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Steady circulation induced by inertial modes in a librating cylinder
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The paper is devoted to an experimental study of steady flows excited by an oscillating
motion of fluid in a cylinder, the rotation rate of which periodically changes (librations).
The rotational oscillations lead to the appearance of a system of averaged toroidal vortices
in a viscous Stokes boundary layer close to the cylinder side wall. The number of vortices
depends on the frequency of librations, σ . If σ exceeds twice the rotation rate, the steady
flow structure has the form of two vortices located close to the cavity ends, i.e., corner
flow. If σ < 2 at some libration frequencies, inertial modes—natural modes of rotating
fluid oscillations in the closed cavity—are excited. In this case additional averaged vortices
arise. The number of vortices is determined by the axial wave number of the inertial mode.
With a decrease in the dimensionless frequency of fluid oscillation, the vortices increase in
size, which leads to a transformation of the vortex structure. In this case, the flow near the
ends is a superposition of the flows excited by inertial mode and corner flow. At the same
time, the vortices which are the most distant from the periphery do not feel the corner flow.
It is shown that the viscous dissipation of the oscillating motion in the fluid bulk leads to a
linear decrease in the velocity of steady circulation with the dimensionless frequency.

DOI: 10.1103/PhysRevFluids.5.014804

I. INTRODUCTION

It is known that oscillations of viscous fluid near solid walls lead to an occurrence of averaged
effects. A classic example is steady streaming [1]. The oscillations result in a dynamic Stokes
boundary layer in which averaged shear stresses are generated. The situation changes when the
oscillations occur against the background of the rotation. In this case, the Coriolis force acts on
the fluid and oscillating Ekman boundary layers appear on the walls that are not parallel to the
rotation axis [2]. Nonlinear effects in Ekman layers also lead to the appearance of mean flows [3].
An example of a harmonic forcing on rotating systems is longitudinal librations [4,5]: sinusoidal
changes in the rotation rate. The interest of researchers in this area is due to the fact that the
libration movement is characteristic of many planetary bodies [6,7]. From a fundamental point of
view, the problem of fluid flow in a librating cylinder is no less interesting. In this case, both types of
oscillating boundary layers arise at the boundaries: Ekman layers on the end walls and a Stokes layer
on the side wall. The first studies of the effect of librations on the fluid flow in a cylindrical geometry
were carried out by Wang [8], who showed that rotational oscillations lead to the appearance of
retrograde zonal flow. Later, the case of low-frequency librations was theoretically considered by
Busse [9]. In theory, the mechanism of zonal flow generation was associated with nonlinear effects
in the Ekman layers on the end walls, while the Stokes layer on the side wall of the cylinder was
excluded from consideration. In [10] and [11] experimental and numerical confirmation of zonal
flow existence in a librating cylinder was given.
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FIG. 1. Scheme of the experimental setup.

If the libration frequency is less than twice the mean rotation rate, in addition to the zonal
flow, inertial waves are generated. These waves propagate along the characteristic conical surfaces
formed by free shear layers. The direction of wave beam propagation relative to the rotation
axis is determined only by the oscillation frequency [2,12]. In closed cavities, at certain libration
frequencies, so-called inertial modes are excited. These modes are eigenmodes of a rotating fluid in
a given cavity geometry [13–15]. Studies [11,16–18] show that the resonant excitation of the inertial
mode is capable of several times intensifying the zonal flow. At the same time, outside the resonant
frequencies, the differential velocity of the fluid is significantly lower [17]. As shown in [16] the
mechanism of the zonal flow was associated exclusively with nonlinear self-interaction of inertial
modes. On the other hand, as experiments [19–21] show, inertial waves and modes are capable of
generating steady circulation in dynamic boundary layers. For example in [19] pattern formation,
excited by oscillations of the free surface of the centrifuged fluid layer, on the side wall of a rotating
cylinder was studied. The heavy particles of the visualizer formed a system of periodic axisymmetric
ring structures along the axis of rotation. An analysis of the results showed that the pattern formation
is associated with a reflection of the inertial wave beam from the cylinder side wall. Similar
azimuthal particle structures associated with the reflection of inertial waves were observed in a
spherical cavity, in the center of which was an oscillating spherical core [20]. A study of steady
circulation excited by inertial wave beams in a librating cylinder with the help of particle image ve-
locimetry (PIV) was performed in [21]. The case of small amplitudes of rotational oscillations, when
centrifugal instability does not occur at the cavity side wall, was considered. It was found that the
interaction of the inertial wave with the boundary layer qualitatively changes the two-dimensional
structure of the zonal flow. The pulsating motion caused by the reflection of the wave beam leads
to the formation of a system of averaged toroidal vortices in the Stokes boundary layer. The vortex
motion of the fluid also led to the redistribution of small heavy particles on the side wall in the form
of a system of axisymmetric ring structures. Each ring was located between two vortices, forming
oncoming flows along the wall. In the present work, the research begun in [21] is extended. The main
attention is focused on the study of the structure and velocity of the flow that occurs in the Stokes
boundary layers under resonant excitation of the inertial mode in a librating cylindrical cavity.

