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The present study is on periodic three-dimensional biological flow during batlike
flapping as well as fishlike undulation based spanwise symmetric three-dimensional (3D)
kinematics and propulsion of batoid fish. For a single parameter based unified study
on various types of real and hypothetical batoid fish, a 3D unified-kinematics model is
proposed here. Using our immersed interface method based in-house code, the present
numerical study is on the effect of various wavelengths (of the wavy undulation of
a hydrofoil-shaped lateral cross section) and aspect ratios (of the elliptical span of
the body)—corresponding to various types of batoid fishlike locomotion—at a constant
nondimensional frequency of 0.5. Furthermore, for Dasyatis and a hypothetical batoid fish,
the effect of various nondimensional frequencies is studied at an aspect ratio of 1. The
study is done at a maximum nondimensional amplitude of 0.15 of the pitching/undulation
and a Reynolds number of 10 000. A 3D vortex structure demonstrates a spanwise
symmetric double row of vortex structure at the various wavelengths while a larger
wavelength also results in a horseshoe type of vortices with multiple vortex rings. For
propulsive performance, the maximum thrust force (propulsive efficiency) is obtained at
an intermediate (smaller) wavelength. Further, with increasing aspect ratio, an increase
in the thrust force and the propulsive efficiency are found for various wavelengths. A
single-row (double-row) vortex structure leading to smaller (larger) thrust force is obtained
at a smaller (larger) nondimensional frequency. Using the more realistic 3D kinematics,
as compared to the 2D kinematics used earlier, more realistic flow structures and the
associated propulsive performance parameters are presented that can be used for the
efficient design of underwater vehicles.
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I. INTRODUCTION

Fishlike locomotion has been of interest to fluid dynamicists due to its surprisingly large
efficiency as compared to conventional aquatic propulsion systems. Various fish use different
techniques for swimming leading to various propulsion conditions. Thus, hydrodynamic analysis
of various types of fishlike locomotion could lead to the efficient design of autonomous underwater
vehicles (AUV) operating under different conditions.

Most of the fish use their body and/or caudal fin (BCF) motion for the propulsion. The BCF
types of fish are classified into three major categories: anguilliform, carangiform, and thunniform
[1]. Among the two extreme categories of fish, the anguilliform (thunniform) fish use an undulating
(pitching) based motion—of their body (caudal fin)—leading to a smaller (larger) thrust force and
larger (smaller) propulsive efficiency [2]. For the BCF types of fish, the kinematics and flow patterns
are mostly two-dimensional. There is another category of fish, called batoid fish, that use batlike
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FIG. 1. Three different types of batoid fish, with vertical (z-direction) undulation and/or pitching motion of
the body along the streamwise (x) direction and vertical (z) pitching motion of the body along the spanwise (y)
direction (modified from the figure presented by Rosenberger [4]). The red lines show the center of the body
(y = 0).

flapping (two-sided symmetric pitching) as well as the undulation of their pectoral fin for propulsion.
The undulation and pitching are in different planes [3], which leads to three-dimensional (3D)
kinematics and results in a large propulsive efficiency, as well as thrust generation, for the batoid
fish.

Based on the difference in the muscles-induced chordwise flexibility, represented by a wavelength
λ of a streamwise traveling wavy motion along the body, batoid fishs are classified into three
major categories: Dasyatis, Gymnura micrura, and Rhinoptera bonasus (Fig. 1). The ratio of the
wavelength λ and the chord length c (of the hydrofoil-shaped frontal cross section of the body)
is λ/c < 1 for the Dasyatis type of fish while λ/c ≈ 4 for Rhinoptera bonasus [4]; and Gymnura
micrura have an intermediate value of λ/c. Thus, for a 3D kinematics-based unified study involving
all the types of real and hypothetical batoid fish, the λ/c can be considered as a kinematics modeling
parameter, with its larger value asymptoting to a pitching motion of the hydrofoil sections along with
that of the pectoral fin.

Rosenberger and Westneat [3] analyzed the kinematics of various types of batoid fish.
Rosenberger [4] classified the batoid fish based on undulatory and pitching kinematics. They
considered the kinematics as a continuum, where the extreme cases have pure undulatory and pure
pitching motions. Using the different kinematics, studies on the hydrodynamic analysis of the 3D
fishlike locomotion can be categorized into two types: pitching and/or heaving hydrofoils/plates and
batoid fishlike body and kinematics.

For a pitching and heaving finite span hydrofoil, von Ellenrieder et al. [5] experimentally studied
the effect of frequency of pitching/heaving on the flow structure and compared the vortex structure
formed from the leading and trailing edge vortices. Buchholz and Smits [6] conducted experimental
studies on pitching panels and studied the interaction of alternatively shed horseshoe vortices. With
increasing frequency of pitching, their later study [7] reported an additional vortex structure that
appears due to the expansion of streamwise vortices. Green et al. [8] experimentally studied the
hydrodynamics of a trapezoidal pitching panel and found that the complexity of vortex structure
is more at a larger frequency, due to the spreading of spanwise vortices in the vertical direction.
From a similar study, King et al. [9] found alternatively interacting vortices for all the frequencies.
Bi and Cai [10] presented an experimental study on a spanwise flexible pitching hydrofoil and
concluded that moderate flexibility leads to a larger thrust force while the larger flexibility leads
to a larger propulsive efficiency. Li and Dong [11] numerically studied the hydrodynamics of a
pitching plate and found that interconnected C-shaped vortex rings result in a bifurcating wake
pattern. Hemmati et al. [12] numerically studied the effect of trailing edge shape on the vorticity
dynamics of a pitching panel and found that a concave trailing edge shape results in strong 3D
effects.

For a batoid fishlike undulating fin, Clark and Smits [13] experimentally studied the 3D flow
structure for a various frequency of undulation. Moored et al. [14] conducted an experimental
study on the hydrodynamics of a flapping fin, inspired from the pitching batoid fish, and found that
pitching as compared to undulation produces an entirely different flow structure due to the formation
of leading-edge vortices. Chen et al. [15] developed a mathematical model for the 3D undulating
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TABLE I. Body shape, kinematics, Reynolds number Re (≡ ρu∞c/μ), nondimensional wavelength λ∗,
and aspect ratio AR, considered in the published literature and present work, for hydrodynamic study on batoid
fishlike locomotion. All the studies are experimental, except the last three.

Reference Body shape Kinematics Re λ∗ AR

Clark and Smits [13] Ellipsoid Undulation 11400 1.0 1.83
Moored et al. [14] Robotic fin Pitching 548–74000 ∞
Dewey et al. [16] 2D unified 8100–11600 2.4–∞ 0.9

Ellipsoid
Moored et al. [17] kinematics 11600 2.4–∞ 0.9
Chen et al. [15] Batoid 1.0 1.0

Undulation
osilevskii [18] Plate 1.0
Bottom et al. [19] Batoid 13500–23000 0.83 1.0
Present Ellpisoid 3D unified kinematics 10000 0.8–∞ 0.5–1.0

batoid kinematics. Dewey et al. [16] experimentally studied the hydrodynamics of batoid fishlike
undulating elliptical hydrofoil and reported a transition from periodic shedding of a single vortex
to a pair of vortices per cycle of undulation, with decreasing the wavelength of undulation. Moored
et al. [17] conducted a stability analysis on a batoid fishlike pitching fin and concluded that the
maximum propulsive efficiency is obtained when the frequency of pitching becomes equal to the
resonance frequency of the jet profile behind the fin. Iosilevskii [18] used a strip theory to study
the hydrodynamics of a batoid fishlike undulating plate and found that the propulsive efficiency is
independent of the aspect ratio of the plate. Bottom et al. [19] numerically studied the self-propelled
motion of a batoid stingray, modeled from the experimental measurements of real stingray, and
concluded that fast stingrays are efficient.

