − bi − c j − dk. (19)

So we have

∀ h ∈ H �(h) = 1
2 (h + h∗). (20)

An other useful property is

∀ (x, y) ∈ H2 (xy)∗ = (y∗x∗). (21)

We also see that the subalgebras R + iR, R + jR, R + kR are commutative. For all x ∈ R and
μ ∈ {i, j, k}, we have the following Euler decomposition:

eμx = cos(x) + μ sin(x), (22)

which is a unitary quaternion. Any quaternion h can be written in its exponential form:

h = Aeiθ e−kχ e jφ, (23)

with A ∈ R the modulus and (θ, χ, φ) ∈] − π, π ] × [−π/4, π/4]×] − π, π ] the phase triplet of h
(see Ref. [42]).

B. Hypercomplex acoustic field

A quaternion-domain pressure field p̃ is associated to the real-valued pressure field as

p = �( p̃) = p̃ + p̃∗

2
. (24)

Due to the axisymmetric character of the geometry considered in this work, p(t,�) and p̃(t,�) are
2π -periodic in �.

For a 2π -periodic function f (�) : R �→ H, a quaternion Fourier series can be expressed by
writing the Fourier series of each of the quaternion components. It can be shown that

f + f ∗ = f0 +
∞∑

n=1

e−in�Kn + K∗
n e+in�, (25)
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where (Kn)n∈N∗ are quaternion coefficients. Using this result and Eq. (24), p(�, t ) can be expanded
as a sum of azimuthal modes:

p(�, t ) = η0(t ) + 1

2

∞∑
n=1

[e−in�ηn(t ) + η∗
n (t )e+in�]. (26)

This work focuses on situations where the acoustic field is governed by the nth azimuthal
eigenmode. It does not include situations where several eigenmodes nonlinearly interact, such as
the intriguing synchronization phenomenon involving azimuthal and longitudinal thermoacoustic
modes [43]. One can therefore continue with the following approximation:

p(�, t ) ≈ 1
2 [e−in�ηn(t ) + η∗

n (t )e+in�] = �[e−in�ηn(t )
]
. (27)

Without loss of generality, the hypercomplex time signal ηn can be written with the quaternion
exponential form initially proposed by Bülow and Sommer [44] and later modified by Flamant et al.
[42]:

ηn(t ) = A(t )einθ (t )e−kχ (t )e jφ(t ). (28)

In the present work, it is assumed that the sources distribution along the annulus induces only
weak damping or amplification of the acoustic energy. Consequently, ηn exhibits quasisinusoidal
oscillations at a pulsation that is close to the eigenfrequency ωn = 2πc/λn = nc/R of the associated
homogeneous Helmholtz equation with zero mean swirl, and we can write it in the form

ηn(t ) = A(t )einθ (t )e−kχ (t )e j[ωnt+ϕ(t )]. (29)

In that expression, A, θ , χ , ϕ are real-valued functions whose time variations are slow compared to
the fast oscillations at pulsation ωn, with (A, θ, χ, φ) ∈ R+×] − π, π ] × [−π/4, π/4]×] − π, π ].
The exponential notation for the hypercomplex pressure is thus

p̃(�, t ) = A(t )ein[θ (t )−�]e−kχ (t )e j[ωnt+ϕ(t )]. (30)

C. Physical meaning of the slow variables

Using the slow-flow variables A, θ , χ , ϕ is particularly convenient for differentiating standing,
clockwise and counterclockwise spinning modes over timescales that are long compared to the
acoustic period. The convention used here is the same as the one presented in Ref. [35]:

The nature angle χ characterizes the dynamic nature of the mode: It defines whether the
mode is standing (χ = 0) or spinning at the speed of sound in the clockwise (χ = −π/4) or
counterclockwise (χ = π/4) direction. Intermediate values of χ correspond to mixed modes, which
can be written as the sum of a spinning and a standing mode. χ > 0 means that the spinning
component spins counterclockwise (CCW), χ < 0 means it spins clockwise (CW).

The angle θ is the preferential direction because it indicates where the acoustic amplitude is the
largest. For a standing mode, θ is the antinodal direction of the acoustic pressure oscillations. For
mixed modes, θ is the direction of the standing component. For pure spinning modes, there is no
preferential direction and θ acts as a temporal phase angle. When θ vary in time, the preferential
direction of the mode drifts slowly. This has to be distinguished from the phenomenon of spinning
wave: in the case of standing modes with a slowly drifting preferential direction, the modes do not
propagate in the azimuthal direction and the rotation velocity is small compared to the speed of
sound. As discussed in Ref. [35], the range of θ could be limited to [0, π [ instead of ] − π, π ],
because θ and θ + π mod 2π represent exactly the same state. However, the range [0, π [ is not
chosen since it leads to potentially misleading phase jumps in θ time traces.

The angle ϕ is the slowly varying temporal phase of the wave. A slow linear drift of ϕ with time
can be interpreted as a small frequency shift.

Finally, A gives the amplitude of the acoustic pressure oscillations. In the case of a standing
mode, A is the amplitude of p in the antinodal direction. For a pure spinning mode, the amplitude of

023201-9



ABEL FAURE-BEAULIEU AND NICOLAS NOIRAY

FIG. 2. Representation of the mode state on the Bloch sphere. The markers correspond to the three cases
displayed in Fig. 3.

the Riemann invariant is A/
√

2. To illustrate this quaternion-based modal projection, one considers
the real part of Eq. (30), which provides the expression for the real pressure:

p(�, t ) = A cos[n(� − θ )] cos(χ ) cos(ωnt + ϕ) + A sin[n(� − θ )] sin(χ ) sin(ωnt + ϕ). (31)

From this expression, it becomes clear that a pure standing wave is obtained when χ (t ) = θ (t ) = 0.
If the slow variable θ varies over time, then the nodal lines of the mode correspondingly slowly
drifts, but the oscillation nevertheless falls in the standing wave category (χ = 0) as opposed to the
pure spinning modes (χ = ±π/4) for which the nodal lines spin at the speed of sound. Equation
(31) can be rewritten as a sum of two waves spinning, respectively, counterclockwise and clockwise:

p(�, t ) = A+ cos[−n(� − θ ) + ωnt + ϕ] + A− cos[n(� − θ ) + ωnt + ϕ], (32)

where the counterclockwise mode amplitude A+ and the clockwise mode amplitude A− are defined
as

A+ = cos(χ ) + sin(χ )

2
A and A− = cos(χ ) − sin(χ )

2
A. (33)

For a pure counterclockwise spinning mode (χ = π/4), A− is zero, while for a pure clockwise mode
(χ = −π/4), A+ is zero. In these cases, slow time variations of θ and ϕ result in slow changes of
the instantaneous frequency.

D. Representation on the Bloch sphere

As brightly proposed by Ghirardo and Bothien [35], an appropriate way to represent graphically
the state of an azimuthal mode and the trajectories of its slow evolution in time is the Bloch sphere,
with the following spherical coordinates {A, nθ, 2χ}. As shown in Fig. 2, for constant amplitude A,
the three-vector {A, nθ, 2χ} points on a sphere whose equator corresponds to pure standing modes
and the two poles, to pure spinning modes, for which the preferential angle θ is not meaningless
since it acts as a temporal phase. This spherical coordinate system involves twice the nature angle χ

because it is convenient to represent spinning modes χ = ±π/4 at the poles. Another specificity of
the chosen representation is that [A, nθ, 2χ ] and [A, nθ + π, 2χ ] indicate the same state. It is also
important to mention that this representation of the azimuthal mode state is incomplete in the sense
that it does not provide information about slow variation of the temporal phase. Examples of states
for the first azimuthal eigenmode are given in Fig. 3.
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(a) (b) (c)

FIG. 3. Representation of the acoustic pressure in the chamber for three different states of the first
azimuthal mode (n = 1), each of them being described by a point on the Bloch sphere: (a) standing mode
with χ = 0 and θ = π/6; (b) counterclockwise spinning mode with χ = π/4; (c) counterclockwise mixed
mode with χ = π/6 and θ = π/6.

IV. DERIVATION OF THE SLOW-FLOW EQUATIONS

In this section, the quaternion formalism of Sec. III B is inserted into the wave equation with
thermoacoustic feedback. The objective of the section is to propose a method for obtaining equations
that describe the dynamics at slow timescales. The proposed method can be seen as an adaption of
the Krylov-Bogoliubov method for bivariate signals: It provides a system of first-order differential
equations for the four variables A, χ, θ, ϕ, describing the quaternion embedding on the slow
timescales. We begin the derivation with the thermoacoustic wave Eq. (16), into which we replace
p with the quaternion exponential notation Eq. (27) introduced in the previous part, and where the
subscript (·)n of ηn has been dropped:

e−in�
[
η̈ + (α − i 2Mωn)η̇ + ω2

nη
]+ [η̈∗ + η̇∗(α + i 2Mωn) + ω2

nη
∗]e+in�

=
[
β(�) − 3κ

4
(e−in�η + η∗e+in�)2

]
(e−in�[η̇ − i Mωnη] + [η̇∗ + i Mωnη

∗]e+in�)

+ Mωn

n

∂β(�)

∂�
(e−in�η + η∗e+in�). (34)

In this equation, the eigenfrequency ωn = nc/R and the azimuthal Mach number M = U/c have
been introduced. The former corresponds to the wavelength of the nth pure azimuthal mode of a
thin annulus of radius R. The latter is positive when the swirl is counterclockwise and negative if
the swirl is clockwise.

Equation (34) can also be rewritten

e−in�
[
η̈ + (α − i 2Mωn)η̇ + ω2

nη
]+ q.c.

=
[
β(�) − 3κ

4
(e−in�η + q.c.)2

]
(e−in�[η̇ − i Mωnη] + q.c.)

+ Mωn

n

∂β(�)

∂�
(e−in�η + q.c.), (35)

where q.c. stands for quaternion conjugate.
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A. Spatial averaging

To remove the dependency in �, we use the following averaging operator in the azimuthal
direction:

〈 · 〉� = 1

2π

∫ 2π

0
ein� ( · ) d�. (36)

We also introduce the following projection C from H to C:

∀ (a, b, c, d ) ∈ R4 C(a + bi + c j + dk) ≡ a + bi, (37)

which will be a convenient notation for the following steps. When azimuthal averaging is applied to
the left-hand side (LHS) of the thermoacoustic Eq. (34), we obtain1

〈LHS〉� = C
[
η̈ + (α − i 2Mωn)η̇ + ω2

nη
]
. (38)

The azimuthally averaged LHS does not have j-imaginary and k-imaginary parts, and we used the
fact that C commute with the time derivative.

