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We investigate the long-time evolution of flow structures and the kinetic-potential energy
exchange in rotating stratified turbulence, which is of great significance in geophysical
flows. Numerical simulations of forced three-dimensional homogeneous rotating stratified
turbulence in transient state with different Froude numbers are performed. Numerous small
vortices spread in the flow, besides a cyclone and an anticyclone that fill up the domain
after a very long time. Cyclonic vortices, though being less numerous than anticyclonic
vortices, grow faster, thus becoming comparable to the domain scale at an earlier time.
When the strength of stratification is varied, we find that in the case with weak stratification,
the intensity of global kinetic-potential energy exchange is nearly constant in earlier
times, while it oscillates in time at later times. Moreover, for the simulation with weak
stratification, the areas of intense kinetic-potential energy exchange tend to concentrate
in segmented cylinders. In contrasts, when the strength of stratification is comparable
to that of rotation, the areas of intense kinetic-potential energy exchange populate the
flow as quadrupoles. For both simulations with stratification, the intense kinetic-potential
energy exchange is found to be associated with the cyclonic structures. A possible relation
between the sign of ωz and the spatial distribution of the density field θ is proposed, and
the conditional average 〈∂θ/∂z|ωz〉 is found to be almost time-invariant throughout most
of the domain.
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I. INTRODUCTION

Turbulence subjected to rotation and stratification is of crucial importance for us to understand
the physics which is widespread in geophysical flows such as atmospheric and oceanic turbulence
[1,2]. For a fluid under rotation and stratification, the Coriolis and buoyancy forces are introduced
into the momentum equation in addition to the nonlinear term. Besides the Reynolds number Re,
there are two more dimensionless numbers controlling the flow, namely, the Rossby number Ro and
the Froude number Fr, representing the relative strength of the inertial term to the Coriolis force and
the buoyancy force, respectively.

Previous studies on rotating and/or stratified turbulence have mainly focused on the energy
spectrum to elucidate the natural occurrences in the ocean and in the atmosphere [3–9]. In addition,
extensive research has been conducted to investigate the energy transfer in rotating and/or stratified
turbulence to shed more light on the underlying physics. Normal-mode decomposition has been
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adopted widely to decompose the flow field into the wave and potential vorticity (PV) components
[10]. There are many other studies investigating the energy transfer between different normal modes
[11–15].

As for purely rotating turbulence without stratification [16–19], a series of studies has shown
that when Ro is small enough there exists an inverse energy cascade, and the energy in spectral
space tends to concentrate in the wave number plane normal to the rotation axis, resulting in a
quasi-two-dimensional (quasi-2D) flow [20–22]. Waleffe used an “instability assumption” [23] of
the triadic energy transfers to provide a simple argument for the aforementioned trend to be two-
dimensionalized in rotating turbulence [24]. Chen et al. [25] examined the predictions of the wave
resonance theory numerically at a fixed Reynolds number with different Rossby numbers. Their
results verified that the resonant interactions of slow modes are important to the inverse energy
cascade in three-dimensional (3D) rotating turbulence.

For purely stratified turbulence without rotation [26–28], Godeferd and Cambon [29] adopted
an eddy-damped quasinormal Markovian (EDQNM) closure with the axisymmetry hypothesis to
analyze the anisotropic energy transfers. For Fr smaller than a critical value of O(1), energy is
transferred to large scales when the integration time is sufficiently long [12]. Waite and Bartello
[30] used numerical simulations to demonstrate the lack of an inverse cascade of vortical energy
and that the transfer of vortical energy to wave energy occurs most efficiently at a vertical scale of
U/N , where U is a characteristic horizontal velocity and N is the Brunt-Väisälä frequency.

With regard to rotating stratified turbulence [31–35], Bartello [36] investigated the properties
of the energy cascade in rotational and wave modes using both numerical and analytical methods.
Using the rapid distortion theory (RDT) to acquire the linear solutions of such systems, Hanazaki
[37] showed that the phase of the energy/flux oscillation and the energy distribution among different
components are determined by the ratio f /N . Marino et al. [38] found a faster growth of kinetic
energy in large scales for 1/2 � N/ f � 2.

The evolution of flow structures in rotating stratified turbulence is one of our major interests
in this paper. For purely rotating turbulence, Bartello et al. [20] investigated the formation and
stability of quasi-2D coherent vortices. They showed that, at small rotation rate (Ro ∼ 1), the
rotation destabilizes anticyclones, while cyclonic vortices can still exist. At a larger rotation rate
(Ro � 1), they showed the emergence of both 2D cyclones and anticyclones, consistent with the
Taylor-Proudman theorem. As for rotating stratified turbulence, McWilliams et al. [39] performed
numerical simulations of unforced quasi-geostrophic (QG) equations for a Boussinesq fluid with
uniform rotation and stable stratification. They demonstrated that the flow evolves into a system
with a large population of coherent vortices, and their chaotic interactions dominate the subsequent
evolution of the flow. For quasi-geostrophic flows, Reinaud and Dritschel [40] studied different
regimes of the interaction between two vertically offset vortices, and Reinaud et al. [41] displayed
that the population of vortices exhibits a mean height-to-width aspect ratio close to f /N . Cambon
[42] showed that the anisotropic spectral description, including the angular dependence of spectra
and cospectra in Fourier space, is relevant to quantify “columnar” and “pancake” structures in
physical space. Smith and Waleffe [12] examined the flow structures using the contour levels of
the zonal velocity for varying degrees of stratification and rotation. They pointed out that the slow
large scales consist of vertically sheared horizontal flow for strongly stratified flows. Liechtenstein
et al. [43] investigated constant enstrophy surfaces for turbulence with different stratification and
rotations to illustrate the flow structures under different conditions.