II. EXPERIMENTAL SETUP AND TECHNIQUE

The experiments are carried out using the equipment schematically presented at Fig. 1. The
cavity is a circular cylinder with length L = 102.0 mm and radius R = 26.0 mm, filled with liquid.
The ends of the cavity are closed with Plexiglas flanges and fixed in the ball bearings of the supports.
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TABLE I. The values of the parameters in experiments.

Parameter Definition Value

L Cavity length 102.0 mm
R = D/2 Cavity radius 26.0 mm
L/R Aspect ratio 3.92
�rot Mean rotation rate 15.70−62.80 s−1

�lib Frequency of librations 9.42−125.6 s−1

ν Kinematic viscosity of the fluid 7.0−250 cSt
�ϕ Angular amplitude of rotational oscillations 0.03−0.67 rad
σ = �lib/�rot Dimensionless frequency of librations 0.3−2.0
ε = �ϕσ Amplitude of librations 0.05−0.20
E = ν/(�rotR2) Ekman number 10−4−10−2

δ = √
2ν/�lib Stokes boundary layer thickness 0.4−4.8 mm

ω = �libR2/ν Dimensionless frequency of fluid oscillations 60−104

One of the flanges is installed in the bearing, the inner diameter of which exceeds the diameter of
the cylinder, which allows observations along the axis of symmetry. To compensate for the optical
distortions on the side cylindrical wall, the cavity is placed into a transparent Plexiglas box in the
form of a parallelepiped. The space between the cavity and the walls of the box is filled with working
fluid. The working fluid is a water-glycerol solution, with kinematic viscosity varying in the range
ν = 7−250 cSt in different experiments. A cylindrical coordinate system (r, ϕ, z) with the origin in
the center of the cavity is used.

The case of nonuniform rotation of the cavity is considered. The rate of rotation changes in the
laboratory reference frame according to the law

�(t ) = �rot (1 + ε sin (�libt )),

where �rot is the mean rotation rate of the cavity, �lib is the angular libration radian frequency,
and ε ≡ �ϕ�lib/�rot is the modulation amplitude of rotational oscillations. As a dimensionless
characteristic of the libration frequency, the parameter σ ≡ �lib/�rot is used. The parameters under
which the experiments are performed are given in Table I.

The rotation of the cavity is set by a stepper motor (Fulling Motor FL86STH118-6004A)
controlled by a driver (Smart Motor Devices SMD-8.0) and powered by a direct current source
(Mastech HY5005E). The main step of the motor equals 1.8° and is divided by 0.45° by the driver.
The motor shaft rotation velocity is adjusted using a ZETLAB Zet 210 Sigma USB generator
module. The motor shaft is connected to the axis of the cuvette using a clutch that transmits rotation
with a high degree of accuracy.

Initially, the cuvette is brought into a rapid uniform rotation about a horizontal axis with the
speed of �rot. After establishing the solid-state rotation of the fluid, the frequency �lib and the
amplitude ε of librations are set. The velocity field in an axial section of the cylinder is studied by
the PIV method. For this purpose, a small amount of plastic spherical particles with a diameter of
d ∼ 60 μm and average density ρ ∼ 1.05 g/cm3, are added to the working fluid. The volume
fraction of particles in the working fluid does not exceed 10−4. The liquid is illuminated by a
light plane created by a continuous laser (Z-Laser Z500Q). Video recording of the position of
light-scattering particles is carried out using a high-speed camera (CamRecord CL600×2), which
is immovable in the laboratory reference frame. The recording frequency in different experiments
varies from 20 to 100 fps, but for analysis only those are selected from the entire sequence of frames
such that the time interval between them is a multiple of the mean rotation rate period 2π/�rot. After
this time the same particles of the visualizer are illuminated by the laser (the thickness of the laser
sheet is about 2 mm). Since the intensity of zonal flow is small, the movement of one particle along
the z axis can be tracked over the time of several revolutions of the cavity. An obtained sequence
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(a) (b)