To apply the spatial averaging operator to the linear part of the thermoacoustic term, we use the
Fourier series of β(�) given in Eq. (15) and we show that only the terms of order 0 and 2n have
a nonzero contribution, which is in agreement with the study of Noiray, Bothien, and Schuermans
[15]. We have

〈β(e−in�η̇ + q.c.)〉� = β0

[
C(η̇) + c2n

2
e2in�2n C(η̇)∗

]
(39)

and

〈Mωnβ(�)(−i e−in�η + q.c.)〉� = Mωn β0 i
[
−C(η) + c2n

2
e2in�2n C(η)∗

]
(40)

and 〈
Mωn

n

∂β(�)

∂�
(e−in�η + q.c.)

〉
�

= −M ωn β0 i c2n e2in�2n C(η)∗. (41)

Since the azimuthal origin can be chosen arbitrarily, we set it so that �2n = 0. The locations
� = 0 mod (π/n) corresponds therefore to the angles where the Fourier component of order 2n
of β reaches its maximum. The averaged terms Eqs. (39), (40), and (41) also have zero j- and
k-imaginary parts. The nonlinear terms coming from the saturation model are

N.L. = 3κ

4
(e−in�η + q.c.)2(e−in�η̇ − Mωne−in�iη + q.c.). (42)

Replacing η with

η = A(t )einθ (t )e−kχ (t )e j[ωnt+ϕ(t )] (43)

and η̇ being written as its quaternion Cartesian decomposition

η̇ = a(t )i + b(t )i + c(t ) j + d (t )k, (44)

we show that the volume averaging of the nonlinear terms gives an expression with zero j- and
k- imaginary parts and depending only on t , A, χ , θ , ϕ and the two first parts of η̇, a(t ) and
b(t ). The global expression of the spatially averaged terms has been obtained with a computer
algebra software is too long to be reproduced in this paper. The averaged nonlinear terms will be

1For all functions h : R → H with h(t ) = a(t ) + ib(t ) + jc(t ) + kd (t ), we have (1/2π )
∫ 2π

0 ein�hein�d� =
c j + dk. Then 〈e−in�h + h∗ein�〉� = h − c j − dk = a + bi = C(h).

023201-12



SYMMETRY BREAKING OF AZIMUTHAL WAVES: …

noted fnl[A, χ, θ, ϕ, C(η̇)]. We define ξ (t ) = C[η(t )] ∈ C and we write the azimuthally averaged
equation:

ξ̈ + (α − β0)ξ̇ − 2iMωnξ̇ + ω2
nξ = β0

[c2n

2
ξ̇ ∗ − iMωn

(
ξ + c2n

2
ξ ∗
)]

+ fnl(A, χ, θ, ϕ, ξ̇ ). (45)

We remind that the system is governed by one fast timescale, of characteristic time 1/ωn, and
two slow timescales, one associated to the growth rate of thermoacoustic instabilities, with a
characteristic time 1/(β0 − α) and one associated to the convective phenomena due to the azimuthal
mean flow, whose characteristic time is 1/(Mωn). In Eq. (45), the terms ξ̈ and ω2

nξ are both of the
same order of magnitude Aω2

n and are the dominant terms. The order of magnitude of the terms
(α − β0)ξ̇ and 2iMωnξ̇ are, respectively, Aωn(β0 − α) and AMω2

n. In the right-hand side, the term
iβ0Mωnξ involves a product of β0 and Mωn, and is of the order of β0MωnA. In the next steps of the
derivation we will remove the second-order terms O[M2ω2

nA; (β0 − α)2A; (β0 − α)MωnA]. Under
these conditions, keeping the term O(β0MωnA) can be justified only in the case where β0 � β0 − α,
which means that the damping α of the chamber is large compared to the global growth rate β0 − α

of the instability.

B. Slow-flow averaging

The time derivative of ξ writes:

ξ̇ = C(η̇) = C[Ȧ einθe−kχ e j(ωnt+ϕ) + A inθ̇einθe−kχ e j(ωnt+ϕ) − A χ̇ einθk e−kχ e j(ωnt+ϕ)

+ A (ωn + ϕ̇) einθe−kχ e j(ωnt+ϕ) j]. (46)

In this expression, the factor of Aωn is large compared to the terms in Ȧ, Aθ̇ , Aχ̇ , Aϕ̇ since the
acoustic oscillations are fast compared to the slow variables evolution. In a way similar to the
Krylov-Bogoliubov method [40], ξ̇ will be sought under the form

ξ̇ = C[A ωn einθe−kχe j(ωnt+ϕ) j]. (47)

This imposes the following condition:

0 = C[Ȧ einθe−kχe j(ωnt+ϕ) + A inθ̇einθe−kχe j(ωnt+ϕ) − A χ̇ einθk e−kχ e j(ωnt+ϕ)

+ A ϕ̇ einθe−kχe j(ωnt+ϕ) j]. (48)

The second derivative is then obtained by differentiating Eq. (47):

ξ̈ = C[Ȧ ωn einθe−kχ e j(ωnt+ϕ) j + A ωn inθ̇einθe−kχ e j(ωnt+ϕ) j − A ωnχ̇ einθk e−kχ e j(ωnt+ϕ) j

− A ωn(ωn + ϕ̇) einθe−kχ e j(ωnt+ϕ)]. (49)

Using Eq. (47) implies that the expression ξ̈ does not involve the second derivatives of the slow
variables (Ä, χ̈ , θ̈ , ϕ̈) and the products of their first derivatives (e.g., Ȧϕ̇). Consequently, the terms
of order 2 in the slow timescales 1/(β0 − α) and 1/(Mωn) will not appear in the final system
of equations. Equations (47) and (49) are injected in the spatially averaged Eq. (45) and the
identification of the real and the i-imaginary parts gives two equations in A, χ, θ, ϕ and their first
time derivatives. The real and i-imaginary parts of the condition Eq. (48) provides two additional
equations in A, χ, θ, ϕ and their first derivatives. The four equations are linear equations in Ȧ, χ̇ , θ̇ ,
ϕ̇ with nonconstant coefficients. The system can be inverted and written under the form

Ẏ = Fosc(Y, t ), (50)

where Y = (A, χ, θ, ϕ)T and Fosc(Y, t ) a nonlinear function R5 �→ R4. The subscript “osc” means
that the function contains fast oscillatory terms. Indeed, for a given Y , Fosc(Y, ·) is a periodic function
of pulsation ωn. The system’s expression is relatively complex and we show only here the equations
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for the simplest configuration where the asymmetries and the swirl are set to 0 (c2n = 0 and M = 0).

Ȧ = 1

2
(β0 − α)A − 3κ

64
[5 + cos(4χ )]A3

+ A cos(2χ )

[
α − β0

2
cos(2(ϕ + ωnt )) + 9A2κ

32
cos(4(ϕ + ωnt ))

]
,

χ̇ = 3κ

64
A2 sin 4χ − sin(2χ )

[
α − β0

2
cos(2(ϕ + ωnt ))

+ 3A2κ

32
cos(2(ϕ+ωnt )) + 9A2κ

32
cos(4(ϕ + ωnt ))

]
,

nθ̇ = tan(2χ )

[
α − β0

2
sin(2(ϕ+ωnt ))+ 3A2κ

16
sin(2(ϕ + ωnt ))+ 9A2κ cos(2χ )

32
sin(4(ϕ + ωnt ))

]
,

ϕ̇ = − 1

cos(2χ )

[
α − β0

2
sin(2(ϕ + ωnt )) + 3A2κ

8
sin(2(ϕ + ωnt ))

+ 9A2κ cos(2χ )

32
sin(4(ϕ + ωnt ))

]
. (51)

In this system, the right-hand side of each equation is the sum of slow variables and fast oscillating
terms which are weakly perturbed harmonic oscillations.

The time averaging operator 〈·〉T over the one acoustic period T = 2π/ωn is applied on the
system, giving a time-averaged system of form

Ẏ = Fslow(Y ), (52)

where Fslow is the average of Fosc over one oscillation. This new system is called the slow-flow
system. The classical slow-flow averaging theorems of Krylov-Bogoliubov presented in [40,45]
show that for a weakly perturbed harmonic motion, if the perturbations have a characteristic time
τslow large compared to the fast oscillations, then the solutions of Eqs. (52) and (50) will differ of
an order 1/τslow on a time range τslow. The system Eq. (52) is a nonlinear dynamic system in A, χ ,
θ , and ϕ. The whole system with M �= 0 and c2n �= 0 has the same properties as the one presented
above and the time averaging can also be applied in this case.

V. UNIFORM THERMOACOUSTIC DISTRIBUTION WITHOUT MEAN SWIRL

This section deals with the analysis of the coupled equations describing the dynamics of the
slow-flow variables, when the thermoacoustic feedback is uniformly distributed along the annulus
circumference, i.e., β(�) = β0, when the system is linearly unstable, i.e., β0 > α, and when there
is no mean swirl, i.e., M = 0. The effect of time-delayed thermoacoustic feedback and stochastic
forcing will be investigated in Secs. VI and VII, respectively. The symmetry breaking induced by
nonuniform distribution of the thermoacoustic coupling and by the presence of a mean swirl will be
scrutinized in Secs. VIII and IX.

The wave equation is invariant by azimuthal rotations around the chamber axis and reflections
with respect to any axis of equation � = constant. The system of equations obtained with the
method detailed in the Sec. IV is

Ȧ = νA − 3κ

64
[5 + cos(4χ )]A3,

χ̇ = 3κ

64
A2 sin 4χ,

nθ̇ = 0,

ϕ̇ = 0. (53)
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FIG. 4. Stream lines describing the evolution of the state of the linearly unstable azimuthal-thermoacoustic-
mode on the Bloch sphere, for a uniform distribution of the thermoacoustic feedback, with no mean
swirl. Parameters: β0 = 160 rad s−1, α = 100 rad s−1, κ = 0.5 rad s−1Pa−2, ωn = 1167 rad s−1. Symbols: ◦,
attractors; ∗, repellers; +, saddles. The color scale is given in Fig. 5. (a) plane χ = 0 and (b) plane θ = 0 mod π .