For hydrodynamic analysis of batoid fishlike locomotion, a summary of the literature survey
as well as our work is presented in Table I. The table shows that the studies are for either
streamwise undulating or streamwise pitching and for a unified kinematics (involving a transition
from undulating to pitching with increasing λ) of an actual or approximated (by ellipsoid) shape
of the batoid fish. However, the present work considers a more realistic 3D unified kinematics as
compared to the 2D unified kinematics considered by Dewey et al. [16] and Moored et al. [17].
The present study also considers a two-sided symmetric-pitching motion (batlike flapping) about a
midplane along with the 2D unified kinematics (involving a traveling-wave motion in the streamwise
direction that corresponds to the undulation asymptoting to pitching at larger λ), considered by the
previous researchers [16,17]. Furthermore, the table shows that the present work considers a much
wider range of the muscles-induced chordwise flexibility λ∗ (= 0.8, 1.2, 4, and ∞) for the unified
kinematics and aspect ratio AR (= 0.5, 0.75, and 1.0) of the spanwise elliptical shape of batoid
fish. Thus, using the 3D unified-kinematics model, the objective of the present three-dimensional
work is to study the effect of λ∗, aspect ratio AR, and nondimensional frequency St of the
periodic 3D kinematics on the hydrodynamic characteristics and propulsive performance of the 3D
batoid fishlike locomotion at dynamic steady state. The locomotion considered here corresponds
to constant velocity propulsion, called tethered propulsion, and is modeled here by considering
a free-stream flow across an undulating/pitching batoid fishlike undulating body. The free-stream
flow is also considered by all the published literature presented in Table I, except the study by Chen
et al. [15], which is on self-propelled simulation.

II. KINEMATICS AND COMPUTATIONAL MODEL

A. 3D unified-kinematics model for various types of batoid fishlike locomotion

Most of the batoid fish have more or less a hydrofoil-shaped frontal cross section with an elliptical
span [3,4] (considered here and shown in Fig. 2). The figure shows a batoid fishlike 3D body along
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FIG. 2. Batoid fishlike body: (a) 3D view, and (b)–(d) various 2D views: (b) top view, (c) front cross-
sectional view (at y = 0.25b), and (c) side cross-sectional view (at x = 0.5c) of the batoidlike body.

with various 2D views. The top view in Fig. 2(b) shows an ellipse with the length of the major and
minor axes as c and b, respectively. A cross-sectional front view in Fig. 2(c) shows a NACA0012
hydrofoil, with a chord length of c at the spanwise midplane (y = 0); note that the chord length
c(y) reduces from the midplane along the elliptical spanwise direction (0 < y < ±b/2). A cross-
sectional side view in Fig. 2(d) shows the streamwise cross section as a two-sided inclined plate,
corresponding to a decreasing thickness of the NACA0012 hydrofoil from the midplane y = 0 to
the edge of the ellipsoid y = ±b/2. A parametric representation of the geometry is given as

z(x, y) = zt (x)

√
1 − y2

[b(x)]2 where

zt (x) = 0.178 14
√

x − 0.0756x − 0.210 96x2 + 0.170 58x3 − 0.0609x4

and b(x) = b/2

√
1 − (x − c/2)2

(c/2)2 . (1)

For the various types of batoid fish shown in Fig. 1, the streamwise line along the midplane
y = 0 of the body (represented by a red arrow in Fig. 1) is almost stationary, and the hydrofoil
cross section (of the pectoral fins) on both the sides of the midplane undergoes a streamwise wavy
undulating motion [3]. Thus, the vertical amplitude of the wavy motion is zero at the centerline
and maximum at the tip of the pectoral fin. There is an almost linear variation of the amplitude
from the body centerline y = 0 to the tip of the fin y = ±b/2. This variation of amplitude is due
to a batlike flapping (two-sided pitching motion) in the streamwise y-z plane. Thus, the kinematics
is a combination of the wavy motion (of the hydrofoil cross section) in the lateral x-z plane and
the two-sided pitching motion (of the elliptical cross section) in the streamwise y-z plane. For the
present 3D unified-kinematics model, the hydrofoil cross sections are subjected to a 2D unified
kinematics proposed in our recent study for 2D hydrofoils [2] while the streamwise cross section is
subjected to the two-sided flappinglike pitching motion.
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Although the kinematics considered here for various types of batoid fish has been reported in
the literature [3,4], here we propose a 3D mathematical model for the kinematics, as a combination
of pitching and undulating motion. Further, we unified the kinematic model for the various types
of batoid fishlike body and kinematics, by varying the wavelength of undulation (streamwise) and
aspect ratio of the body. The present 3D unified kinematics is proposed as a combination of 2D
unified kinematics (proposed in our recent work [2]) for the hydrofoil cross sections and pitching
motion of the streamwise cross section. The combination of the 2D unified kinematics and the
flappinglike two-sided symmetric-pitching motions is represented by a nondimensional form of a
3D unified-kinematics model, for the vertical displacement �Z = �z/c [of the ellipsoidal x-y plane;
refer to Figs. 2(c) and 2(d) for �z], given as

�Z = AmaxX |Y |
0.5AR

sin

[
2π

(
X

λ∗ − Stτ

2Amax

)]
where X = [0, 1], Y = [−0.5AR, 0.5AR], (2)

X = x/c, Y = y/c, τ is the nondimensional time (≡ tu∞/c), and AR (≡ b/c) is the aspect ratio of
the body. Furthermore, St (≡ 2 f amax/u∞), Amax (≡ amax/c), and λ∗ (≡ λ/c) are the nondimensional
frequency, amplitude, and wavelength of undulation, respectively. Here, amax is the maximum
amplitude of undulation for the hydrofoil cross section at y = ±b/2. The amax also corresponds
to the amplitude for the two-sided pitching motion. Furthermore, λ is the wavelength and f is the
frequency of undulation of the 2D hydrofoil cross section. Note that the undulating and pitching
motions are in the vertical direction z for the batoid fish as compared to the lateral direction y in the
BCF type of fish.

For the 3D unified kinematics proposed above [Eq. (2)], λ∗ < 1, intermediate value of λ∗, and
larger λ∗ correspond to the Dasyatis, Gymnura micrura, and Rhinoptera bonasus type of batoid fish,
respectively (Fig. 1). Thus, the proposed 3D unified kinematics covers the various types of batoid
fishlike locomotion.

B. Computational model

The nondimensional computational setup for the batoid fish in a free-stream flow, corresponding
to the tethered propulsion, is shown in Fig. 3. The figure shows the nondimensional computational
domain along with boundary conditions applied at the various faces of the computational domain.
A constant free-stream velocity u∞ based boundary condition is applied at the inlet, and the outflow
boundary condition is applied at the outlet. The no-slip boundary condition is applied on the body
surface, whereas the free-slip boundary condition is applied on the external (top, bottom, left, and
right) boundaries. The mathematical description of the various boundary conditions is included in
Fig. 3.

III. NUMERICAL DETAILS

A level-set function based immersed interface method (LS-IIM), recently proposed by us [20]
for a 2D problem, is extended here for the present 3D problem. The LS-IIM considers the Eulerian
description and finite volume method for the fluid dynamics, and the Lagrangian description and
finite element method for the structure dynamics. The fluid flow is solved using a fully implicit
pressure projection method on a colocated Cartesian grid [21]. The fluid-structure interface is
traced using a level-set function obtained from a geometric method (minimum distance and winding
number algorithm). The LS-IIM involves a direct application of the boundary conditions at the
interface, using the level-set function. The LS-IIM based in-house 3D code is parallelized using the
message Passing interface (MPI).

A verification, as well as validation, study of the present LS-IIM can be found in Thekkethil and
Sharma [20], for various 2D fluid-structure interaction (FSI) problems. However, for the present 3D
FSI problem, a verification study of the LS-IIM is done for 3D problems of varying complexities.
Firstly, the code is verified for a 3D lid-driven cavity flow problem and also for a free-stream flow
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FIG. 3. Nondimensional computational setup for the tethered propulsion of batoid fishlike body and
kinematics. The hydrofoil-shaped frontal cross sections are undulating with a chordwise flexibility of λ∗ and
the aspect ratio of the ellipse-shaped top cross section is AR. The nondimensional frequency of the undulation
of the frontal cross section and two-sided symmetric-pitching motion of the streamwise cross section is St
while the nondimensional amplitude of the undulation/pitching is Amax.

across a stationary sphere at a Reynolds number of 50 [22]. For the latter problem, a good agreement
is found between the present results and that reported by Johnson and Patel [23], with an error of
4.5% for the mean drag coefficient. Thereafter, the 3D code verification is done for a free-stream
flow across a pitching and heaving ellipsoid at Reynolds number Re = 200, maximum pitching
angle θmax = 30◦, nondimensional heaving amplitude hmax = 0.5, and Strouhal number St = 0.6.
Note that the domain size (16 × 15 × 15), the grid size (smaller grid size of δ = 0.005), and the
time step (2000 time steps in one cycle of pitching and heaving) used for the verification study are
almost the same as that used by Dong et al. [24]. Good agreement between the present results and
that reported by Dong et al. [24] are presented in Fig. 4, for 3D vortex topology; and in Table II, for
CDm as well as CLrms. The slight difference between the results may be due to the difference in the
order of accuracy of both the numerical methods; our method is second-order accurate in space and

TABLE II. Comparison of mean drag coefficient CDm and the rms value of lift coefficient CLrms, obtained by
the present simulation and that reported by Dong et al. [24], for a pitching and heaving ellipsoid at a Reynolds
number Re = 200, pitching amplitude θmax = 30◦, heaving amplitude hmax = 0.5, aspect ratio AR = 1.27, and
Strouhal number St = 0.6.