FIG. 2. The velocity field averaged over the period of librations in the axial section of the cylinder (a) and
track visualization of the flow structure (b) at σ = 2.2, ε = 0.10, and E = 1.8×10−3. The color shows the ϕ

component of the averaged vorticity field, rotϕu.

of photos is processed using the program PIVLAB [22], after which the instantaneous and averaged
(over the period of librations) velocity fields are studied. Note that the averaged velocity field is
calculated over at least ten libration periods. To demonstrate the steady flow structure the track
visualization is used. Images are generated by combining frames, the time interval between which
is a multiple of the average period.

All the experiments are carried out below the threshold of centrifugal instability on the side
wall of the cylinder. The maximum value of Reynolds numbers Re = εE −3/4 < 250 [10], where
E = ν/(�rotR2) is the Ekman number.

III. EXPERIMENTAL RESULTS

Initially, let us describe a flow structure associated exclusively with rotational oscillations of
the cavity (σ > 2). In this case, an averaged retrograde zonal flow arises. Previous theoretical and
experimental studies [4,10,11,21] show that the velocity of this flow is proportional to the square
of the libration amplitude. Near a junction of the side and end walls of the cylinder, corner flow is
additionally generated (Fig. 2). This flow has the form of two averaged toroidal vortices, in which
the fluid moves along the side wall from the ends to the cavity center. As was shown in [21] corner
flow exists in the entire range of libration frequencies, and the fluid velocity in vortices also varies
with the libration amplitude according to the law ∼ε2.

In the frequency range 0 < σ � 2 oscillating fluid motion propagates from the cavity corners
into the fluid bulk in the form of inertial waves [2]. The direction of inertial wave beam propagation
is determined by a ratio between the libration frequency and twice the mean rotation rate: θ =
arcsin(σ/2). Inertial wave beams generated by cavity librations were studied previously in cavities
of various geometries: rotating cylinder [11,21], rotating annulus [14], rotating annulus with a
truncated inner cylinder [23], as well as a cubic cavity [13,15]. In all the above works, wave beams
were born near the cavity corners, where the Stokes and Ekman boundary layers interact.

At certain libration frequencies, inertial waves excite the inertial modes. These modes are the
natural frequencies of oscillations of a rotating fluid and strongly depend on the geometry of the
cavity. The natural frequencies of inviscid inertial modes in the cylinder are determined by the
following expression:

σ 2 = 4n2π2

n2π2 + ξ 2
nmkL2/R2

, (1)

where n is an axial wave number and L/R is the aspect ratio. The parameter ξ 2
nmk is the m positive

solution to the transcendental equation

ξ
d

dξ
J|k|(ξ ) + k

(
1 + ξ 2

n2π2L2/R2

)1/2

J|k|(ξ ) = 0, (2)
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 3. Instantaneous and averaged velocity field at σ = 1.28 {4,1} and ω = 3900 (a), (b), and at σ =
1.56 {6,1} and ω = 4700 (d), (e). The amplitude of librations and the Ekman number are ε = 0.12 and E =
3.3×10−4 respectively. Panels (c) and (f) show the schemes of steady circulation in the Stokes layer.

where J|k|(ξ ) is the first kind Bessel function of |k| order. Since an axisymmetric flow is considered,
k = 0 and only the axial and radial wave numbers {n, m} are used for the spatial characteristic of
the inertial mode. The ends of the cavity oscillate symmetrically. For this reason, only symmetrical
modes arise with respect to the plane z/L = 0 with even values of n.

Figures 3(a) and 3(d) show the instantaneous velocity field and corresponding vorticity field for
modes {4,1} and {6,1} in the libration phase �libt = π . The oscillating flow is a system of toroidal
vortices in which the direction of the fluid rotation changes during the libration period. Therefore
in the antiphase (�libt = 0) the vorticity will be the opposite. The structure of the oscillating flow
depends on the radial wave number m. For example, when a mode {4,2} is excited, the number of
vortices doubles. In general, the results of visualization of the instantaneous velocity field by the
PIV method are in a good agreement with theoretical predictions [2].