In the amplitude equation, the linear growth rate ν = (β0 − α)/2, which is positive in the case of a
linearly unstable situation, has been introduced. The first two equations in A and χ are independent
of the two other variables θ and ϕ, which will be fixed by the initial condition and remain constant,
and this system of two equations can be analysed separately. It has four equilibrium points:

A = 0,

A = 4

3

√
2ν

κ
and χ = 0 (standing),

A = 4

√
ν

3κ
≡ A0 and χ = π

4
(spinning CCW),

A = 4

√
ν

3κ
and χ = −π

4
(spinning CW). (54)

A stability analysis is performed by deriving the eigenvalues of the Jacobian matrix associated
with Eq. (53) at these fixed points. It shows that the solution A = 0 is a repeller. The second
equilibrium point, which corresponds to a standing mode, is a saddle point and is therefore unstable
and repelling in the χ direction. The pure spinning modes in both directions are stable solutions.
This result and the amplitudes predicted for the spinning and the standing modes reconstructed
with the real expression of the pressure given in Eq. (31) are in agreement with the results of
Ref. [15]. Using the Bloch-Poincaré spherical representation introduced in the Sec. III D, Fig. 4
shows the 3D streamlines of the system for the coordinates A, χ , and θ . For more clarity, the
figure shows only the dynamics in two slices of the Bloch sphere instead of showing the full 3D
trajectories. The streamlines are obtained by computing the stream vector field in the slice and by
using only the projected component of the vector on the slice. For this illustration, the numerical
values of the parameters were arbitrarily set to β0 = 160 rad s−1, α = 100 rad s−1 (and therefore ν =
(β0 − α)/2 = 30 rad s−1), κ = 0.5 rad s−1 Pa−2, and fn = ωn/2π = 1167/2π � 185 Hz. These
values satisfy the condition ν � ωn, which is verified for thermoacoustic instabilities in practical
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FIG. 5. Color bar used for the contours of the streamline plots throughout the paper. The values correspond
to the norm of the stream vectors normalized by A0 (β0 − α) with A0 the amplitude of the stable spinning
modes in the symmetric configuration.This bar is represented in logarithmic scale to better visualize the state
change speed near equilibrium points.

gas turbine combustors, e.g., Ref. [26]. In the present case, ν/ωn ≈ 2.5% and α/ωn ≈ 8.5%, which
can be compared for instance to the experimental work [46] where ν/ωn ≈ 1% and α/ωn ≈ 5%.
The color defines the norm of the stream vector and the colormap is shown in Fig. 5. In particular,
the dark red zones hues correspond to regions where the dynamics is slow and corresponds to the
equilibrium points. Figure 4(a) shows that for initial conditions corresponding to low-amplitude
standing modes (in the plane χ = 0), the transient is characterised by a growth of the amplitude A,
while the direction of the antinodal line nθ does not change. A slowdown of the amplitude growth
occurs when the mode approaches the saddle circle A = (4/3) × (2ν/κ )1/2 of the equatorial plane
χ = 0, from which the state of the azimuthal mode is repelled toward one of the poles of the Bloch
sphere, which correspond to pure spinning modes. This transient was discovered by Schuermans,
Paschereit, and Monkewitz, who performed numerical simulations of thermoacoustic instabilities
in annular combustors by means of a reduced-order network model [14]. Afterwards, it was further
investigated analytically and numerically by Noiray, Bothien, and Schuermans [15] and by Ghirardo
and Juniper [29].

More generally, the dynamics of thermoacoustic azimuthal modes in such perfectly symmetrical
configuration corresponds to the general case of O(2)-symmetric supercritical Hopf bifurcations
investigated by Crawford and Knobloch in their famous paper [47]. They show that the only
equilibrium points are: the origin, the clockwise spinning wave, the counterclocklockwise spinning
wave, and the standing waves in every direction θ . Depending on the system nonlinearities, either
the spinning waves are stable and the standing waves are saddles, or the standing waves are stable
and the spinning waves are saddles. They also show that the amplitudes of the two spinning waves
are equal, and that when the spinning modes are stable, their amplitude is larger than the amplitude
of the unstable standing modes.

VI. TIME-DELAYED THERMOACOUSTIC FEEDBACK

Rayleigh [1] was the first to show the importance of the phase difference between the pressure
oscillations and the unsteady heat release in the phenomenon of thermoacoustic instability. This
phase difference defines whether the thermoacoustic feedback is constructive or destructive. In
practical gas turbine and aeroengine combustors, the delay corresponding to the phase lag between
acoustic field and flame heat release rate results from the finite-time convective propagation of
acoustically induced flame perturbations, such as equivalence ratio or swirl number fluctuations.
This time-delay is associated to the phase of the flame transfer function (FTF).

The introduction of a time delay between the heat release and the pressure in thermoacoustic
instabilities models has been applied in various studies, including annular configurations [14]. In
previous studies dealing with thermoacoustic instabilities in annular configurations, the time delay
between the acoustic field and the heat release rate oscillations has been accounted for in different
ways: (i) by using the simple n-τ formulation (e.g., Refs. [19,48]) and its state-space equivalent
[49] for modeling the linear thermoacoustic problem in time and frequency domain, (ii) by using
measured flame describing functions (e.g., Refs. [28,50]) for modeling the nonlinear thermoacoustic
problem in frequency domain, and (iii) by modeling the flame response to acoustic perturbations
with a distribution of time delays [14], or by using state-space representations of experimentally
measured FTFs [15,26] for simulating the nonlinear thermoacoustic problem in time domain.
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Recently, Ghirardo, Juniper, and Bothien published a very interesting detailed study [51] on
the effect of flame phase on thermoacoustic limit cycles in symmetric annular combustors without
mean swirl and without stochastic forcing. Notice that in this paper, time delay spread [14],
which is always more or less present in practical systems, was not accounted for. In Ref. [51], a
Galerkin expansion based on the natural acoustic modes of the annular combustor was performed,
which differs from Ref. [35] and the present work where the quaternion-based acoustic field
projection is adopted. The convective phase lag is implemented in the present model by replacing
the “nondelayed” thermoacoustic source term Eq. (14) by the following delayed model:

Q(�, t ) = βp(�, t − τ ) − κ p(�, t − τ )3. (55)

The thermoacoustic stability is very sensitive to small changes of the time delay [52]. This delay
τ typically does not exceed a few fast oscillations and it is small compared to the characteristic
times of the slow-flow dynamics. In this section, we consider the configuration with a delayed flame
response (τ �= 0) without swirling flow (M = 0) and with a distribution of the heat release that
does not exhibit 2n component in its Fourier decomposition (c2n = 0). The operations of averaging
described in the Sec. IV can be applied without modification. In addition, A, χ , θ , and φ are assumed
constant over τ to perform the time averaging. In contrast with Secs. VIII and IX, neither the
rotational nor the reflectional symmetry of the wave equation is broken and the results of Ref. [47]
are applicable in this case. The stable solutions will therefore be either two counterspinning waves
or standing waves. In the present case, the system of slow-flow equations becomes:

Ȧ = β0 cos(ωnτ ) − α

2
A − 3κ

64
[5 + cos(4χ )] cos(ωnτ )A3

χ̇ = 3κ

64
A3 sin(4χ ) cos(ωnτ )

nθ̇ = −3κ

32
A2 sin(2χ ) sin(ωnτ )

ϕ̇ =
(

−β0

2
+ 9A2κ

32

)
sin(ωnτ ). (56)

From the amplitude equation, the following condition leads to a linearly unstable thermoacoustic
system:

β0 cos(ωnτ ) − α > 0. (57)

It corresponds to the Rayleigh’s criterion. In particular, when cos(ωnτ ) < 0, the system is linearly
stable. The first two equations are similar to the system without time delay Eq. (53), with β0 replaced
by β0 cos(ωnτ ) and κ replaced by κ cos(ωnτ ). When the inequality Eq. (57) is fulfilled, the dynamics
of the system is therefore the same, but the amplitude of the stable spinning modes is now

Asp =
√

8[β0 − α/ cos(ωnτ )]

3κ
. (58)

At the limit cycle, the time derivative of the temporal phase ϕ̇ is constant
[β0 − 3α/ cos(ωnτ )] sin(ωnτ )/4, while the time derivative of the preferential direction nθ̇ converges
exponentially fast to the constant value −[β0 − α/ cos(ωnτ )] sin(ωnτ )/4 for the counterclockwise
spinning solution and the opposite for the clockwise spinning solution. Consequently, one can
express the evolution of these slow variables at the limit cycle as

nθ � ± 1
4 [β0 − α/ cos(ωnτ )] sin(ωnτ ) t + nθi,

(59)
ϕ = 1

4 [β0 − 3α/ cos(ωnτ )] sin(ωnτ ) t + ϕi,
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with θi and ϕi constants depending on the initial conditions. For a pure CCW spinning mode, the
amplitude A− of the CW component is zero. For a pure CW mode, the amplitude A+ of the CCW
component is zero. In the case of a pure CCW spinning mode, injecting Eq. (59) into Eq. (32) gives

p = A+ cos[−n(� − θi ) + ωtht + ϕi], (60)

where the drift of frequency from the pure acoustic frequency ωn to the thermoacoustic frequency
ωth comes from the linear drift of θ and ϕ. The expression of ωth is

ωth = ωn − α tan(ωnτ )/2. (61)

Notice that for pure spinning waves, there is no preferential direction and θ becomes a purely
temporal phase angle. The counterclockwise solution is

p = A− cos[n(� − θi ) + ωtht + ϕi], (62)

with the same definition of ωth. In the limit case where the system is neutrally stable [α =
β0 cos(ωnτ )], Eq. (61) becomes

ωth = ωn − β0 sin(ωnτ )/2.

This expression is consistent with Eq. (26b) of Ref. [51] under the condition that β0 � ωn, which
is the case in the present study. Various examples provided in Ref. [51] show that β0 is usually
between one and a few times greater than α. With Eq. (57), β0 cos(ωnτ ) and α are therefore of the
same order of magnitude, then α tan(ωnτ ) is of the order of magnitude of β0 sin(ωnτ ), which is
small compared to ωn since the pressure oscillations are short compared to the characteristic times
of slow-flow dynamics.