Present study Dong et al. [24] % Error

CDm 0.234 0.251 6.77
CLrms 2.828 2.947 4.04

023101-6



THREE-DIMENSIONAL BIOLOGICAL HYDRODYNAMICS …

FIG. 4. Vortex topology from (a) present study and (b) Dong et al. [24], for a pitching as well as heaving
ellipsoid at Re = 200, pitching amplitude θmax = 30◦, heaving amplitude hmax = 0.5, and Strouhal number
St = 0.6.

first-order accurate in time [20], whereas the method reported in Dong et al. [24] is second-order
accurate in both space and time.

Further, for a larger Re = 2857, our simulation results are compared with that of Kern and
Koumoutsakos [25], for a 3D anguilliform fishlike body and kinematics, at λ∗ = 1.0, St = 0.75,
and Amax = 0.16. The simulations are conducted at almost the same domain size, grid size (finer
grid size δ = 0.003 near the body), and time step (200 time steps in one undulation cycle), used
in the literature. Figure 5 shows excellent agreement between the present results and the published
results for the temporal variation of CD, with the amplitude of CDmax as 0.026 in the present and 0.03
in the published work. The detailed verification exercises provide confidence in the results obtained
from the present code.

Based on our experience from previous 2D simulations [2,20,26] and literature [24], a nondimen-
sional domain size of 16 × 7 × 10 (Fig. 3) and a nondimensional time step of 400 time steps for one
cycle of undulation are considered in the present study. Similar undulation cycle based selection of
time step was reported in the literature [24,25]. To ensure that the domain size and time step are

FIG. 5. For a 3D anguilliform fishlike body and kinematics, comparison of present and published results
[25] for temporal variation in the drag coefficient CD, at λ∗ = 1.0, St = 0.75, Re = 2857, and Amax = 0.16.
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FIG. 6. Temporal variation in instantaneous thrust force coefficient CT for three different grid sizes, at
λ∗ = 4.0, AR = 1.0, St = 0.5, Amax = 0.15, and Re = 10 000.

sufficient enough to result in accurate solutions, 3D simulations are done at a larger domain size
25 × 10 × 15 and a smaller time step of 800 times steps per undulation cycle, at λ∗ = 4.0, AR = 1.0,
St = 0.5, Amax = 0.15, and Re = 10 000. The resulting mean thrust coefficient CT m = 0.0284 for
the larger domain and CT m = 0.0279 for the smaller time step are almost the same (less than 1%
error) as that of CT m = 0.0282 obtained for the domain and time step considered here. Furthermore,
the maximum value of viscous stress on the body is found to be almost the same (0.0140 and
0.0141), with the decreasing time step.

Further, for a grid independence study, 3D simulations are done at λ∗ = 4.0, AR = 1.0, St =
0.5, Amax = 0.15, and Re = 10 000 for three nonuniform Cartesian grid sizes: 237 × 115 × 124,
337 × 158 × 186, and 410 × 184 × 221. Figure 6 shows almost the same temporal variation of
CT for the last two grid sizes; and the maximum value of viscous stress on the body is found to
be 0.0149, 0.0140, and 0.0139, for the respective grid size. Thus, the intermediate grid size of
337 × 158 × 186 is considered sufficient for the grid independent results and used for the present
3D simulations. Further, for the three grid sizes considered here, the finest grid sizes are δ = 0.015,
0.01, and 0.008; and the coarsest grid sizes are � = 0.5, 0.25, and 0.125. A uniform finest grid δ is
used in a region near the body where the movement of the body is restricted, and a uniform coarsest
grid � is used far away from the body. A hyperbolic stretching is used in the region between the
finest and coarsest grids.

IV. 3D UNIFIED-KINEMATICS BASED STUDY ON VARIOUS TYPES
OF BATOID FISHLIKE LOCOMOTION

For the present 3D biological flow problem, the various nondimensional input as well as output
parameters considered here and an introduction of the various 3D vortex structures encountered are
presented in separate sections below.

A. Parametric details

For the tethered simulation of various types of batoid fishlike body and kinematics, a detailed
parametric study is done for various nondimensional wavelengths λ∗ (of undulation of the hydrofoil
cross section), aspect ratio AR (of the spanwise elliptical cross section), and Strouhal number St
(nondimensional frequency of undulation/pitching) at a constant Reynolds number Re = 10 000
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and nondimensional maximum amplitude of undulation/pitching Amax = 0.15. In this regard, the
nondimensional parameters considered are as follows:

Effect of λ∗ and AR:

λ∗ = 0.8, 1.2, 4.0, and ∞
at St = 0.5, Re = 10 000, and Amax = 0.15

AR = 0.5, 0.75, and 1.0

Effect of St:

St = 0.2, 0.5, and 0.7 at λ∗ = 0.8 and ∞, AR = 1.0, Re = 10 000, and Amax = 0.15

Thus, the effect of λ∗, AR, and St on the flow pattern and propulsive performance parameters are
studied. The smaller, intermediate, and larger λ∗ corresponds to Dasyatis sabina, Gymnura micrura,
and Rhinoptera bonasus types of batoid fish, respectively [4]. Further, Rhinobatos lentiginosus and
Raja eglanteria (Fig. 1) types of batoid fish have a smaller aspect ratio as compared to Gymnura
micrura and Rhinoptera bonasus. Thus, the kinematics model proposed in this work considers
almost all the types of batoidlike locomotions. From a literature survey conducted by Rosenberger
[4] on different types of batoid fish, a smaller nondimensional wavelength λ∗ ≈ 0.8 was found for an
undulatory batoid fish Dasyatis sabina; and a larger wavelength λ∗ ≈ 4.0 was found for Rhinoptera
bonasus type of batoid fish. Thus, in our study, the smallest, intermediate, and larger wavelengths
considered are 0.8, 1.2, and 4.0, respectively. We also considered λ∗ = ∞, where the kinematics is
purely based on pitching motion, to study the effect of the absence of the wavy motion (as compared
to both wavy and pitching motions at the smaller λ∗) on the batoidlike locomotion. In this study,
the aspect ratio AR is varied from 0.5 to 1.0, which is close to the real batoid fish (Rosenberger [4]).
Rosenberger [4] reported that most of the batoid fish swim in the range of a Strouhal number of
0.2–0.7, considered above in our parametric study. The study is conducted at a constant maximum
amplitude Amax = 0.15, which is within the range of Amax used by the various types of batoid fish
[4].

A constant Reynolds number of Re = 10 000 is considered here that corresponds to the larger
value of Re considered by the previous researchers for the present problem (Table I). A literature
survey based scaling analysis for real fish locomotion by Gazzola et al. [27] reported that the
Reynolds number for the various fish varies from Re = 103 to 107 (depending on the geometrical
and kinematic parameters of the fish), with the transition from laminar to turbulent flow at around
Re = 104. Further, for a tunalike body and kinematics, Chang et al. [28] compared the flow structure
and propulsive performance parameters obtained from the laminar and turbulent simulations for
three Reynolds numbers: Re = 7.1 × 103, 7.1 × 104, and 7.1 × 105. For the respective Re’s, they
reported negligible, close to 10%, and considerable difference in their results with and without a
turbulence model. Thus, the present 3D simulations at Re = 104 is either in laminar or in transitional
flow regime; and simulated here without using any turbulence model.