A. Steady circulation

The oscillations of the fluid excited by the inertial mode in the fluid bulk lead to the appearance
of a steady circulation in the viscous Stokes boundary layer on the side wall of the cavity. The
structure of this flow manifests itself when averaging the velocity field over the period of librations.
Figures 3(b) and 3(c) show the averaged velocity field and schematically illustrate the steady
circulation corresponding to the mode {4,1}. The flow has the form of a system of toroidal vortices,
the size of which along the z axis is consistent with the size of the oscillating vortices. An exception
is a region near the junction of the side and end walls, where the flow structure is complicated by
the presence of the corner flow. The transverse size of the vortices is limited by several thicknesses
of the Stokes boundary layer, δ = √

2ν/�lib, and their number is determined by the expression
n + 2. Therefore at n = 6 [Figs. 3(d)–3(f)] the number of vortices localized in the boundary layers
is 8. In this case, the vortices excited by an oscillating motion at the periphery (|2z/L| > 0.7) are
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(a)

(b)

FIG. 4. (a) The distribution of the averaged velocity modulus |uz| along the cylinder side wall at σ = 1.28,
ε = 0.12, and E = 1.6×10−4; (b) dependence of the maximum fluid velocity in the vortices on the amplitude
of librations ε at a fixed value of the axial wave number at n = 4 and different values of radial number m.

significantly suppressed by the corner flows of opposite vorticity. These flows are weakly visible on
the velocity field [Fig. 3(e)] and schematically depicted as vortices of the smallest size in Fig. 3(f).
It should be noted that the number of averaged vortices does not depend on the radial number m.
With an increase in m only a change in the intensity of the averaged motion is observed.

The absolute value of the maximum averaged velocity along the side wall of the cavity |ūm
z |

is taken as a characteristic of the flow rate. Thus, for example, at the frequency σ = 1.28 (mode
{4,1}) the average velocity at four maxima located in the range |2z/L| = 0.1−0.9 is calculated
[Fig. 4(a)]. The flows excited by the angular oscillations of the cavity are not taken into account
during averaging.

Figure 4(b) shows the dependence of the module maximum fluid velocity |ūm
z |/(�rotR) on

the amplitude of librations ε. The experiments show that at a fixed frequency σ the intensity
of the averaged motion increases according to the law ε2. The quadratic dependence is determined
by the mechanism of steady circulation generation associated with nonlinear effects in the Stokes
boundary layers. This result is universal and is in good agreement with the studies of the influence
of various types of harmonic effects on rotating systems [3]. Thus, at fixed values of the libration
frequency σ and Ekman number E the fluid velocity is completely determined by one dimensionless
complex, V = |ūm

z |/(�rotRε2).
When there is a change in the libration frequency σ , the averaged velocity V changes nonmono-

tonically, experiencing a series of extrema corresponding to resonant excitation of an inertial mode
with a wave number {n, m} (Fig. 5). In this case, the most intensive fluid motion is observed for the
main mode {2,1}, when all the energy is accumulated in two oscillating toroidal vortices. With an
increase in the radial wave number m the intensity of the flow rapidly decreases. The next largest
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FIG. 5. Distribution of the dimensionless averaged velocity V = |ūm
z |/(�rotRε2) over the libration fre-

quency σ at E = 1.6×10−4; labels 2,1, 6,2, etc. mean the numbers of inertial modes {n, m}.

peaks are associated with resonant mode {n, 2} excitation. The value of dimensionless velocity V
is about one and a half times less than that for modes with a radial wave number m = 1. Finally,
the flows related to modes {n, 3} practically do not manifest themselves due to the strong viscous
dissipation of the small-scale pulsating motion of the fluid in fluid bulk.

A similar dependence on the frequency of external harmonic forcing was obtained in numerical
simulations [11] with a librating cylinder with aspect ratio L/R = 2 and in experiments [17] with
a rotating and periodically deformable spherical cavity. In contrast to the current research, in both
works attention was paid exclusively to the zonal flow. Similarly, at a frequency corresponding to
one of the inertial modes, the averaged velocity of zonal flow increased in a resonant manner.