VII. STOCHASTIC FORCING

Gas turbine combustors are subject to a high level of turbulence. The flame’s heat release rate
is also affected by the turbulence and its fluctuations can therefore be decomposed as the sum
of an acoustically coherent and stochastic components. The latter acts as a random source in the
wave equation. As done in previous studies [4,53], the contribution of stochastic noise is modeled
by adding a random process in the equations. The stochastic forcing is represented by a Gaussian
white noise process because it is significantly more convenient for not increasing the dimension
of our system. For interested readers, the effect of noise color on the thermoacoustic feedback
has been considered in Ref. [54] and it was shown that when one dominant mode governs the
thermoacoustic dynamics, in general, white noise is a proxy which does not significantly affects the
system dynamics and the shape of the basin of attraction.

A. Stochastic averaging

To account for the presence of noise in the system, a random function �(t,�) is added in the
wave equation:

∂2 p

∂t2
+ 2U

R
∂2 p

∂�∂t
+ α

∂ p

∂t
− c2

R2

∂2 p

∂�2

= β(�)
∂ p

∂t
+ U

R
∂[β(�)p]

∂�
− 3κ p2

(
∂ p

∂t
+ U

R
∂ p

∂�

)
+ �(t,�). (63)

To apply the spatial averaging on this new term, we write it as a Fourier series in �:

�(t,�) = �0(t ) +
∑
m>0

�m(t )∗eim� + �m(t )e−im�. (64)
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Therefore:

〈�(t,�)〉� = �n(t ). (65)

The azimuthally averaged equation Eq. (45) becomes

ξ̈ + (α − 2iMωn)ξ̇ + ω2
nξ

= β0

[
ξ̇ + c2n

2
ξ̇ ∗ − iMωn

(
ξ + c2n

2
ξ ∗
)]

+ fnl(A, χ, θ, ϕ, ξ̇ ) + 2�n(t ). (66)

�n(t ) is complex and is written as �n = ζ1 + iζ2 with ζ1 and ζ2 two real zero-mean Gaussian
random processes (〈ζ1〉 = 0 = 〈ζ2〉, where 〈·〉 denotes the averaging on a time duration which is
long compared to the characteristic fluctuation time of the noises ζ1 and ζ2, but small compared to an
acoustic oscillation), with infinitely small correlation time and identical intensity �: 〈ζ1(t1)ζ1(t2)〉 =
�δ(t1 − t2) = 〈ζ2(t1)ζ2(t2)〉. Moreover, ζ1 and ζ2 are uncorrelated: ∀ t1, t2 〈ζ1(t1)ζ1(t2)〉 = 0.

Like in Sec. IV B, a first-order dynamic system in the slow variables can be obtained from
Eq. (66):

Ẏ = Ftot(Y, t ), (67)

where Y = (A, χ, θ, ϕ)T = (Y1, ...,Y4)T and Ftot(Y, t ) = (Ftot1, ..., Ftot4)T (Y, t ). The functions
Ftot1...4 are real-valued stochastic processes and they include fast oscillating terms at even multiples
of the natural eigenfrequency ωn. The deterministic and stochastic parts in Eq. (67) can be separated:

Ẏ = Fosc(Y, t ) + S(1)
osc(Y, t )ζ1(t ) + S(2)

osc(Y, t )ζ2(t ), (68)

where Fosc, S(1)
osc, and S(2)

osc are deterministic functions R5 �→ R4. In particular, Fosc has exactly the
same expression as in the deterministic system Eq. (50). The expressions for the components of
S(1)

osc and S(2)
osc are given in Appendix C. In Ref. [45], Stratonovich describes a methodology to get

the slow-flow equations for such a system. The first step consists in applying Krylov-Bogoliubov
averaging on the deterministic part to get rid of the fast oscillations in Fosc, giving the system

Ẏ = Fslow(Y ) + S(1)
osc(Y, t )ζ1(t ) + S(2)

osc(Y, t )ζ2(t ), (69)

which can be rewritten as

Ẏ = G(Y, t ). (70)

The deterministic part Fslow has the same expression as in the deterministic slow-flow system
Eq. (52).

The subscripts “osc” will be dropped from now on for the functions S(m)
osc , but it has to be kept

in mind that they include fast oscillating terms. The subscript “slow” is also dropped for sake
of readibility. The subscripts 1, 2, 3, 4 will be used to refer to the four components of Fslow,
G, S(1), and S(2). To get the contributions of the stochastic part of Eq. (69) on the slow-flow
dynamics, Stratonovitch [55] proposes to use the corresponding generalized Fokker-Planck equation
to describe the temporal evolution of the joint probability density function P(Y, t ) of the system
Eq. (69):

∂P(Y, t )

∂t
= −

4∑
i=1

∂

∂Yi

⎧⎨
⎩
⎡
⎣〈Gi〉 +

4∑
j=1

(∫ 0

−∞
K

[
∂Gi

∂Yj
, Gjτ

]
dτ

)⎤⎦P(Y, t )

⎫⎬
⎭ (71)

+
∑
i, j

∂2

∂Yi∂Yj

(
P(Y, t )

∫ 0

−∞
K[Gi, Gjτ ] dτ

)
. (72)

This expression is valid under the assumption that the correlation time of the noise is small compared
to the acoustic period, allowing to set the lower limit of the integrals to −∞. The correlation function
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K is defined as K[ f , g] = 〈 f g〉 − 〈 f 〉〈g〉. For a function f (t ), the notation fτ designs the time-shifted
function t �→ f (t + τ ).

Using the difference of timescales between the noise and the acoustic oscillations, the terms in
the Fokker-Planck equation can be computed:

〈Gi〉 = Fi,

K[Gi, Gjτ ] = S(1)
i S(1)

jτ 〈ζ1ζ1τ 〉 + S(2)
i S(2)

jτ 〈ζ2ζ2τ 〉,

K

[
∂Gi

∂Yj
, Gjτ

]
= ∂S(1)

i

∂Yj
S(1)

jτ 〈ζ1ζ1τ 〉 + ∂S(2)
i

∂Yj
S(2)

jτ 〈ζ2ζ2τ 〉.

The delay τ makes appear products of fast oscillating terms of phase ωnt and ωn(t − τ ). Using
trigonometry expansion formulas, we can write

S(k)
i S(k)

jτ = D(k)
Ci j cos(ωnτ ) + D(k)

Si j sin(ωnτ ), k = 1, 2, (73)

where D(k)
Ci j and D(k)

Si j are functions of Y and t only. Then:

∫ 0

−∞
K[Fi, Fjτ ] dτ =

2∑
k=1

[
D(k)

Ci j

∫ 0

−∞
cos(ωnτ )〈ζkζkτ 〉 dτ + D(k)

Si j

∫ 0

−∞
sin(ωnτ )〈ζkζkτ 〉 dτ

]
. (74)

Considering the the random forcing ζm are white noises, one can deduce that the first integral is
proportional to the noise intensity∫ 0

−∞ cos(ωnτ )〈ζkζkτ 〉 dτ = �/2 and the second vanishes:∫ 0
−∞ sin(ωnτ )〈ζkζkτ 〉 dτ = 0. It remains∫ 0

−∞
K[Gi, Gjτ ] dτ = �

2

(
D(1)

Ci j + D(2)
Ci j

)
. (75)

The right-hand side of this expression still contains fast coherent oscillations. Using the previously
introduced time averaging operator over one acoustic period 〈·〉T , the oscillations are separated from
the slow dynamics:∫ 0

−∞
K[Gi, Gjτ ] dτ = �

2

(〈
D(1)

Ci j

〉
T + 〈D(2)

Ci j

〉
T
)+ oscillatory terms (76)

≡ �

2
Di j + oscillatory terms. (77)

D is a 4 × 4 matrix of functions of the slow variables only. We can show that D is always positive
definite and real, it therefore admits a Cholesky decomposition: D = (1/2ω2)BT B with B a real
upper triangular matrix. The expression for B is

B =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1

A 0 0

0 0 1
nA cos(2χ ) − tan(2χ )

A

0 0 0 1
A

⎤
⎥⎥⎥⎦. (78)

The same procedure can be applied to deal with the terms
∫ 0
−∞ K[∂Gi/∂Yj, Gjτ ] dτ :

4∑
j=1

(∫ 0

−∞
K

[
∂Gi

∂Yj
, Gjτ

]
dτ

)
= �

2
Hi + oscillatory terms, (79)
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where H is a four components vector of functions of the slow variables only. As explained by
Stratonovich [45], the effect of these oscillations on the slow flow dynamics is a high order of
perturbation and can be neglected. The final Fokker-Planck equation for the slow-flow is

∂P(Y, t )

∂t
= −

{
4∑

i=1

∂

∂Yi

[(
Fi(Y ) + �

2
Hi(Y )

)
P(Y, t )

]}
(80)

+ 1

2

∑
i, j

∂2

∂Yi∂Yj

(
P(Y, t )

�

2ω2
n

[BT B](Y )i j

)
. (81)

This multivariable Fokker-Planck equation is equivalent to a system of stochastic differential
equations [56]:

Ẏ = Fslow(Y ) + �

2
H (Y ) + B(Y )N (t ), (82)

where N (t ) = [ζA, ζχ , ζθ , ζφ] is a four component vector of uncorrelated Gaussian white noises
of intensities �/2ω2

n. The function Fslow is equal to the function describing the slow-flow without
stochastic forcing. The modification of the deterministic part of the system through the addition of
noise is included in the function H . B accounts for the random fluctuations.