For the batoid fishlike locomotion, the various nondimensional propulsive performance parame-
ters are thrust force coefficient CT , lift force coefficient CL, and propulsive efficiency ηP, defined as
follows:

CT = FT

1/2ρ f u2∞As
, CL = FL

1/2ρ f u2∞As
,

ηP = Pout,m

Pin,m
= FT mup∫

fL.vbodyds
= CT m∫

cTr .VbodydS
, (3)

where FT is the thrust force, FL is the lift force, and As the spanwise area of the foil. The definition
of ηP is similar to our recent 2D study [2], except that the lateral force in the 2D study for BCF fish
is replaced with the vertical force for the present batoid fish.
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FIG. 7. Schematic representation of the formation of vortex ring, vortex contrail, and horseshoe vortex
from a 3D body oscillating in the vertical direction (z direction). Formation of spanwise (streamwise) vortices
on the trailing edge (sides) of the body is shown in (a). The spanwise and streamwise vortices together form a
vortex ring, shown in (c); and a vortex contrail is formed between the two vortex rings [shown in (d)]. When
the streamwise vortices are farther apart at the trailing edge, a horseshoe vortex is formed instead of the vortex
ring as shown in (e).

B. Introduction to three-dimensional vortex structures

Three-dimensional vortex structures are presented, in the present work, using the Q criterion
[29], given as

Q = 1
2 [tr(D̄)2 − tr(D̄2)], (4)

where D̄ is the velocity gradient tensor. A contour of Q = 0 is plotted to represent the Q-criterion
based 3D vortex structure, presented below. Before presenting a Q-criterion based 3D vortex
structure for the present 3D FSI problem, an introduction of the various terminology involved in
a discussion of a 3D vortex structure is presented here, with the help of Fig. 7.

The periodic 3D kinematics of the batoid fishlike body results in various types of 3D vortex
structure behind the body. The 3D vortex structure is a combination of vortex rings, vortex contrails,
and horseshoe vortex, shown schematically in Fig. 7 for flow across an oscillating (pitching and/or
heaving) 3D body. The oscillation results in spanwise (y) vortices with vorticity ωy at the trailing
edge of the body, represented by red arrows in Fig. 7(a). These vortices are similar to that found from
2D simulation for flow across a body oscillating in the x-z plane. In 3D, in addition to the spanwise
vorticity ωy, streamwise vortices with vorticity ωx are formed on the sides of the body [represented
by blue arrows in Fig. 7(a)]. When the spanwise, as well as streamwise vortices, advect downstream,
they come close to each other as shown in Fig. 7(b). If the body shape is spanwise tapered at the
trailing edge (such as spanwise elliptical shape considered in this study), the downstream advection
of these vortices results in movement of these vortices towards each other and forms a complete
loop as shown in Fig. 7(c) −, called a vortex ring [24]. A similar vortex ring is formed in the other
half-cycle of the oscillation, also as shown in Fig. 7(d). The streamwise vortices ωx from the first
half-cycle and spanwise vortices ωy from the second half-cycle have the same sense of rotation.
Thus, a stretched vortex is formed between the two vortex rings as shown in Fig. 7(d), called a
vortex contrail [24]. If the trailing edge of the body is not tapered, as in the case of a rectangular
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FIG. 8. Effect of λ∗ and AR on the instantaneous Q-criterion based 3D vortex structure, for the batoid
fishlike body, kinematics, and tethered propulsion, at Re = 10 000. The hydrofoil-shaped frontal cross sections
are undulating with various chordwise flexibilities λ∗ and aspect ratio of the spanwise elliptical cross section
AR. The nondimensional frequency of the undulation of the frontal cross section and the two-sided symmetric-
pitching motion of the streamwise cross section is St = 0.5 while the maximum nondimensional amplitude
of the undulation/pitching is Amax = 0.15. Note that the time instant shown in the figures correspond to the
starting of the undulating/pitching cycle, i.e., τ = 0; and the tail position varies with λ∗ at τ = 0.

pitching plate [Fig. 7(e)], the streamwise vortices formed on the edges are unable to join and do not
form a loop or vortex ring, resulting in a vortex structure of horseshoe shape, called a horseshoe
vortex [5], shown in Fig. 7(e).

V. EFFECT OF CHORDWISE FLEXIBILITY AT THE HYDROFOIL CROSS SECTION
AND ASPECT RATIO OF THE SPANWISE ELLIPSE

A. Instantaneous flow pattern

The effect of the chordwise flexibility λ∗ and the aspect ratio AR on the instantaneous flow pattern
is shown in Fig. 8 for the 3D vortex structure; and 2D contours (on a vertical plane at Y = 0.25AR)
are shown in Figs. 9 and 10 for spanwise vorticity ωy and streamwise velocity U , respectively.

As compared to the single pair of vortex rings [shown schematically in Fig. 7(d)] that was
reported earlier for pitching and heaving hydrofoil [24] as well as an anguilliform fishlike undulating
body [25], a double pair of vortex rings is seen in Fig. 8 for smaller λ∗ (0.8 and 1.2) and all the values
of AR studied here. The figure shows each pair of rings connected by the vortex contrail on the front
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FIG. 9. Effect of nondimensional chordwise flexibility λ∗ and aspect ratio AR on the instantaneous spanwise
vorticity (ωy) contours (at Y = 0.25AR), for the batoid fishlike locomotion, at St = 0.5, Amax = 0.15, and
Re = 10 000.

and back sides. A similar result was also reported by Fish et al. [30] for Manta fish. Further, the
vortex rings formed are not as smooth as compared to that by Dong et al. [24]. This could be due
to the larger Reynolds number considered in the present study. The two vortex rings [marked in
Fig. 8(b)] are formed due to the two-sided symmetric-pitching motion (on both sides of the plane of
symmetry), leading to two sets of streamwise vortices; one on the sides and the other on the plane
of symmetry. The mechanism of formation of the vortex rings is discussed later in Sec. VII A.

For the larger wavelength (λ∗ = ∞) at all AR, a horseshoe vortex structure [marked in Fig. 8(l)]
with a complicated 3D vortex structure is seen in Figs. 8(j)–8(l). This horseshoe vortex was also
reported earlier for a pitching and heaving plate by von Ellenrieder et al. [5]. Further, for a constant
λ∗, a reduction in the lateral spacing between the pair of vortex rings with decreasing AR results
in the reduction of the strength of the vortex and a jet flow [marked in Fig. 8(a)] which is inclined
upstream of the free-stream flow in Fig. 8(a) and downstream from the flow in Figs. 8(b) and 8(c),
and thus results in a reduction in the net thrust force coefficient with decreasing AR (presented
later). For larger AR [Fig. 8(c)], since the trailing edge spanwise vortex forms over a larger span,
it splits and multiple vortex ring formation starts. A smoother vortex ring formation is obtained
for intermediate AR [Fig. 8(b)]. For all the flexibilities λ∗, Fig. 8 shows that the complexity of the
3D vortex structure is more at the smallest AR. This is because the trailing edge spanwise vortex
becomes almost insignificant as compared to the streamwise vortices.
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FIG. 10. Effect of nondimensional chordwise flexibility λ∗ and aspect ratio AR on the instantaneous
streamwise velocity (U ) contours (at Y = 0.25AR), for the batoid fishlike locomotion, at St = 0.5, Amax = 0.15,
and Re = 10 000.

With increasing λ∗, the figure shows the appearance of the horseshoe vortex, and maximum
strength of the horseshoe vortex is obtained for the larger λ∗ [Figs. 8(j)–8(l)]. The horseshoe
vortex results in an additional jet flow formation [Fig. 8(l)] resulting in an enhancement in
the hydrodynamic force coefficients. Also, with increasing λ∗, the phase difference between
pitching motion in the y-z plane and undulating motion in the x-z plane decreases (explained
later in Sec. VII A). Thus, the interaction between the streamwise vortices from two half-cycles
results in the formation of a complex vortex ring for larger λ∗; whereas, a properly directed
streamwise vortex results in a smoother ring formation for smaller λ∗. The complexity of vortex
rings increases with increasing λ∗. Figures 8(d)–8(f) show both horseshoe vortex and smoother
vortex rings at λ∗ = 1.2 that may result in the optimum propulsive performance condition (max-
imum thrust force and efficiency). Note that the combined horse-shoe vortex and vortex rings
presented in Figs. 8(d)–8(i) are not found in the literature for the batoid fishlike locomotion,
and are presented here as a new flow structure. For λ∗ = 1.2 and λ∗ = 4.0, with increasing AR,
Figs. 8(d)–8(i) show that the horseshoe vortex strength increases with an increase in AR due to
much stronger trailing edge spanwise vortices, which may lead to enhancement in propulsive
performance.