B. Effect of the dimensionless frequency ω

The most important parameter of the problem is the dimensionless frequency of fluid oscillations
relative to the cavity, ω = �libR2/ν, which characterizes the square of the ratio between the cavity
size and the thickness of the Stokes boundary layer δ on the cylinder side wall. In the area of
high frequencies (ω > 2×103) the structure of the flow has the form shown in Fig. 3. As the
dimensionless frequency decreases, the relative thickness of the boundary layers increases. As a
result the size of the averaged toroidal vortices also increases. For example, at a frequency σ = 0.77
(mode {2,1}) and ω = 330 averaged vortices excited by inertial modes grow up to the cavity end
walls, interacting with the corner vortices [Figs. 6(a) and 6(e)]. Thus, close to the cavity ends, the
flow is a two-level system consisting of a pair of vortices with opposite vorticity. It is noteworthy that
the result is a superposition of two flows due to two different mechanisms: the rotational oscillations
of the cavity and resonant oscillations in the fluid bulk.

A transformation of the steady flow structure for mode {4,1} is similar. With a decrease in ω

the averaged vortices located at a distance |2z/L| = 0.6−0.8 [Fig. 3(b)] increase in size and are
displaced to the periphery by expanding central vortices [Figs. 6(b) and 6(f)]. Track visualization
of the flow shows that already at ω = 540 averaged vortices in the central part of the cavity reach
a significant size, r/R ≈ 0.3. At the same time, close to the cavity ends the flow structure is a
two-vortex system similar to that observed at σ = 0.77 [Figs. 6(a) and 6(e)].

The evolution of the flow excited by higher-order modes with a change in ω is slightly different.
Thus at σ = 1.56 (mode {6,1}) the vortices located at a distance |2z/L| = 0.7−0.8 [Fig. 3(e)] are
completely suppressed. As a result, the corner flows are combined with neighboring vortices of
the same vorticity, forming one large vortex near the cavity ends [Figs. 6(c) and 6(g)]. Thus, an
eight-vortex structure [Fig. 3(e)] is replaced by a four-vortex one [Fig. 6(c)]. Despite the fact that
the numbers of averaged vortices close to the side wall at σ = 1.28 and σ = 1.56 are identical, the
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FIG. 6. Averaged velocity field and its track visualization at σ = 0.77 (mode {2,1}), ε = 0.15, and ω =
330 (a), (e); σ = 1.28 {4,1}, ε = 0.15, and ω = 540 (b), (f); σ = 1.56 {6,1}, ε = 0.15, and ω = 660 (c), (g);
σ = 1.72 {8,1}, ε = 0.20, and ω = 730 (d), (h). The Ekman number for all cases is E = 2.4×10−3. In panels
(a)–(d) the color shows the ϕ component of the vorticity field averaged over the libration period, rotϕu; solid
curves with arrows in panel (e) schematically illustrate the structure of the steady circulation.

central vortices differ in both the sign of vorticity and size. This is associated with a slight increase
in the dimensionless frequency ω for mode {6,1} compared to mode {4,1}. Figure 6(g) shows that
the thickness of the central vortices decreases to r/R ≈ 0.2. The structure of the steady flow for the
mode {8,1} is transformed similarly. As a result of the dominance of the corner flow, the ten-vortex
flow transforms into a six-vortex one [Figs. 6(d) and 6(h)].

014804-8



STEADY CIRCULATION INDUCED BY INERTIAL MODES …

(a) (b)

FIG. 7. Averaged velocity field and its track visualization at σ = 1.28 {4,1}, ε = 0.15, ω = 110, and
E = 1.2×10−2.

With a further decrease in ω the averaged flows increase in size and their thickness becomes
comparable with the size of the cavity. In the range of frequency ω < 102, irrespective of the number
of the excited mode, the flow consists of two pairs of coordinately rotating toroidal vortices (Fig. 7).
The vortex motion generates a flow in the form of jets directed to the corners. At the same time,
the strongest flow directed from the ends of the cavity to its center arises along the axis of rotation.
Note that, in the case of zero average rotation (�rot = 0), rotational oscillations with frequency �lib

generate a vortex motion close to the ends of the opposite vorticity [24,25].