B. From standing modes to spinning modes

For the configuration without mean flow, time delay, and spatial asymmetries, the system of
Langevin equations describing the slow-flow dynamics in presence of turbulent forcing is

Ȧ = νA − 3κ

64
[5 + cos(4χ )]A3 + 3�

4Aω2
n

+ ζA,

χ̇ = 3κ

64
A2 sin(4χ ) − � tan(2χ )

2A2ω2
n

+ 1

A
ζχ ,

θ̇ = 1

An cos(2χ )
ζθ − tan(2χ )

A
ζϕ,

ϕ̇ = 1

A
ζϕ. (83)

In this perfectly symmetric configuration, ϕ̇ and θ̇ are governed by pure multiplicative noise. The
Langevin equations for A and χ exhibit deterministic and stochastic contributions, and they are
independent of ϕ and θ . The deterministic part of the equations for A and χ is

Ȧ = νA − 3κ

64
[5 + cos(4χ )]A3 + 3�

4Aω2
n

,

χ̇ = 3κ

64
A2 sin(4χ ) − � tan(2χ )

2A2ω2
n

. (84)

The behavior of this system depends on the random forcing amplitude: if � < 256ν2ω2
n/(27κ ) ≡

�thr, then the equilibrium points of the system are the standing mode

A = 4

3

√√√√ν +
√

ν2 + 27κ�
32ω2

n

κ
≡ Asto

stand and χ = 0, (85)
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FIG. 6. Stream lines in the plane θ = 0 mod π for the system Eq. (84). Parameters: β0 = 160 rad s−1,
α = 100 rad s−1, κ = 0.5 rad s−1Pa−2, ωn = 1167 rad s−1. �thr = 2.3.1010 Pa2 s−3. Symbols: ◦, attractors; +,
saddles. The color scale is given in Fig. 5. (a) � = 1.6.1010 Pa2s−3 < �thr and (b) � = 2.5.1010 Pa2 s−3 > �thr .

which is a saddle point, and the mixed modes

A =
√√√√ 8

3κ

(
ν +

√
ν2 + 3κ�

16ω2
n

)
≡ Asto

mix,

χ = ±1

2
arccos

⎛
⎝
√

3κ�/
(
4ω2

n

)
ν +

√
ν2 + 3κ�

16ω2
n

⎞
⎠, (86)

which are stable. The noise changes therefore the preferential dynamics of the system, which is not
anymore attracted to pure spinning modes. Increasing the noise intensity has the effect to move
the attractors of the associated deterministic system away from the poles of the Bloch sphere
and toward the equatorial plane. This conclusion has been recently drawn in Ref. [57], where a
similar equation for χ was derived. The standing modes are also equilibrium points, but they are
unstable. The streamlines for this case are shown in Fig. 6(a). When � � �thr, the mixed mode
merges in the equatorial plane and the standing modes become stable. The threshold value �thr

grows proportionally with ν2. It implies that (i) for a given noise intensity � and (ii) for a fixed
saturation constant κ , if the linear growth rate is increased from the Hopf point, then standing
modes will be the attractor, until the growth rate reaches νthr ≡ (3/16) × √

3κ�/ωn. Beyond this
critical growth rate, the attractor of the deterministic component of the system will be a mixed
mode which will move toward the poles of the Bloch sphere as the linear growth rate is further
increased. (�/(ω2

nν))1/2 gives an order of magnitude of the amplitude of the spatial average of the
random fluctuations induced by the noise �n(t ). The local perturbation term �(t,�) can possibly
reach significantly higher levels. It is important to emphasize that the fields shown in Fig. 6(a)
only indicate the dynamics associated with deterministic part of the system of coupled Langevin
equations. Additive and multiplicative noise will of course lead to random trajectories in the phase
space. Considering again cases with linear growth rates that are low compared to the critical growth
rate νthr (for which the equator of the Bloch sphere, which corresponds to standing modes, is
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the attractor) one can assume that χ ≈ 0, and A ≈ Asto
stand whose expression is given in Eq. (85).

Under these assumptions, it is interesting to consider the equation for preferential direction of the
mode:

θ̇ ≈ 1/
(
nAsto

stand

)
ζθ .

This is the equation of a Wiener process [56,58]. The mean-square displacement of θ will
therefore follow the law

〈[θ (�t + t ) − θ (t )]2〉 = �

2ω2
nn2
(
Asto

stand

)2 �t . (87)

The direction of the oscillation follows a random walk around the annulus. These conclusions
can be used to shed light on unexplained experimental observations of the dynamics of azimuthal
thermoacoustic modes in turbulent annular combustors with uniform distribution of identical flames
and without mean flow.

VIII. SYMMETRY BREAKING INDUCED BY A NONUNIFORM
THERMOACOUSTIC DISTRIBUTION

We consider now the effect of azimuthal asymmetries of the thermoacoustic coupling without
random forcing from turbulence. All the results obtained with the present quaternion formalism
are in perfect agreement with the findings in reference [15], which were obtained with a simpler
approach based on modal projection. It will be shown in the next section that the latter approach
is less general and cannot be used to predict the system dynamics when symmetry-breaking results
from the presence of mean swirl. When the Fourier coefficient c2n is different from 0, the system of
equations governing the dynamics of the slow-flow variables that define the state of the azimuthal
thermoacoustic mode is:

Ȧ =
(

ν + c2nβ0

4
cos(2nθ ) cos(2χ )

)
A − 3κ

64
(5 + cos(4χ ))A3

χ̇ = 3κ

64
A2 sin(4χ ) − c2nβ0

4
cos(2nθ ) sin(2χ )

nθ̇ = −c2nβ0

4

sin(2nθ )

cos(2χ )

ϕ̇ = c2nβ0

4
sin(2nθ ) tan(2χ ) (88)

If 0 < c2n < (β0 − α)/β0, then the equilibrium points of the system are

A = 0 (repeller),

A = 4

3

√
β0(1 + c2n/2) − α

κ
and χ = 0

and θ = 0 mod (π/n) (saddle),

A = 4

3

√
β0(1 − c2n/2) − α

κ
and χ = 0

and θ = π

2n
mod (π/n) (saddle),

A =
√

8(β0 − α)

3κ
and χ = ±π

4
(saddles),

023201-23



ABEL FAURE-BEAULIEU AND NICOLAS NOIRAY

A =
√

8(β0 − α)

3κ
= A0 and χ = ±1

2
arccos

(
c2nβ0

β0 − α

)
≡ ±χeq,

and θ = 0 mod (π/n) (attractors).

The stable solutions are mixed mode, rotating either in counterclockwise or clockwise direction.
The equilibrium points in the χ = 0 plane are two different kind of saddle points: The ones located
at angular positions nθ = 0 mod π are attractive in the A and θ directions and the ones located
on nθ = π/2 mod π are only attractive in the A direction, the two other eigendirections being
repulsive. The preferential direction is therefore attracted toward θ = 0( mod π/n), which was
defined in the Sec. IV B as the angle where the spatial Fourier term of order 2n of the linear gain
β reaches its maximum. The temporal slow phase ϕ stabilizes to a constant value depending on the
initial conditions. The streamlines plots in Fig. 7 show that the system is no longer attracted by the
poles of the Bloch sphere, which became saddles at the saddle-node bifurcations. Indeed, when c2n

is decreased and ultimately vanishes for the uniform distribution of thermoacoustic feedback, the
saddles at the poles coalesce with the attractors. On the other end, increasing the value of c2n pushes
χeq toward zero and therefore makes the standing part of the mode more and more prominent.

If the asymmetries of the thermoacoustic feedback along the annular combustor circumference
are important enough to get c2n > C2n = (β0 − α)/β0, then another bifurcation takes place where
the attractor merge with the saddle of the equatorial plane at θ = 0. It leads to the following
equilibrium points:

A = 0 (repeller),

A = 4

3

√
β0(1 + c2n/2) − α

κ
≡ Ast and χ = 0

and θ = 0 mod (π/n) (attractor),

A = 4

3

√
β0(1 − c2n/2) − α

κ
and χ = 0

and θ = π

2n
mod (π/n) (saddle),

A =
√

8(β0 − α)

3κ
and χ = ±π

4
(saddle).

The only stable solution is a standing mode locked on the maxima of the 2n-th order Fourier
component of β(�). Again, ϕ stabilizes on a constant value depending on the initial conditions.
Figure 8 shows that the attractors moved to the plane χ = 0 and merged in two points {χ = 0, θ =
0} and {χ = 0, θ = π} corresponding to the same attractor. When c2n > 2C2n, the saddle point
located in χ = 0, θ = π/2 mod π merges with the repeller in A = 0 and the origin becomes
a saddle point attracting in the direction θ = π/2 mod π and repelling to the direction θ = 0
mod π and to the poles. In conclusion, symmetry breaking induced by a nonuniform distribution of
the heat release rate feedback first induces a switch from pure spinning to mixed spinning-standing
solutions, and that for a sufficiently large asymmetry of the 2n Fourier component of the distribution,
the linearly unstable thermoacoustic system has a pure standing wave as solution.

IX. SYMMETRY BREAKING INDUCED BY THE PRESENCE OF MEAN SWIRL

The effect of a nonzero azimuthal velocity of the mean flow is now scrutinized. This configuration
with mean swirl is still axisymmetric but does no longer exhibit reflectional symmetry.

In their theoretical study about symmetry breaking in symmetric systems undergoing bifurca-
tions, Crawford and Knobloch [47] show that removing the reflectional symmetry will no longer
ensure that both spinning solutions will have the same amplitudes and eigenvalues. This symmetry
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FIG. 7. Stream lines describing the evolution of the state of the linearly unstable azimuthal-thermoacoustic-
mode on the Bloch Sphere, for a nonuniform distribution of the thermoacoustic feedback: c2n = 0.25 < C2n =
0.375. β0 = 160 rad s−1, α = 100 rad s−1, κ = 0.5 rad s−1Pa−2, ωn = 1167 rad s−1. Symbols: ◦, attractors; ∗,
repellers; +, saddles. The color scale is given in Fig. 5. (a) plane χ = 0, (b) plane θ = 0 mod π , (c) plane
inclinated of χeq, showing the two attractors χ = χeq and χ = −χeq. (d) Plane z=cst. including the points
{χ = χeq, θ = 0} and {χ = χeq, θ = π}, corresponding to the same state.

breaking is accompanied with a split of the degenerate eigenvalues of the associated linear problem,
as observed for instance in disk-shaped micrometer-sized ferromagnetic elements, in which the
polarization of a core mode breaks the symmetry between the two azimuthal spin-wave modes
[59]—Hoffmann et al. [60] shows that removing the core mode allows to restore the degeneracy
and suppress the frequency splitting. In the field of thermoacoustics, Bauerheim et al. [19] showed
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FIG. 8. Stream lines for a large azimuthal asymmetry: c2n = 0.5 > C2n = 0.375. β0 = 160 rad s−1, α =
100 rad s−1, κ = 0.5 rad s−1Pa−2, ωn = 1167 rad s−1. Symbols: ◦, attractors; ∗, repellers; +, saddles. The color
scale is given in Fig. 5. (a) plane χ = 0 and (b) plane θ = 0 mod π .

that a mean swirl in annular combustors affects the solutions of the linear eigenvalue problem and
that it leads to counter-rotating modes with different linear growth rates and frequencies.