For an undulating 2D NACA0012 hydrofoil, a reverse von Kármán vortex street along with a jet
formation behind the foil was presented in our recent study [2]. The 2D flow structure is presented
here for the 3D batoidlike undulation by a 2D contour plot, of the trailing edge spanwise vorticity
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ωy in Fig. 9 and streamwise velocity U in Fig. 10, at a plane Y = 0.25AR where the spanwise vortex
strength is almost maximum. This gives a direct comparison with the 2D flow structure at various
λ∗ and AR, and explains the vortex ring formation and jet flow.

The double row of vortex rings, seen in the 3D vortex structure, is marked in the 2D vorticity
contours for λ∗ = 0.8 [Fig. 9(b)]. The vortex ring marked on the upper side corresponds to the
ring shed when the tip of the hydrofoil cross section reaches the topmost position. This vortex ring
that is formed by the combination of the streamwise vortex on edges and the plane of symmetry
(discussed above) is presented in Fig. 9(b) by the spanwise trailing edge vortex that is clockwise
(CW) and countclockwise (CCW) on the right and left sides of the upper ring, respectively. Since the
trailing edge vortex for the next cycle starts forming when the upper ring is shed, a vortex contrail
of CCW sense is followed by the vortex ring and joins with the CCW trailing edge vortex of the
next half-cycle [marked on the right side of the bottom ring in Fig. 9(b)]. Figure 9(b) also shows the
jet flow within the upper and lower rings in the upward and downward directions, respectively. The
vortex rings [Fig. 8(b)] result in two jets on both sides [Fig. 10(b)]. In the case of the 2D undulating
hydrofoil, the vortex contrail is not present, and a single jet flow is formed between the CW and
CCW vortices formed in two half-cycles.

With decreasing AR for the smaller λ∗ = 0.8, Figs. 9(a)–9(c) show a narrower vortex ring and
a decrease in the strength of vortices. Further, with decreasing AR, the reduction in strength of
the spanwise vortices results in a decrease in the streamwise velocity and strength of the jet flow
[Figs. 10(a)–10(c)]. With increasing λ∗, Fig. 9 shows multiple vortex structures that result in the
formation of multiple rings. The complex spanwise vortex distribution in Figs. 9(g)–9(l) show a
complex vortex structure that results in a mixed jet formation [Figs. 10(g)–10(l)] as compared to
the two separate jets at smaller wavelengths [Figs. 10(a)–10(f)]. The formation of the horseshoe
vortex at the larger λ∗ [Fig. 8(c)] results in a stronger spanwise vorticity (Fig. 9) and a stronger jet
flow at larger λ∗ (Fig. 10). Further, with increasing AR, an increase in the strength of the horseshoe
vortex increases the strength of the jet. Thus, the horseshoe vortex plays a vital role in the propulsive
performance at this range of λ∗ and AR.

B. Propulsive performance parameters

The above discussed 3D and 2D flow characteristics are the cause while the propulsive perfor-
mance parameters are the effect in the present cause-and-effect based biological hydrodynamics
analysis. This section presents the effect of λ∗ and AR on the propulsive performance parameters
(CT m, CLrms, and ηp) for batoid fishlike locomotion, at St = 0.5, Reup = 10 000, and Amax = 0.15.
Figure 11 shows the temporal variation of the instantaneous CT and CL, whereas Fig. 12 shows the
time-averaged propulsive performance parameters (CT m, CLrms, ηP). Note that the time-averaging is
done using the last two cycles of the simulated results, ensuring that the time-averaged values do
not change by increasing the number of cycles used in the averaging.

For all AR, Fig. 11 shows that the amplitude of CT as well as CL increases with an increase in λ∗.
This could be attributed to the lift-based accelerating/decelerating type of thrust generation for the
pitching as compared to a continuous thrust generation for the undulating motio; similar variation
was obtained for a 2D undulating/pitching hydrofoil considered in our recent study [2]. Further,
the jet flow within the vortex rings for the smaller λ∗ based undulation is weaker and more inclined
toward the horizontal as compared to the almost vertical stronger jet flow within the vortex rings and
horseshoe vortex for the larger λ∗ based pitching. This leads to the larger amplitudes of CT and CL

for the larger λ∗. Note from Fig. 11 that the amplitude of CT is almost the same for the λ∗ = 4.0 and
∞, whereas there is a considerable difference in the amplitude of CL. Furthermore, the mean value
of CT decreases with increasing λ∗ from 4.0 to ∞. This is due to the complicated vortex structure
reported for the larger λ∗, which leads to a reverse flow.

With increasing AR, Fig. 11 shows that the amplitude of CT as well CL increases. For CT , note
that the increase in the maximum value of CT is larger as compared to the decrease in the minimum
value of CT ; a similar observation was made by Dong et al. [24], for pitching and heaving ellipsoids.
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FIG. 11. Temporal variation of instantaneous (a),(c),(e) thrust coefficient CT and (b),(d),(f) lift coefficient
CL , with increasing λ∗ during one cycle of undulation/pitching, at (a),(b) AR = 0.5, (c),(d) AR = 0.75, and
(e),(f) AR = 1.0 for Re = 10 000, St = 0.5, and Amax = 0.15.
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FIG. 12. Variation of the (a),(b) mean thrust coefficient CT m, (c),(d) rms value of lift force coefficient CLrms,
and (e),(f) propulsive efficiency ηP with increasing (a),(c),(e) λ∗ and (b),(d),(f) AR, for the batoid fishlike
locomotion at St = 0.5, Amax = 0.15, and Re = 10 000. Unfilled symbols in (a), (c), and (e) represent the
values corresponding to the pitching motion of the hydrofoil cross section (λ∗ → ∞).
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This results in the net increase in the time-averaged value CT m with increasing AR. This could be
attributed to larger vortex rings and horseshoe vortex at the larger AR.

At various values of AR, Fig. 12 shows that the mean thrust coefficient CT m and rms value of lift
force coefficient CLrms increases while the propulsive efficiency ηp decreases monotonically with
λ∗ increasing from 0.8 to 4.0. The figure also shows the unfilled symbols for the values of all the
parameters at λ∗ = ∞. At various AR, it is interesting to note from Fig. 12(a) that the mean thrust
coefficient CT m for λ∗ = ∞ as compared to λ∗ = 4.0 is smaller. This indicates that there is an
optimum value of λ∗ at which CT m is maximum for the batoid fishlike locomotion as compared to a
monotonic asymptotic increase in CT m (with increasing λ∗) for BCF types of fish, in our recent study
[2]. The optimum λ∗ can be attributed to the relative strength of vortex rings and horseshoe vortex.
For smaller λ∗, only vortex rings are present, and the jet flow within the rings, as shown in Fig. 8,
results in thrust generation. With increasing λ∗, the figure shows that the horseshoe vortex formation
results in additional thrust generation leading to an increase in CT m. With a further increase in
λ∗, the ring formation is disturbed by the interaction of streamwise vortices from different cycles
(explained later in Sec. VII B) resulting in multiple ring formation; the complex vortex structure
leads to a reduction in CT m. At the optimum λ∗, the combination of horseshoe vortex and vortex
rings are such that it leads to the maximum CT m. However, with increasing λ∗ from 0.8 to ∞,
the monotonic increase in Fig. 12(c) indicates that CLrms is almost unaffected by the multiple ring
formation since the vertical force due to the horseshoe vortex is very large as compared to the vortex
rings. Figure 12(e) does not show the propulsive efficiency ηP at λ∗ = 0.8 due to a drag generation,
and the maximum value of ηP is seen at an intermediate wavelength λ∗ = 1.2. This is because of
the smooth vortex ring and combined thrust generation by the horseshoe vortex and vortex ring
[Figs. 8(d)–8(f)]. Thus, it can be concluded that moderate chordwise flexibility of the hydrofoil
cross section is required for optimal propulsive performance (maximum thrust force and efficiency)
of batoidlike locomotion.