C. Effect of the Ekman number

The dependence of the flow velocity V = |ūm
z |/(�rotRε2) excited by the modes {2,1}, {4,1},

and {6,1} on Ekman number E = ν/(�rotR2) is shown in Fig. 8. In all cases, with increasing E
the fluid motion in the averaged vortices is dissipated by viscosity according to a power law, and
the scaling for different inertial modes can differ. In the range of low Ekman numbers (E < 10−3)
dissipation of oscillating fluid motion in the fluid bulk leads to a decrease in the maximum velocity
according to the law V ∼ E−1/2. However, at E > 10−3 a violation of the detected scaling is
observed. The monotonic decrease in the intensity of the flow excited by modes {2,1} and {4,1}
is replaced by the output of the system at a constant value. It can be assumed that additional
energy pumping into the flow is associated with its transformation caused by a change in the
dimensionless frequency ω. Indeed, as experiments show [Figs. 6(a), 6(b), 6(e), and 6(f)], the
decrease in ω leads to an increase in the size of the vortices. As a result, the flow excited by the

FIG. 8. Dependence of the velocity of steady circulation on the Ekman number E .
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2×

4×

FIG. 9. Dependence of the dimensionless velocity of steady circulation excited by the fluid oscillations
in the fluid bulk, V (points: 1), and the velocity of the corner flow, Vc (rhombuses: 2), on the frequency of
librations σ at E = 2.4×10−3. Shading indicates the viscosity dissipated modes.

inertial mode begins to strongly interact with the corner flows. After the saturation of the steady flow
with additional energy (E > 3×10−3), the monotonic decrease of velocity is renewed according to
the law V ∼ E−1/2.

For mode {6,1} the scaling V ∼ E−1/2 changes to V ∼ E−1, which differs from dissipation
scaling for modes with lower wave numbers. It should be noted that in this case the velocity was
measured only in the central vortices at a distance |2z/L| = 0.1−0.3 [Fig. 6(c)]. These vortices are
associated exclusively with resonant oscillations of the inertial mode and are not burdened by the
influence of corner flow. At the same time, with an increase in E the amplitude of the pulsating
motion of the fluid decreases with distance from the ends, and takes the smallest value near the
areas where the measurements were made.

Note that in spherical geometry the dependence of the velocity of zonal flow excited by the
inertial mode also strongly depends on the oscillation frequency. For example, in the case of tidal
oscillations of a sphere with a resonant frequency σtide = 0.38 in the range of Ekman numbers
E = 5×10−5−10−3, a scaling in ∼E−3/10 was obtained in experiments [17]. Even with a small
deviation from the resonance frequency to σtide = 0.384 the scaling had changed significantly
∼E−0.64, and at σtide = 0.178 zonal flow velocity varied according to the law ∼E−2.1 [26]. For
a spherical layer performing tidal oscillations with a frequency σtide = 0.88, scaling ∼E−3/2 was
obtained numerically, and for frequency σtide = 1 the velocity decreased as the inverse square root
of Ekman’s number, ∼E−1/2 [16,18].

Figure 9 shows the distribution of averaged velocity over the libration frequency σ at Ekman
number E = 2.4×10−3. The circles correspond to the flow associated with inertial modes, and
the rhombuses correspond to the corner flow at distance |2z/L| = 0.8−1.0. In contrast to the case
presented in Fig. 5, only three main maxima corresponding to the modes {2,2}, {2,1}, and {4,1} are
observed. An increase in E leads to the expansion of the frequency boundaries of the main modes
of existence and the simultaneous dissipation of higher-order modes. For example, at libration
frequencies σ , corresponding to the modes {4,2} and {6,2}, a pulsating flow corresponding to the
modes {2,1} and {4,1} occurs. In turn, a change in the regime of oscillating fluid motion leads to a
transformation of the steady circulation structure.

Note that, in the above case, the shape of the curve for the corner flow (rhombuses in Fig. 9)
repeats the form of the dependence V (σ ). The velocity Vc can exceed the velocity V several times,
which is especially noticeable at libration frequencies σ > 1.3. This can be explained by the fact
that, with an increase in the mode number, the amplitude of the pulsating fluid motion rapidly
decreases with the distance from the ends. As observations show for mode {6,1}, the value of
vorticity in the vortices located at a distance |2z/L| ≈ 0.2 is significantly less than that in vortices
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(a) (b)

FIG. 10. Dependence of averaged velocity on the dimensionless frequency of fluid oscillations, ω.

on the periphery. Moreover, the flow near the cavity ends is determined by the combined action of
two mechanisms (rotational oscillations of the cavity and inertial mode), resulting in the velocity Vc

being about three times higher than V .