In this section, we consider the nonlinear thermoacoustic problem of a thin annular combustor
with a low-Mach mean swirl (azimuthal velocity U < 0.1c), for a uniformly distributed heat release
rate feedback. To our knowledge, this problem has never been addressed, and we show in what
follows that this type of symmetry breaking bifurcation can be conveniently investigated with the
present quaternion-based acoustic field projection. Considering the case of c2n = 0, which is less
restrictive than the uniform distribution β = β0, we apply the slow flow averaging on the wave
Eq. (16) to obtain the following system:

Ȧ = 1

2
(β0[1 − M sin(2χ )] − α)A + 3κ

64
(−5 − cos(4χ ) + 4M sin(2χ ))A3,

χ̇ = 3κ

64
A2(sin(4χ ) + 6M cos(2χ )) − Mβ0

2
cos(2χ ),

nθ̇ = Mωn,

ϕ̇ = 0. (89)

The linear growth rate in the amplitude equation is (β0[1 − M sin(2χ )] − α)/2. It gets smaller
(respectively, larger) when M sin(2χ ) is positive (resp. negative), in other words the amplitude
grows faster when the wave propagates against the swirl (M > 0 and χ < 0, or M < 0 and χ > 0)
than when it propagates in the same direction (M > 0 and χ > 0, or M < 0 and χ < 0). It shows
that the swirl breaks the symmetry between the two spinning waves in the vicinity of the origin.
This symmetry breaking effect comes from the combined effect of the mean azimuthal flow and the
linear response of the flame. The term responsible of this effect in the thermoacoustic wave Eq. (16)
is (U/R)∂ (βp)/∂�. This term is a product of terms with slow timescales associated to the mean
azimuthal flow, and to the flame response. As specified at the end of the Sec. IV A, keeping this
term is meaningful only if β0 � β0 − α. If this condition is not fulfilled, then the splitting of the
counter-spinning waves growth rates is a second-order phenomenon and should not be considered
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in the present first-order analysis. Moreover, such second-order effects would be negligible in a
non ideal chamber, where several other physical phenomena would have a stronger influence on the
growth rate splitting, e.g., the presence of a radial mean velocity gradient [20].

Coming back to the present model, we can go one step further and consider the consequences
of the symmetry breaking for states with nonvanishing amplitudes, in particular the saddles and
attractors which govern this intriguing nonlinear dynamics.

From now on, we will always assume that M � 0, corresponding to a counterclockwise swirl.
The clockwise direction will sometimes be referred to as the counter swirl direction. The analysis
for M � 0 will give exactly the same results in a phase space where −χ replaces χ . The equilibrium
solutions for A and χ are:

A = 0, χ = ±π

4
;

A = 4

3

√
β0(1 − M2) − α

κ (1 − M2)
≡ Am, χ = 1

2
arcsin

(
3Mα

β0(1 − M2) − α

)
≡ χm;

A =
√

8(β0(1 − M ) − α)

3κ (1 − M )
≡ Accw, χ = π

4
;

A =
√

8(β0(1 + M ) − α)

3κ (1 + M )
≡ Acw, χ = −π

4
.

The first solution is the trivial 0 solution. The second solution corresponds to a mixed mode of
amplitude Am and nature angle χm increasing with the Mach. The two last solutions are pure
spinning modes, respectively, in the counterclockwise and the clockwise direction. The amplitude
of the clockwise spinning mode is larger than the equilibrium amplitude A0 = 4

√
ν/3κ without

swirl, and the amplitude of the counterclockwise mode is smaller. Some of these solutions are not
always defined depending on the value of M. The equilibrium point {Am, χm} exists only under the
condition

β0

α
>

1 + 3|M|
1 − M2

. (90)

In the case of a positive Mach small compared to 1, this condition becomes

β0

α
>

1 + 3M

1 − M2
. (91)

The condition on M is a second-order polynomial equation with only one positive root. Its value is

M1 =
√(

3α

2β0

)2

+
(

1 − α

β0

)
− 3α

2β0
. (92)

The counterclockwise mode is defined only if the following condition is satisfied:

M < 1 − α

β0
≡ M2. (93)

Using α < β0, we have

0 � M1 < M2. (94)

For each of the cases 0 < M < M1, M1 < M < M2, and M2 < M, a stability analysis of the fixed
points was performed:

(1) For the lowest range of Mach 0 < M < M1, the two spinning modes are stable solutions. The
mixed mode is a saddle circle, and the solutions A = 0, χ = ±π/4 are repellers. The amplitude of

023201-27



ABEL FAURE-BEAULIEU AND NICOLAS NOIRAY

FIG. 9. Streamlines for M = 0.005. M1 = 0.0107 > M. The green symbols are the equilibrium points: ◦,
attractors; ∗, repellers; +, saddles. Parameters: β0 = 160 rad s−1, α = 155 rad s−1, κ = 0.5 rad s−1Pa−2, ωn =
1167 rad s−1. The maximum value of the color scale is not the same as shown in Fig. 5. (a) plane χ = 0 and
(b) plane θ = 0 mod π .

the counter-swirl mode is higher than the amplitude of the mode spinning in the swirl direction.
Figure 9 shows the streamlines of the system. The streamlines approaching the amplitude Am are
either attracted to the lower pole if they are in the sector χ < χm, either to the upper pole if they are
in the sector χ > χm. When the Mach increases, the angular sector χ > χm gets smaller and it is
therefore less likely to end up in the swirl direction.

(2) When M reaches M1, the saddle circle and the counterclockwise mode attractor at the north
pole merge together.

(3) For the range M1 < M < M2, the saddle circle {Am, χm} is no longer defined. The spinning
modes are still equilibrium points of the system, but a stability analysis shows that the counter-
clockwise mode has become a saddle point. Figure 10(d) shows that the streamlines are first pointing
toward the counterclockwise mode and are subsequently bending toward the clockwise mode. When
the Mach number increases, the amplitude of the counterclockwise mode decreases and eventually
reaches 0 when M = M2.

(4) When M > M2, the only stable solution is the counter-swirl mode. The point A = 0, χ =
+π/4 becomes a saddle, while the point A = 0, χ = −π/4 remains a repeller. This behavior is
obtained in our example for a Mach number M2 = 0.03, which is relevant for practical applications.

It has to be noted that all these different regimes are due to the presence of the nonlinear term
−3κ p2(U/R)∂ (βp)/∂� in the wave Eq. (16). This behavior is therefore sensitive to the model used
for the flame’s nonlinear response.

Let us now discuss the evolution of θ and ϕ, and the associated consequences on the oscillation
frequency at the stable fixed points when the Mach number is increased. The time integration of the
θ and ϕ equations in the system Eq. (89) gives

θ = Mωn

n
t + θi,

(95)
ϕ = ϕi,
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FIG. 10. Streamlines in the plane θ = 0 for different values of M. M1 = 0.0107, M2 = 0.0313. Symbols:
◦, attractors; ∗, repellers; +, saddles. The parameters are the same as described in the caption of Fig. 9. The
same color scale is used for the the four first plots. (a) M = 0, (b) M = 0.005 < M1, (c) M = M1, (d) M =
0.02 M1 < M < M2, (e) M = M2, and (f) M = 0.1 > M2.
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FIG. 11. Streamlines for M = 0.005, for the model without convective terms in the thermoacoustic source
term. The green symbols are the equilibrium points: ◦, attractors; ∗, repellers; +, saddles. Parameters: β0 =
160 rad s−1, α = 155 rad s−1, κ = 0.5 rad s−1Pa−2, ωn = 1167 rad s−1. (a) plane χ = 0 and (b) plane θ = 0
mod π .

with θi and ϕi the initial values for θ and ϕ. These expression are introduced in the expression of p
as a sum of two counter propagating waves, Eq. (32), which gives

p = A+ cos[−n(� − θi ) + tω+ + ϕi] + A− cos[n(� − θi ) + tω− + ϕi], (96)

where we defined

ω+ = ωn(1 + M ) (97)

and

ω− = ωn(1 − M ). (98)

The counterclockwise and clockwise spinning components of the pressure have therefore different
frequencies. The counterswirl component has the lower frequency. The frequency gap between
the two components is 2Mωn, which is small compared to the pure acoustic frequency ωn. This
frequency splitting due to the azimuthal flow has been previously observed experimentally in
Ref. [61] and predicted from a linear stability analysis of a lumped-element description of the
thermoacoustics of an annular combustor [19]. It has to be noted that the phenomenon of frequency
splitting does not depend on the model adopted for the flame response. In the wave Eq. (16), the
frequency splitting comes from the term −2(U/R)(∂2 p/∂�∂t ), which is present in the convected
acoustic wave operator, regardless on the presence of source terms. Furthermore, the expression of
θ in Eq. (95) shows that the preferential direction angle will drift at the velocity of the mean flow
during the transient phases where the mode is not purely spinning. However, in real gas turbines, the
turbulent combustion noise adds a constant excitation in the system, which prevents the azimuthal
thermoacoustic mode to be purely spinning as demonstrated in Sec. VII. The combined effects of
stochastic forcing from turbulence and symmetry breaking can be modeled by combining the results
of Secs. VII, VIII, and IX.

In the previous case, the splitting of the counter-spinning-waves growth rates and the phase space
evolution are governed by the presence of the convective derivative of Q̇′ in Eq. (2). Indeed, it results
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from (U/R)(∂Q̇′/∂�) in D̄Q̇′/Dt when the azimuthal mean flow is considered uniform in the whole
chamber. However, if the flames are located in a region where there is no mean azimuthal bulk
velocity, then the thermoacoustic source term would result from the spatial averaging of ∂Q̇′/∂t
only. Then, the slow flow system becomes simpler:

Ȧ = 1

2
(β0 − α)A + 3κ

64
(−5 − cos(4χ ))A3,

χ̇ = 3κ

64
A2 sin(4χ ),

nθ̇ = Mωn,

ϕ̇ = 0. (99)

The equations for Ȧ and χ̇ are exactly the same as the equations for the case without swirl presented
in Sec. V: the independent system for A and χ is not affected by the swirling motion and leads to
stable spinning modes with amplitude A0 given in Eq. (54). However, the equation for θ̇ involves
M, which induces splitting of the frequencies of the counter-spinning modes. Figure 11 shows the
streamlines of this new system. In conclusion, the phase space evolution is very sensitive to the
presence or not of mean azimuthal flow in the heat release rate regions.