With increasing AR, Fig. 12 shows that CT m, CLrms, and ηp increases for all λ∗ except at
the smallest λ∗ = 0.8 for CT m that decreases slightly after AR = 0.75. The multiple vortex ring
formation at larger AR [Fig. 8(c)] results in almost vertical jet formation leading to an increase in
CLrms with increasing AR. Figures 12(b) and 12(d) show that the increase in CT m and CLrms with
increasing AR is much larger at larger λ∗. This is because, at larger λ∗, CT m and CLrms are mainly
dependent on the stronger horseshoe vortex (as compared to the weaker vortex rings) which becomes
stronger with increasing AR.

VI. EFFECT OF FREQUENCY OF THE PERIODIC 3D KINEMATICS FOR DASYATIS
AND A HYPOTHETICAL BATOID FISH

A. Instantaneous flow pattern

With increasing nondimensional frequency St for both the λ∗ = 0.8 and ∞, Fig. 13 shows a
transition in the vortex structure from a single row of vortices (at St = 0.2) to a double row of
vortices (at St = 0.5 and 0.7). The vortex rings in each half-cycle are connected directly at the
smallest St = 0.2 [Figs. 13(a) and 13(b)]. In contrast, a vortex contrail is present at the largest St
[Figs. 13(c)–13(f)]. This is because of the smaller vertical-induced velocity of vortex rings due to
a weaker vertical jet at the smaller St. The vortex ring does not move in the vertical direction. The
direction of induced velocity in Figs. 13(a) and 13(b) indicates that the vortex structure is of drag
producing type; the arrow shown in Fig. 13(a) is the slightly upstream inclined jet flow within the
vortex. Further, the smaller St results in longer and stretched vortex rings that indicate a weaker
jet flow within the vortex rings as compared to a stronger jet flow at larger St. With increasing
St, the strength of the vortex ring increases and spacing between the vortices decreases. At the
larger St, the smaller spacing between the vortex rings results in the connection of vortex rings
from the previous cycle [Fig. 13(e)]. Further, with increasing St, an increase in the strength of the
trailing edge spanwise vortex results in the formation of a horseshoe type of vortex even at smaller
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FIG. 13. Effect of nondimensional frequency of undulation/pitching St on the instantaneous Q-criterion
based 3D vortex structure of the batoid fishlike locomotion for λ∗ = 0.8 and λ∗ = ∞, at AR = 1.0, Amax = 0.15,
and Re = 10 000.

λ∗ [Fig. 13(e)] that leads to an enhancement in the hydrodynamic forces. Also, at larger St, the
combination of vortex rings from different cycles increases the lift force.

After the 3D vortex structure for various St at λ∗ = 0.8 and ∞, the 2D contours (at Y = 0.25AR)
are shown in Figs. 14 and 15 for the spanwise vorticity and streamwise velocity, respectively. As
discussed above for Fig. 13, where a single- (double-) row vortex structure is observed at smaller
(larger) λ∗, the corresponding 2D vorticity contours are shown in Fig. 14. The vortex rings from both
half-cycles join together without a vortex contrail [shown marked in Fig. 14(a)] for the smaller St
leading to a single-row vortex. The corresponding U -velocity contour in Figs. 15(a) and 15(b) shows
a drag producing straight wake at the smallest St as compared to thrust producing two jets on both
sides in Figs. 15(c)–15(f), for the double-row vortex structure at the largest St. Further, at the larger
St, the vortices come closer together, and multiple vortex rings start appearing [Fig. 14(e)]. Further,
the horseshoe vortex also starts appearing at the larger St. This increases the strength of the jet flow
[Fig. 15(e)]. For larger λ∗, the horseshoe vortex structure and multiple vortex ring formations start
even at an earlier St [Fig. 14(d)].

B. Propulsive performance parameters

With increasing St, Fig. 16 shows a monotonic increase in the mean thrust coefficient CT m and
rms value of the lift force coefficient CLrms, with a larger value of CT m and CLrms at λ∗ = ∞ as
compared to λ∗ = 0.8. This increase in the propulsive performance parameters could be attributed
to the increase in strength of the jet flow with increasing St and λ∗. Note that the variation of CT m
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FIG. 14. Effect of nondimensional frequency of undulation/pitching St on the instantaneous spanwise
vorticity (ωy) contours (at Y = 0.25AR) of the batoid fishlike locomotion for λ∗ = 0.8 and λ∗ = ∞, at
AR = 1.0, Amax = 0.15, and Re = 10 000.

with St is found almost linear for the λ∗ = 0.8 and quadratic for λ∗ = ∞. This is because the thrust
generation in undulation is by pushing the fluid by the wave motion; whereas for λ∗ = ∞, the thrust
generation is by the accelerating/decelerating pendulumlike motion [2]. Thus, similar to the results
reported in our recent 2D study [2] on fishlike undulating hydrofoil, CT m scales with the wave
velocity (∼λ∗St) for the undulation at λ∗ = 0.8, and the acceleration of the body (∼St2) for the
pitching at λ∗ = ∞.

VII. PERIODIC 3D VORTICITY DYNAMICS FOR THE BATOID FISHLIKE LOCOMOTION

This section presents the temporal variation of the Q-criterion based 3D vortex structure, within
one time period of the batoid fishlike 3D kinematics, at St = 0.5 and Amax = 0.15. Furthermore,
the results are for the batoid fishlike body with aspect ratio AR = 1.0 (of the ellipse-shaped top
cross section) and the tethered propulsion at Re = 10 000. The periodic 3D vorticity dynamics are
presented in separate sections below, for the largest chordwise flexibility and the smallest flexibility
based λ∗ = ∞, simulated here for a real and a hypothetical batoid fish, respectively.
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FIG. 15. Effect of nondimensional frequency of undulation/pitching St on the instantaneous streamwise
velocity (U ) contours (at Y = 0.25AR) of the batoid fishlike locomotion for λ∗ = 0.8 and λ∗ = ∞, at AR = 1.0,
Amax = 0.15, and Re = 10 000.

A. Largest chordwise flexibility based Dasyatis type of batoid fish

For the smallest wavelength λ∗ = 0.8 and the largest chordwise flexibility based undulating
motion of the hydrofoil-shaped cross section of the Dasyatis sabina fishlike tethered propulsion,
Fig. 17 shows that the 3D vortex structure consists of the vortex rings connected by contrails. The
3D vortex structure is symmetric about the plane of symmetry (y = 0), due to a spanwise symmetric
kinematics of both the motion—the undulating motion in the frontal x-z plan—and the two-sided
pitching motion in the streamwise y-z plane. The spanwise symmetric undulating motion (in the
frontal and back planes) results in the formation of trailing edge spanwise vortex (TESPV) ωy,
marked as red arrows in Fig. 17(a). Whereas, the spanwise two-sided symmetric-pitching motion
results in the formation of side streamwise vortex (SSTV) ωx, on the front and back sides of the
body, that is marked as blue arrows on the two sides in Fig. 17(a). Similar TESPV and SSTV were
presented by Dong et al. [24], for the pitching and heaving ellipsoid.

In addition to these two vortices, the two-sided symmetric-pitching motion here results in
streamwise vortices ωx near the plane of symmetry, called here as midplane streamwise vortices
(MPSTV) that are marked as yellow arrows in Fig. 17(a). The SSTV and MPSTV on the front side
as compared to those on the backside of the batoid fishlike body are of opposite sign, as shown in
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FIG. 16. Variation of the (a) mean thrust coefficient CT m and (b) rms value of lift force coefficient CLrms

with increasing St for λ∗ = 0.8 and λ∗ = ∞, at AR = 1.0, Re = 10 000, and Amax = 0.15.

Fig. 17(a). These streamwise vortices are about to shed when the tip of the tail reaches the maximum
vertical displacement [Fig. 17(b)]. When the vortices move further downstream, the spanwise vortex
TESPV ωy (red arrows) together with the streamwise vortices from the sides SSTV ωx (blue arrow)
and the plane of symmetry MPSTV ωx (yellow arrow) forms vortex rings on both sides of the
plane of symmetry, as shown marked in Fig. 17(c). Thus, one vortex ring is formed on each of
the two sides of the body in a half-cycle of the undulation (corresponding to the motion of the
trailing edge of the foil from the mean to the topmost and back to the mean position). Similarly,
two vortex rings are formed on the bottom side during the next half-cycle [Fig. 17(d)]. When the
streamwise vortices combine to form the vortex ring near the trailing edge, a spanwise vortex of
opposite sign (clockwise) starts forming at the same place [Fig. 17(d)]. This results in the stretched
vortices leading to the formation of a vortex contrail between the two rings [Fig. 17(d)], as discussed
above, with the help of the schematics in Fig. 7.