IV. DISCUSSION

In the case of small oscillation amplitudes, the mechanism of the steady circulation generation is
connected to the heterogeneity of the oscillating flow in the Stokes boundary layer close to the side
wall of the cavity. Against the background of fluid oscillations excited by the inertial mode, a system
of averaged toroidal vortices occurs. As experiments show (Figs. 3 and 6), the steady flow structure
strongly depends on the dimensionless oscillation frequency ω = �libR2/ν ∼ R2/δ2, where δ is the
Stokes layer thickness. The dependence of the averaged velocity V on ω is presented in Fig. 10(a).
In the range of high frequencies (ω > 2×103), where the thickness of the dynamic Stokes layer is
small compared with the cavity size, a monotonic increase in the velocity V according to a power
law is observed. Moreover, the smaller the axial wave number of the inertial mode {n, 1}, the greater
is the flow velocity. With a decrease in ω the thickness of the boundary layers increases and at
ω < 2×103 the scaling changes. Meanwhile, for various libration frequencies σ the rate of the flow
velocity change with ω is different.

Because of the dependence shown in Fig. 8 for the limit of low Ekman numbers, let us plot
the parameter V E1/2. As experiments show, in the range of Ekman numbers E = 10−4−10−2 and
different axial wave numbers of the modes, the results are consistent on the plane of the parameters
ω,V E1/2 [Fig. 10(b)]. It can be seen that, in the high-frequency limit, the parameter V E1/2 reaches
an asymptotic value 5×10−4. When decreasing dimensionless frequency (ω < 2×103), the fluid
velocity begins to depend on the inertial mode number, which is due to the effect of the corner flows.
Therefore at wave numbers {2,1} and {4,1} the velocity V E1/2 initially monotonically increases,
and at ω < 2×102 gradually reaches its maximum value. The fluid velocity in the cavity corners
is presented at Fig. 11. It is seen that independently of the libration frequency all experimental
results are described by one dependence. At high ω the velocity of the averaged flow in the cavity
corners is higher than in vortices associated with inertial oscillations of the liquid [Fig. 10(b)]. With
a decrease in the dimensionless frequency at ω < 8×102, a monotonic increase in the flow rate to
the value VcE1/2 ≈ 10−3 is observed. Likewise the steady circulation intensity increases for modes
{2,1} and {4,1}. Moreover, in the range of moderate dimensionless frequencies (ω < 4×102) the
velocity values VcE1/2 and V E1/2 take close values. This indicates that the corner flows lead to
increase in the velocity of the flow excited by inertial modes. In the libration frequencies region,
where there are no inertial oscillations (σ = 2), the velocity of corner flows also varies with the
dimensionless frequency. Observations show that, despite a significant increase in the value of the
parameter VcE1/2 at ω = (4−8)×102, a qualitative change in the corner flow structure does not
occur.
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FIG. 11. The velocity of corner flow versus the dimensionless frequency ω.

The most interesting result is in the range of moderate dimensionless frequencies for the mode
{6,1} [Fig. 10(b)]. Since attention was paid to the flow far from the cavity ends, corner vortices
did not affect the measurement results. This means that the averaged velocity in these vortices is
determined only by the amplitude of the pulsating flow in the fluid bulk. As experiments show, the
decrease in ω leads to viscous flow dissipation according to the law V E1/2 ∼ ω1/2. Given that the
frequency of librations is defined as σ = �lib/�rot, and the amplitude ε = �ϕσ , we can get that

V E1/2 = ∣∣ūm
z

∣∣E1/2/(�ϕ2�libRσ ). (3)

This means that the dimensionless velocity of the steady flow is described by the expression∣∣ūm
z

∣∣/ũ = 10−5(�ϕωσ 1/2), (4)

where ũ ≡ �ϕ�libR is the amplitude of the velocity of the oscillating fluid motion. Taking into
account that in these experiments the frequency of librations σ does not change, we can conclude
that the velocity in the central vortices is completely determined by the dimensionless frequency
and does not depend on the Ekman number:∣∣ūm

z

∣∣/ũ ∼ ω. (5)

It is interesting that this result agrees well with the analysis of the steady flow excited by rotational
oscillations of a cavity with a periodically deformed elastic wall [24]. In the mentioned studies, the
average rotation of the cavity was equal to zero, while in the low-frequency limit the scaling for the
velocity of the averaged flow was |ūm

z |/�ϕ2�rotR ∼ ω. Note that a linear decrease in speed with
frequency ω was observed only at relatively large values of Ekman numbers, E > 6×10−4.