X. CONCLUSION

In this paper, the problem of thermoacoustic instabilities in annular combustion chambers
has been considered with a new theoretical approach. Starting with a low-Mach convected
wave equation for the acoustic pressure with forcing from heat release rate and velocity field
fluctuations, we derived a 1D approximation for thin annulus with mean swirling flows. Then,
we inserted a quaternion-based ansatz for the acoustic field to find the systems of differential
equations describing the dynamics of the slow-flow variables (amplitude, nature angle, preferential
direction, and temporal phase drift of the azimuthal thermoacoustic modes) for different scenarios:
(i) thermoacoustic feedback with or without time delay, (ii) in presence or not of stochastic
forcing by turbulence, (iii) with uniform or nonuniform thermoacoustic distribution along the
annulus circumference, (iv) in presence or not of a mean swirl in the annulus. This quaternion-
based ansatz was initially proposed for bi-variate time-series analysis and applied for seismic
data processing [42], and subsequently taken up for analyzing acoustic pressure data recorded in
annular combustors [35]. Classical deterministic and stochastic methods of slow-flow averaging
were adapted to this quaternion formalism to obtain nonlinear dynamical systems describing the
dynamics of azimuthal modes over timescales that are large compared to the acoustic period.
The quaternion representation allows us to simultaneously model, symmetry breaking induced by
nonuniform distribution of the thermoacoustic sources and by the presence of a mean swirl in
the annulus. This complete description cannot be achieved with the alternative models available
in the literature for this problem. Indeed, the approach consisting in projecting the acoustic field
onto the orthogonal acoustic eigenmodes of the annulus [4,15,43] captures rotational symmetry
breaking induced by spatial thermoacoustic nonuniformities, while it is not appropriate to describe
the reflectional symmetry breaking induced by a mean swirl. In contrast, the approach that is
based on a representation of the acoustic field using clockwise and counterclockwise spinning
waves [16] cannot capture the former symmetry breaking, while it is very suited for describing
the latter. As shown already in Ref. [15] with the model based on Helmholtz eigenmode pairs, the
quaternion-based framework predicts (i) spinning waves limit-cycles for a uniform distribution of
thermoacoustic sources without mean flow, where the direction of the spinning wave depending on
the initial conditions, (ii) mixed-modes for nonzero 2n component c2n of the Fourier series for the
thermoacoustic source distribution and ultimately standing modes when c2n exceeds (β0 − α)/β0,
where the damping coefficient α characterizes uniformly distributed acoustic losses around the
annular combustor, and where β0 is the zero-order component of the Fourier series. Notice that
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the present modeling approach depicts nonlinear flame response that depends on acoustic pressure
or, via the time delay, on acoustic axial velocity. Although it is generally acknowledged that the
amplitude increase of the latter acoustic perturbation is the most important driver of the saturation
of the heat release rate response, another model which accounts for azimuthal acoustic velocity has
been proposed some years ago [29] and leads to stable standing modes even for situations where
c2n = 0. The main new conclusions of the present work are now listed:

(1) For annular combustors without low-Mach mean swirl (M = 0) and with c2n = 0, a delayed
thermoacoustic feedback induces a slight shift of the eigenfrequency of the spinning mode limit-
cycle; this shift depends on the time-delay τ , which also applies to longitudinal modes in can-
combustors. It does not depend on the spinning direction.

(2) For annular combustors with M = 0, c2n = 0, τ = 0, and with stochastic forcing from tur-
bulence, whose spatially averaged contribution is modeled as a bivariate white noise of intensity �,
pure spinning waves are not anymore the fixed points of the phase space defined by the deterministic
part of the Langevin-equations-system for the slow-flow variables. When the thermoacoustic system
is linearly unstable and when the noise intensity is increased from zero, the attracting fixed points
are on two circles in the Bloch sphere representation, which corresponds to mixed modes in every
direction. For a given linear growth rate ν and saturation constant κ , there exists a critical noise
intensity beyond which standing modes (equator on the Bloch sphere), with nodal direction evolving
as a random walk, are attracting the thermoacoustic system. In other words, for a given noise
intensity �, standing modes statistically prevail when the linear growth rate becomes positive, and
beyond a critical growth rate νthr ≡ (3/16) × √

3κ�/ωn, mixed modes govern the system dynamics.
For further increase of the linear growth rate, these mixed-modes asymptotically tend to pure
spinning modes.

(3) For annular combustors with mean swirl (M �= 0) and with c2n = 0, τ = 0 and � = 0, the
counter-spinning modes have no longer the same frequency ωn(1 ± M ). Additionally, if the heat
release occurs in a region where there is a uniform azimuthal mean flow, the spinning mode rotating
against the swirl direction attracts the system with more strength than the corotating spinning mode.
Beyond a critical azimuthal Mach number, a saddle-node bifurcation leads to a situation where the
only attractor of the system is the spinning mode traveling against the mean swirl. Conversely, when
the flames are not located in the convection zone, both counter-spinning modes are equally strong
attractors.

We conclude this study with the two following remarks: First, these results are quantitative for
an idealized annular combustion chamber and they can only be used for qualitatively interpreting
observations from a real-world annular combustor. Indeed, in practical systems, there are additional
effects that can have a very significant impact on the thermoacoustic dynamics and that are not
accounted for in this model, e.g. the acoustic coupling between the chamber and the plenum. Second,
several combinations of these effects were not considered in the present paper and will be the
topic of future work. For instance, one can expect that other intriguing nonlinear dynamics would
result from {M �= 0, c2n = 0, τ �= 0, σ �= 0}, i.e., combined effects of mean swirl, delayed flame
response and stochastic forcing. Third, these results show that there can be different root causes
for statistically more frequent standing modes or spinning modes. Consequently, when interpreting
experimental and numerical observations of azimuthal thermoacoustic modes, it is important to
quantify (i) the rotational and reflectional symmetry of the annular turbulent combustor considered,
which is not easy in the case of experimental or practical setups, and (ii) the statistics of the observed
slow-flow thermoacoustic dynamics, which is not easy in the case of computationally expensive
large eddy simulations.
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APPENDIX A: DERIVATION OF A WAVE EQUATION FOR THE PRESSURE WITH
THERMOACOUSTIC AND AEROACOUSTIC SOURCE TERMS

In this Appendix, we build upon the works of Howe [62,63] to derive a wave equation for the
acoustic pressure in annular chambers in presence of a uniform mean flow and of aeroacoustic and
thermoacoustic sources.

The pressure, velocity, density, temperature, specific entropy, and vorticity at point x and time t
are, respectively, denoted by p(x, t ), u(x, t ), ρ(x, t ), T (x, t ), S(x, t ), ω(x, t ). The considered fluid
fulfils the ideal gas law p = ρrT , with r the specific gas constant. The sound speed and the specific
heat capacity for constant pressure are, respectively, denoted by c = √

γ rT and cp = γ r/(γ − 1),
with γ the heat capacity ratio. The Euler momentum equation for a nonviscous flow is

Du
Dt

+ 1

ρ
∇p = 0, (A1)

where D/Dt = ∂/∂t + u · ∇ is the material derivative. This equation can be rewritten in Crocco’s
form:

∂u
∂t

+ ∇B = −ω × u + T ∇S, (A2)

where the total enthalpy per unit mass B = u2/2 + ∫ ρ−1d p + ∫ T dS and the Lamb vector ω × u
have been introduced. The mass balance equation is given by

1

ρ

Dρ

Dt
+ ∇ · u = 0. (A3)

When heat is released in a fluid, the density ρ can be written as a function of the two thermodynamic
variables p and S, and one can write the differential equality

dρ = ∂ρ

∂ p

∣∣∣∣
S

d p + ∂ρ

∂S

∣∣∣∣
p

dS. (A4)

Considering the ideal gas law and the facts that cpdT = T dS at constant pressure and that
d p = c2dρ at constant entropy, one obtains

dρ = 1

c2
d p − ρ

cp
dS, (A5)

and therefore

Dρ

Dt
= 1

c2

Dp

Dt
− γ − 1

c2
ρT

DS

Dt
. (A6)

In this model, one considers entropy changes resulting from the combustion heat release and from
heat diffusion, but one neglects the effects of viscous heating and species diffusion. Under these
assumptions, Eq. (A6) becomes

Dρ

Dt
= 1

c2

Dp

Dt
− γ − 1

c2

(
DQ

Dt
+ ∇ · λ∇T

)
, (A7)

where Q is the heat released by the combustion reaction and λ the thermal conductivity of the fluid.
Taking the divergence of Eq. (A2), the time derivative of the continuity Eq. (A3), using Eq. (A7),
and

DB

Dt
= 1

ρ

∂ p

∂t
+ T

DS

Dt
,
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one can derive the following equation for the total enthalpy:

D

Dt

(
1

c2

DB

Dt

)
+ 1

c2

Du
Dt

· ∇B − ∇2B

= ∇ · (ω × u − T ∇S) − 1

c2

Du
Dt

· (ω × u − T ∇S) + D

Dt

(
T

c2

DS

Dt

)

+ ∂

∂t

{
γ − 1

ρc2

(
DQ

Dt
+ ∇ · λ∇T

)}
. (A8)

This equation is Eq. (4.14) in the famous paper from Howe [62] and we just have explicitly
expressed the contribution from combustion heat release and heat diffusion in the last right hand
side term. The other forcing terms are acoustic sources due to the unsteady heat release rate, the
vorticity and entropy inhomogeneities. This equation is exact and will be linearized in the next
paragraph to obtain a wave equation for the pressure fluctuations.

From now on, we consider small perturbations around a stationary low Mach mean flow at
thermal equilibrium and work in the frame of linear acoustics. The flow variables are decomposed as
the sum of a steady and a fluctuating component, e.g., p(x, t ) = p(x) + p′(x, t ). This decomposition
is applied to the variables of Eq. (A8) to derive an equation for the fluctuations where the
terms involving products of the fluctuating quantities are neglected. The resulting equation, which
contains many terms and which is not presented here, will be further simplified by considering
incompressible mean flows with uniform density field, and by discarding coherent vorticity and
entropy disturbances. In addition, only the first-order terms in Mach number are retained.