A zoomed view of the 3D vortex structure in Fig. 17(b) is shown in Figs. 17(e)–17(g),
demonstrating the various vortices and vortex rings, on one of the sides (midplane to front side) of
the body, more clearly. The figure shows that the TESPV, together with the side SSTV and MPSTV
(represented by red, blue, and yellow arrows in Figs. 17(e)–17(g)], forms the vortex ring. A jet flow
[represented by dotted black arrows in Fig. 17(f)], within the rings, leads to the thrust generation.
Further, the vortex rings in Fig. 17 are not as smooth; this may be due to a larger Reynolds number
and a phase difference between the undulating and the pitching motions that also results in a more
deformed shape of vortex ring as compared to the smooth vortex ring reported by Dong et al. [24].

B. Smallest chordwise flexibility based hypothetical batoid fish

For the largest wavelength λ∗ = ∞ and the smallest flexibility based pitching motion of the
hydrofoil-shaped cross section of the hypothetical batoid fishlike tethered propulsion, Fig. 18 shows
that the 3D vortex structure is substantially different from that at the smallest wavelength λ∗ = 0.8
based undulating motion (Fig. 17). Figure 18(b) shows that the SSTV on the front and back sides
together with TESPV forms a horseshoe vortex that was not found for the smallest wavelength.

The horseshoe vortex formation is similar to the finite span pitching foils [5]. This can be
attributed to a stronger TESPV formation at the larger wavelength as compared to the smaller
wavelength. For the smaller wavelength, since both spanwise vortices and streamwise vortices are
of almost the same magnitude, both the vortices combine and form vortex rings. Whereas, for larger
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FIG. 17. (a)–(d) Temporal variation of Q-criterion based 3D vortex structure within one time period of the
periodic 3D kinematics for the batoid fishlike locomotion at λ∗ = 0.8, AR = 1.0, St = 0.5, Amax = 0.15, and
Re = 10 000. Zoomed views of (b) are shown in (e)–(g): (e) 3D, (f) side, and (g) top views. Note that the
zoomed view shows the spanwise symmetric 3D vortex structure in one of the sides, from the midplane to
the front side. Here, the red arrow represents the trailing edge spanwise vortex (TESPV) ωy, the blue arrow
represents side streamwise vortex (SSTV) ωx , and the yellow arrow represents the y midplane streamwise
vortex (MPSTV) ωx . The time instant corresponding to each subfigure is marked in the top left corner.

λ∗, a comparatively larger strength of TESPV together with SSTV forms the horseshoe type vortex.
Furthermore, the strength of MPSTV is found to be almost negligible in this case; and thus, the
relative strength of streamwise and spanwise vortices decides the vortex structure. With increasing
λ∗, the relative strength of the spanwise vortex increases. In addition to the horseshoe vortex, the
vortex rings are also formed on the front and back sides of the body. The spanwise and streamwise
vortices split into two parts; the major part forms the horseshoe vortex and the rest forms vortex
rings, as shown in Fig. 18(a). Unlike the smallest λ∗ = 0.8, multiple streamwise and spanwise
vortices result in multiple vortex rings at the largest λ∗ = ∞.
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FIG. 18. Temporal variation of Q-criterion based 3D vortex structure within one time period of the
periodic 3D kinematics for the batoid fishlike locomotion at λ∗ = ∞, AR = 1.0, St = 0.5, Amax = 0.15, and
Re = 10 000. The time instant corresponding to each subfigure is marked in the top left corner.

Figure 18(a) shows the time instant at which the horseshoe vortex is just shed. When the vortex
moves downward, the spanwise vortex and streamwise vortex split into two parts [Figs. 18(b) and
18(c)]. The split parts of the vortices form rings over the horseshoe vortex [Fig. 18(d)]. Further,
the streamwise vortices formed are in the directed upward and downward directions by the wavy
motion for the smaller λ∗ based undulation. When the vortex ring is formed, the streamwise vortex
is directed upward in the first half of the cycle, and it is directed downward in the next half-cycle of
pitching, leading to comparatively smooth vortex rings. For larger λ∗, the streamwise vortex formed,
during both halves of the cycle, combines and forms a complicated vortex structure. This probably
results in poor propulsive efficiency of the larger wavelength (Fig. 12).

VIII. SUMMARY OF THE HYDRODYNAMICS STUDY

The summary of our 3D vortex structures and the induced jet flow are presented here with the help
of a schematic in Fig. 19. For a smaller λ∗, Fig. 19(a) shows that the streamwise undulating motion
results in spanwise vortices on the trailing edge (TESPV), and the two-sided symmetric-pitching
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FIG. 19. Schematic representation of the spanwise symmetric 3D vortex structures and the induced jet flow,
obtained in the present work, at (a) smaller λ∗ and (b) intermediate as well as larger λ∗. The various vortices
marked as TESPV, SSTV, and MPSTV correspond to trailing edge spanwise vortex, side streamwise vortex,
and midplane streamwise vortex, respectively. The block arrows represent the direction of a jet flow induced
by a vortex ring (formed by the combination of TESPV, SSTV, and MPSTV) and the horseshoe vortices.

motion results in streamwise vortices on the sides and the plane of symmetry (SSTV and MPSTV).
The TESPV, SSTV, and MPSTV together form a vortex ring in each half-cycle of the 3D kinematics.
Note that the MPSTV is absent in a 2D kinematics, involving pitching and heaving (both the motions
on a single plane) ellipsoids, proposed in the literature [24]. Thus, a single vortex ring connecting
the SSTV on both the sides are reported for the 2D kinematics [24] as compared to the symmetric
vortex rings found here for the 3D kinematics.

For the intermediate λ∗, Fig. 19(b) shows that the vortex rings formed are complex as compared
to the smaller λ∗, and there is an additional horseshoe vortex connecting the vortex contrails from
both sides of the spanwise midplane. For the larger λ∗, the flow structure is similar to that shown
in Fig. 19(b); however, the vortex rings are more complex, and the strength of the horseshoe vortex
is larger. This is because the streamwise wavy motion at smaller λ∗ helps in directing the vortices
to the upper and lower sides, leading to smoother vortex rings; whereas, for the larger wavelength,
absence of the proper direction leads to the complicated vortex structure.

For various λ∗, Fig. 19 shows a downstream inclined almost upward (downward) jet flow
within the vortex rings formed on the upper (lower) sides, leading to the thrust generation. For the
intermediate λ∗, a jet flow is also induced due to the horseshoe vortex structure [Fig. 19(b)], leading
to enhancement in the thrust force. However, the vortex-rings-induced jet flow strength reduces at
larger λ∗, due to complex vortex structures in the vortex rings. Thus, the maximum thrust force is
obtained for the optimum combination of the jet flow induced by the vortex rings and the horseshoe
vortex. For the larger λ∗, the more complex vortex rings result in a reduction in the resultant thrust
force.

IX. CONCLUSIONS

Various types of batoid fishlike locomotion are modeled by a 3D unified-kinematics model for
a spanwise symmetric 3D kinematics—two-sided pitching and undulating motions in orthogonal
cross sections. The two-sided (front and back) pitching motion is a batlike flapping of the various
streamwise cross sections, and the undulation is a muscles-induced chordwise flexibility based
stream-wise traveling wave motion along the various hydrofoil-shaped lateral cross sections. By
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varying the nondimensional wavelength λ∗ of the wavy undulation from 0.8 to ∞, various types of
real and hypothetical batoid fish are realized. The effect of the muscles-induced chordwise flexibility
λ∗ of the wavy undulation of the hydrofoil-shaped frontal cross section, aspect ratio AR of the
spanwise ellipse, and nondimensional frequency of the 3D kinematics St, on the hydrodynamic
characteristics and propulsive performance of various types of batoid fish, are studied at a constant
Reynolds number Re = 10 000 and nondimensional maximum amplitude Amax = 0.15.