V. CONCLUSIONS

Steady circulation excited by the oscillating motion of a fluid in a nonuniformly rotating cylinder
is investigated experimentally. The case of librations—harmonic oscillations of the rotation rate
according to the law ∼ε sin(�libt )—is considered. It is shown that the flow structure substantially
depends on the libration frequency σ = �lib/�rot. In the case when the frequency is σ > 2, the
oscillations lead to the appearance of corner flow, i.e., pairs of toroidal vortices near the junction
of the side and end walls of the cylinder. In the case when σ � 2 at certain libration frequencies,
an intense oscillating motion of the liquid—inertial modes—occurs. The inertial modes lead to
the excitation of additional steady circulation in the Stokes boundary layer on the cylinder side
wall in the form of a system of toroidal vortices. The velocity of the flow in the vortices changes
nonmonotonically with frequency σ , experiencing a series of extrema corresponding to the resonant
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excitation of the inertial mode. Thus, the flow structure close to the side wall of the cavity has a
three-dimensional form.

The structure of the flow at a fixed value of σ highly depends on the dimensionless fluid
oscillation frequency ω = �libR2/ν, determining the ratio of the cavity size to the thickness of the
dynamic Stokes layer. Therefore in the case of high ω the number of averaged vortices is described
by the expression n + 2, where n is the axial wave number of the inertial mode. An additional pair
of vortices is due to the presence of corner flow. The transverse size of the vortices is limited by
several thicknesses of the Stokes boundary layer, and the axial size is comparable to the size of the
oscillating vortices. The exception is the area near the cavity ends. The matching of the sizes of the
averaged and oscillating vortices indicates the fact that the generation mechanism of these flows is
associated with nonlinear effects in the Stokes layer due to inhomogeneous oscillating fluid motion.
In the high-frequency limit, independently of the inertial mode number, the flow velocity does not
depend on ω and is completely determined by the parameter V E1/2 = |ūm

z |E1/2/�rotRε2, where E
is the Ekman number.

With a decrease in the dimensionless frequency, the thickness of the boundary layers increases,
resulting in a transformation of the flow structure. In the case of modes {2,1} and {4,1} the central
vortices gradually move to the periphery, interacting with the corner flow. Thereby, near the ends, the
resulting flow is a superposition of flows caused by two different mechanisms: rotational oscillations
of the cavity and resonant fluid oscillations. With a further decrease in the dimensionless frequency,
the size of the averaged vortices becomes comparable with the cavity size.

At the oscillation frequency corresponding to the mode {6,1} the vortices most distant from the
cavity ends are not affected by the corner flow. As a result, the velocity in these flows is determined
only by the amplitude of the oscillating motion in the fluid bulk. Experiments performed at a fixed
value of σ in the range of Ekman numbers E = 6×(10−4−10−3) showed that the velocity of the
steady circulation changes with dimensionless frequency according to the law |ūm

z |/�ϕ2�rotR ∼ ω.
Since oscillations are typical for planetary bodies, the question about the possibility of averaged

vorticity generation in the boundary layers of liquid cores or subsurface oceans is relevant. For
planets the Ekman numbers are very small (E ∼ 10−14 [27]), while the source of resonant inertial
oscillations of the liquid can be not only longitudinal librations, but also tidal deformations, as well
as buoyant oscillations with the natural frequency of the solid core. The results of the present work
are limited to a narrow range of dimensionless frequencies ω = 102−104 (Fig. 10); nevertheless, at
ω > 2×103 the flow velocity reaches an asymptotic value. It can be assumed that, after extrapolating
the data to ω = σ/E ∼ 1014, the rate of steady circulation will also be determined by the parameter
V E1/2. Despite the fact that the present study was conducted in a cylindrical geometry, one can
expect the emergence of similar averaged effects in the boundary layers in spherical geometry. This
is indicated by the experimental results described in [20]. The reflection of inertial wave beams from
the inner wall of the spherical cavity is accompanied by the appearance of azimuthal axisymmetric
structures at different latitudes. Therefore, in future studies, it will be interesting to pay attention to
steady boundary layer circulation excited by inertial modes in a spherical cavity.
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