To get the perturbations of the last right-hand-side term of Eq. (A8), one has to subtract its time-
averaged component. Under low Mach approximation, this time-averaged contribution satisfies:
DS/Dt = 0. With the other assumptions made to derive Eq. (A7), it yields

Q̇ + ∇ · λ∇T = 0, (A9)

which just means that the mean heat release rate Q̇ = DQ/Dt is locally balanced by heat diffusion.
Consequently, the linearized energy equation for the perturbations around the incompressible mean
flow is

D̄ρ ′

Dt
= 1

c2

D̄p′

Dt
− γ − 1

c2
(Q̇′ + ∇ · λ∇T ′), (A10)

where we introduced the notation D̄/Dt = ∂/∂t + u · ∇. In what follows, one assumes that the
term ∇ · λ∇T ′ corresponding to unsteady conduction phenomena is negligible compared to the one
associated with the heat release rate fluctuations from the unsteady flames. With the assumption of
negligible temperature and entropy gradients in the mean flow and uniform speed of sound c, the
linearization of Eq. (A8) leads to the following convected wave equation:(

1

c2

D̄2

Dt2
− ∇2

)
(B′ − T S′) = γ − 1

ρc2

∂Q̇′

∂t
+ ∇ · (ω × u)′. (A11)

The objective is now to obtain a convected wave equation for the acoustic pressure p′. With the
definition of the total enthalpy, one can write B′ − T S′ = p′/ρ + u · u′ and therefore, the left-hand-
side of Eq. (A11) can be decomposed as

�ū(B′ − T S′) = 1

ρ
�ū(p′) + �ū(u · u′), (A12)

where we introduced a convected wave operator, �ū = c−2D̄2/Dt2 − ∇2. The term �ū(u · u′)
comes from the interaction of the mean flow with the velocity fluctuations and vanishes for zero
mean flow velocity.
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In this paragraph, the term �ū(u · u′) is rewritten as a source term of the wave equation or the
fluctuating pressure. To do so, one writes a convected wave equation for the velocity fluctuations u′
by considering, with the assumption of an incompressible mean flow, the linearized mass balance
equation

D̄ρ ′

Dt
+ ρ∇ · u′ = 0, (A13)

the linearized energy equation

D̄ρ ′

Dt
= 1

c2

D̄p′

Dt
− γ − 1

c2
Q̇′, (A14)

and the linearized Euler-Crocco momentum equation

∂u′

∂t
+ (ω × u)′ + (u′ · ∇)u + (u · ∇)u′ = − 1

ρ
∇p′. (A15)

The material derivative of Eq. (A15) and the gradient of Eq. (A13) are combined with the assump-
tion of a uniform mean density in the domain of interest. Using the identity ∇∇· = ∇2 + ∇ × ∇×,
one obtains a convected wave equation for the fluctuating velocity with source terms. Taking the dot
product of this equation with u and neglecting the second-order terms in Mach, one obtains

�ū(u′) · u = −γ − 1

ρ c2
u · ∇Q̇′ + (∇ × ω′) · u. (A16)

Tensor calculus identities give us2

�ū(u · u′) = �ū(u′) · u − (∇2u) · u′ − 2(∇u) : (∇u′). (A17)

The last step consists in combining the wave Eq. (A11), the decomposition Eq. (A12), and
Eqs. (A16) and (A17) to obtain a convected wave equation for p′:

�ū

(
p′

ρ

)
= γ − 1

ρc2

D̄Q̇′

Dt
+ ∇ · (ω × u′) + ∇ · (ω′ × u)

− (∇ × ω′) · u + (∇2u) · u′ + 2(∇u) : (∇u′). (A18)

This equation can be rewritten

�ū(p′/ρ ) = (γ − 1)/(ρc2)(D̄Q̇′/Dt ) + 2(∇u) : (∇u′)T . (A19)

and is in agreement with the one derived in Ref. [64]. This is a convected wave equation for the
fluctuating pressure, which is applicable to low-Mach mean flows with uniform density and sound
speed distributions, which results from a first-order approximation in Mach, and which has source
terms resulting from fluctuations of heat release rate, velocity, and vorticity.

Equation (A19) will now be further simplified for the case of thin annular chambers with
unsteady heat release rate. The thin annulus has a mean radius R, a thickness δR, with R � δR,
and a length Z . Figure 1 presents this simplified geometry and the associated cylindrical coordinate
system. We assume u = Ue� + V ez to model a simple swirling motion. Indeed, for some practical
combustors, a mean low-Mach azimuthal velocity U can reach the same order of magnitude as the
mean axial velocity component V due to the design of the burners and their arrangement along
the circumference of the annulus. One also considers situations where the velocity fluctuations are
quasi-irrotational, with negligible axial and radial components and gradients, i.e., u′ ≈ u′

�(�) e�,
where e� is the unit vector in the azimuthal direction. The heat release rate fluctuations are also

2The definition used here for the tensor double dot product is: (ai j ) : (bi j ) =∑i j ai jbi j . An other definition
exists with the transpose of b.
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assumed to depend on � and t only. These assumptions lead to the cancellation of the aeroacoustic
source term 2(∇u) : (∇u′)T and the wave equation becomes

�ū p′ = γ − 1

c2

(
∂Q̇′

∂t
+ U

R
∂Q̇′

∂�

)
. (A20)

APPENDIX B: GENERAL SYSTEM OF SLOW-FLOW EQUATIONS INCLUDING THE EFFECTS
OF SWIRL, TIME DELAY, AZIMUTHAL ASYMMETRY, AND STOCHASTIC FORCING

Amplitude equation

Ȧ = 1

2
{β0 cos(ωnτ )[1 − M sin(2χ )] − α}A

+ c2nβ0

4
[cos(2nθ ) cos(ωnτ ) − M sin(2nθ ) sin(ωnτ )] cos(2χ )A

+ 3κ

64
cos(ωnτ )[−5 − cos(4χ ) + 4M sin(2χ )]A3 + 3�

4ω2
nA

+ ζA.

Nature angle equation

χ̇ = 3κ

64
A2 cos(ωnτ )[sin(4χ ) + 6M cos(2χ )] − Mβ0

2
cos(2χ ) cos(ωnτ )

− c2nβ0

4
[cos(2nθ ) sin(2χ ) cos(ωnτ ) + sin(2nθ ) sin(ωnτ )]

− c2nβ0M

4
[cos(2nθ ) cos(ωnτ ) + sin(2nθ ) sin(2χ ) sin(ωnτ )] − � tan(2χ )

2ω2
nA2

+ 1

A
ζχ .

Preferential angle equation

nθ̇ = M

[
ωn + β0

2
sin(ωnτ )

]
− 3κ

32
A2[3M + sin(2χ )] sin(ωnτ )

+ c2nβ0

4

[
− sin(2nθ ) cos(ωnτ )

cos(2χ )
+ cos(2nθ ) sin(ωnτ ) tan(2χ )

]

+ c2nβ0M

4

[
cos(2nθ ) sin(ωnτ )

cos(2χ )
− sin(2nθ ) cos(ωnτ ) tan(2χ )

]

+ 1

A cos(2χ )
ζθ − tan(2χ )

A
ζϕ.

Phase equation

ϕ̇ = −β0

2
sin(ωnτ ) + 3κ

32
A2[3 + M sin(2χ )] sin(ωnτ )

+ c2nβ0

4

[
sin(2nθ ) cos(ωnτ ) tan(2χ ) − cos(2nθ ) sin(ωnτ )

cos(2χ )

]

+ c2nβ0M

4

[
sin(2nθ ) cos(ωnτ )

cos(2χ )
− cos(2nθ ) sin(ωnτ ) tan(2χ )

]
+ 1

A
ζϕ.
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APPENDIX C: EXPRESSION OF THE RANDOM FLUCTUATION TERMS IN THE DYNAMIC
SYSTEM BEFORE APPLYING THE STOCHASTIC AVERAGING PROCEDURE

Before the stochastic averaging (see Sec. VII), the system describing the evolution of the
variables Y = (A, χ, θ, ϕ)T can be written as

Ẏ = Fslow(Y ) + S(1)(Y, t )ζ1(t ) + S(2)(Y, t )ζ2(t ),

where Fslow is the deterministic part (which can be obtained from the equations of Appendix B with
σ = 0) and S(1)(Y, t )ζ1(t ), S(2)(Y, t )ζ2(t ) are the fluctuating terms. The components of S(1) and S(2)

have the following expressions:

S(1)
A = −ωn

sin(χ ) sin(nθ ) cos(ϕ + ωnt ) + cos(χ ) cos(nθ ) sin(ϕ + ωnt )

ωn
,

S(1)
χ = sin(χ ) cos(nθ ) sin(ϕ + ωnt ) − cos(χ ) sin(nθ ) cos(ϕ + ωnt )

ωnA
,

S(1)
θ = 2 cos(2χ )

sin(χ ) cos(nθ ) cos(ϕ + ωnt ) + cos(χ ) sin(nθ ) sin(ϕ + ωnt )

ωnAn[1 + cos(4χ )]
,

S(1)
ϕ = −2ωn cos(2χ )

cos(χ ) cos(nθ ) cos(ϕ + ωnt ) + sin(χ ) sin(nθ ) sin(ϕ + ωnt )

ωnA[1 + cos(4χ )]
,

S(2)
A = sin(χ ) cos(nθ ) cos(ϕ + ωnt ) − cos(χ ) sin(nθ ) sin(ϕ + ωnt )

ωn
,

S(2)
χ = cos(χ ) cos(nθ ) cos(ϕ + ωnt ) + sin(χ ) sin(nθ ) sin(ϕ + ωnt )

ωnA
,

S(2)
θ = 2 cos(2χ )

sin(χ ) sin(nθ ) cos(ϕ + ωnt ) − cos(χ ) cos(nθ ) sin(ϕ + ωnt )

ωnAn[1 + cos(4χ )]
,

S(2)
ϕ = 2 cos(2χ )

sin(χ ) cos(nθ ) sin(ϕ + ωnt ) − cos(χ ) sin(nθ ) cos(ϕ + ωnt )

ωnA[1 + cos(4χ )]
.
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