The following conclusions are drawn from this three-dimensional biological hydrodynamics
study:

(1) For smaller λ∗ based Dasyatis type of batoid fish, a double-row vortex structure with almost
smooth vortex rings on both sides of the midplane is obtained; whereas, for intermediate λ∗ based
Rhinoptera bonasus type of batoid fish, a horseshoe vortex (connecting streamwise vortices from
the edges) is also obtained along with multiple ring formation on both sides of the midplane. The
combined horseshoe vortex and vortex ring is not found in the literature, and is presented here as a
new flow structure for the present class of problem. Jet flows obtained within the rings and horseshoe
vortex result in the thrust generation.

(2) In contrast to the BCF types of fish, for the batoid fish, the maximum thrust coefficient is
found at an intermediate wavelength λ∗. The larger thrust force is due to the presence of smoother
vortex rings and horseshoe vortex, and the force reduces due to the formation of multiple vortex
rings at larger λ∗. The rms value of lift force CLrms is found increasing monotonically with λ∗.
This is due to the dominating effect of a vertical jet (induced by the horseshoe vortex) over the
multiple rings. Since the jet is almost vertical for the larger λ∗, the magnitude of lateral force
is very large as compared to the thrust force. Thus, reduction in the hydrodynamic force due to
multiple vortex ring formation does not affect the lift force while it results in a reduction in the
thrust force.

(3) With increasing aspect ratio AR, the thrust force increases monotonically for various λ∗
(except at λ∗ = 0.8 where it is almost constant). This is because the strength of the horseshoe vortex
is larger at larger AR and λ∗.

(4) For the 3D kinematics of the Dasyatis and a hypothetical batoid fish, the 3D vortex structure
changes from a single-row to a double-row type of structure. The results are significant as it presents
various types of flow structures and relates them to the propulsive performance parameters for
efficient swimming of various types of batoid fish, which could be used for the design of underwater
vehicles.

[1] M. Sfakiotakis, D. M. Lane, and J. B. C. Davies, Review of fish swimming modes for aquatic locomotion,
IEEE J. Oceanic Eng. 24, 237 (1999).

[2] N. Thekkethil, A. Sharma, and A. Agrawal, Unified hydrodynamics study for various types of fishes-like
undulating rigid hydrofoil in a free stream flow, Phys. Fluids 30, 077107 (2018).

[3] L. J. Rosenberger and M. W. Westneat, Functional morphology of undulatory pectoral fin locomotion in
the stingray Taeniura lymma (chondrichthyes: Dasyatidae), J. Exp. Biol. 202, 3523 (1999).

[4] L. J. Rosenberger, Pectoral fin locomotion in batoid fishes: Undulation versus oscillation, J. Exp. Biol.
204, 379 (2001).

[5] K. D. von Ellenrieder, K. Parker, and J. Soria, Flow structures behind a heaving and pitching finite-span
wing, J. Fluid Mech. 490, 129 (2003).

[6] J. H. J. Buchholz and A. J. Smits, On the evolution of the wake structure produced by a low-aspect-ratio
pitching panel, J. Fluid Mech. 546, 433 (2006).

[7] J. H. J. Buchholz and A. J. Smits, The wake structure and thrust performance of a rigid low-aspect-ratio
pitching panel, J. Fluid Mech. 603, 331 (2008).

[8] M. A. Green, C. W. Rowley, and A. J. Smits, The unsteady three-dimensional wake produced by a
trapezoidal pitching panel, J. Fluid Mech. 685, 117 (2011).

023101-25

https://doi.org/10.1109/48.757275
https://doi.org/10.1109/48.757275
https://doi.org/10.1109/48.757275
https://doi.org/10.1109/48.757275
https://doi.org/10.1063/1.5041358
https://doi.org/10.1063/1.5041358
https://doi.org/10.1063/1.5041358
https://doi.org/10.1063/1.5041358
https://doi.org/10.1017/S0022112003005408
https://doi.org/10.1017/S0022112003005408
https://doi.org/10.1017/S0022112003005408
https://doi.org/10.1017/S0022112003005408
https://doi.org/10.1017/S0022112005006865
https://doi.org/10.1017/S0022112005006865
https://doi.org/10.1017/S0022112005006865
https://doi.org/10.1017/S0022112005006865
https://doi.org/10.1017/S0022112008000906
https://doi.org/10.1017/S0022112008000906
https://doi.org/10.1017/S0022112008000906
https://doi.org/10.1017/S0022112008000906
https://doi.org/10.1017/jfm.2011.286
https://doi.org/10.1017/jfm.2011.286
https://doi.org/10.1017/jfm.2011.286
https://doi.org/10.1017/jfm.2011.286


THEKKETHIL, SHARMA, AND AGRAWAL

[9] J. T. King, R. Kumar, and M. A. Green, Experimental observations of the three-dimensional wake
structures and dynamics generated by a rigid, bioinspired pitching panel, Phys. Rev. Fluids 3, 034701
(2018).

[10] S. Bi and Y. Cai, Effect of spanwise flexibility on propulsion performance of a flapping hydrofoil at low
Reynolds number, Chin. J. Mech. Eng. 25, 12 (2012).

[11] C. Li and H. Dong, Three-dimensional wake topology and propulsive performance of low-aspect-ratio
pitching-rolling plates, Phys. Fluids 28, 071901 (2016).

[12] A. Hemmati, T. Van Buren, and A. J. Smits, Effects of trailing edge shape on vortex formation by pitching
panels of small aspect ratio, Phys. Rev. Fluids 4, 033101 (2019).

[13] R. P. Clark and A. J. Smits, Thrust production and wake structure of a batoid-inspired oscillating fin,
J. Fluid Mech. 562, 415 (2006).

[14] K. W. Moored, W. Smith, J. M. Hester, W. Chang, and H. Bart-Smith, Investigating the thrust production
of a myliobatoid-inspired oscillating wing, Advances in Science and Technology (Trans Tech Publications,
2008), Vol. 58, pp. 25–30.

[15] W.-s. Chen, Z.-j. Wu, J.-k. Liu, S.-j. Shi, and Y. Zhou, Numerical simulation of batoid locomotion,
J. Hydrodyn. 23, 594 (2011).

[16] P. A. Dewey, A. Carriou, and A. J. Smits, On the relationship between efficiency and wake structure of a
batoid-inspired oscillating fin, J. Fluid Mech. 691, 245 (2012).

[17] K. W. Moored, P. A. Dewey, A. J. Smits, and H. Haj-Hariri, Hydrodynamic wake resonance as an
underlying principle of efficient unsteady propulsion, J. Fluid Mech. 708, 329 (2012).

[18] G. Iosilevskii, Hydrodynamics of the undulatory swimming gait of batoid fishes, Eur. J. Mech.-B/Fluids
45, 12 (2014).

[19] R. G. Bottom, I. Borazjani, E. L. Blevins, and G. V. Lauder, Hydrodynamics of swimming in stingrays:
Numerical simulations and the role of the leading-edge vortex, J. Fluid Mech. 788, 407 (2016).

[20] N. Thekkethil and A. Sharma, Level set function based immersed interface method and benchmark
solutions for fluid flexible-structure interaction, Int. J. Numer. Methods Fluids 91, 134 (2019).

[21] A. Sharma, Introduction to Computational Fluid Dynamics: Development, Application and Analysis
(Wiley & Athena UK and Ane Books Pvt. Ltd., New Delhi, 2017).

[22] N. Thekkethil, Computational fluid-structure dynamics development and its application for analysis of
various types of 2D/3D fishes-like kinematics, propulsion, and flexibility, PhD. thesis, Indian Institue of
Technology Bombay, 2019.

[23] T. A. Johnson and V. C. Patel, Flow past a sphere up to a Reynolds number of 300, J. Fluid Mech. 378, 19
(1999).

[24] H. Dong, R. Mittal, and F. M. Najjar, Wake topology and hydrodynamic performance of low-aspect-ratio
flapping foils, J. Fluid Mech. 566, 309 (2006).

[25] S. Kern and P. Koumoutsakos, Simulations of optimized anguilliform swimming, J. Exp. Biol. 209, 4841
(2006).

[26] T. Namshad, M. Srivastava, A. Agrawal, and A. Sharma, Effect of wavelength of fish-like undulation of a
hydrofoil in a free-stream flow, Sādhanā 42, 585 (2017).
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