Kinetic-potential energy exchange is one of the important turbulent quantities in rotating
stratified turbulence. In the present paper, kinetic-potential energy exchange and its connection with
flow structures are investigated in detail. Buoyancy flux (proportional to the kinetic-potential energy
exchange) has been widely studied in purely stratified turbulence [44–46]. For rotating stratified
turbulence, Ramsden and Holloway [47] showed that the imbalance between the transfer efficiencies
of kinetic energy (KE) and potential energy (PE) from large to small scales causes the buoyancy flux
to be negative (KE to PE) at large scales and positive (PE to KE) at small scales. They also showed
that the results related to buoyancy flux are sensitive to the form of energetic forcing. Hanazaki [37]
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analyzed kinetic and potential energies and the vertical density flux using RDT. Comparison with
previous numerical and experimental results showed that the linear processes of RDT can explain
many unsteady aspects of these quantities. Furthermore, kinetic-potential energy exchange is closely
relevant to inertia-gravity waves, which are important to the breakdown of balance that is discussed
in many recent studies [48–50].

The remainder of this paper is organized as follows. In Sec. II we introduce the numerical setup
of our simulations. The results of flow structures obtained from the numerical simulations are shown
in Sec. III. In Sec. IV we present the structures of the kinetic-potential energy exchange and their
relevance to flow structures. The connection between the density distribution and the velocity are
discussed in Sec. V. Finally, our conclusions are summarized in Sec. VI.

II. NUMERICAL SETUP

The Boussinesq equations to be integrated numerically are written as below:

Du
Dt

+ f ẑ × u + Nθ ẑ + 1

ρ0
∇p = ν∇2u + Fu, (1)

Dθ

Dt
− N (u · ẑ) = κ∇2θ, (2)

∇ · u = 0, (3)

where D/Dt = ∂/∂t + u · ∇ is the material derivative, u is the Eulerian velocity, f is twice the
frame rotation rate �, ρ0 is the reference density from the Boussinesq approximation, p is the
effective pressure consisting of a normal pressure and a centrifugal term p = p0 + 1

2ρ‖� × x‖2,
� = �ẑ is the rotation vector, ν is the kinematic viscosity, and κ is the diffusion coefficient. We
decomposed the total density ρ as

ρ = ρ0 − cz + ρ ′, ρ ′ =
(

cρ0

g

)1/2

θ, (4)

where c is a positive constant for a uniform stable stratification, ρ0 − cz is the density field of
a hydrostatic state, ρ ′ is a small density fluctuation field, g is the gravitational acceleration. θ is
rescaled from ρ ′ to have a dimension of velocity. N = (gc/ρ0)1/2 is the buoyancy (Brunt-Väisälä)
frequency. The term Fu represents external forcing of the velocity. Do note that there is no direct
external forcing in the density fluctuations θ .

We performed direct numerical simulations (DNS) of Eqs. (1)–(3) using a parallelized pseu-
dospectral code in a 2563 periodic box with a Gaussian forcing spectrum such that the spectral
injection rate is ε(k) = ∑

|k|=k

∑
i εi(k) with standard deviation s = 1 and energy input rate ε f = 1,

given by

ε(k) = ε f
exp[−0.5(k − k f )2/s2]

(2π )1/2s
. (5)

The forcing in Eq. (1) is

Fu,i(k, t ) = εi(k)/ûi(k, t )∗, (6)

generating a kinetic energy input εi(k) at the wave number k and time t . εi(k) are identical in all
directions (which are indicated by i). Here ûi(k, t )∗ represents the conjugate of Fourier component
ûi(k, t ). Froude and Rossby numbers are defined based on the forcing parameters, as

Fr =
(
ε f k2

f

)1/3

N
, Ro =

(
ε f k2

f

)1/3

f
. (7)

For all the simulations, the Froude number is varied by modifying N , while the Rossby number and
forcing parameters remain unchanged.
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TABLE I. Simulation parameters: np is the linear grid resolution, k f the forcing wave number, Re(q) the
Reynolds number based on hyperviscosity, Ro the Rossby number, Fr the Froude number (Fr = ∞ indicates
the purely rotating case), Reb,(q) the buoyancy Reynolds number, te the overall integration time, and τ0 the
initial large-eddy turnover time.

Run np k f Re(q) Ro Fr Reb,(q) te

1 256 45 2100 0.033 ∞ ∞ 496τ0

2 256 45 2100 0.033 0.42 368 496τ0

3 256 45 2100 0.033 0.052 6 496τ0

To extend the inertial range, we replaced the normal viscosity term ν∇2u with a hyperviscosity
term (−1)q+1νq(∇)2qu with q = 8. The diffusion term in Eq. (2) is replaced in a similar way by
(−1)q+1κq(∇)2qθ . The Reynolds number based on hyperviscosity Re(q) = ε

1/3
f /(νqk2(q−1/3)

f ) is held
fixed at around 2100 and the Prandtl number Pr = νq/κq remains unity for all the simulations. The
corresponding buoyancy Reynolds number is defined by Reb,(q) = Re(q)Fr2 = ε f /(νqk2(q−1)

f N2). For
more detailed information regarding the specific procedures of the code, please refer to Ref. [12].

We use homogeneous isotropic turbulence as the initial condition and initialize the buoyancy field
with θ = 0 everywhere in the domain. Rotation and stratification are introduced at the beginning of
the simulation. Simulations with different initial conditions have been performed and show that our
conclusions are reproducible and universal. We use an intermediate forcing wave number k f and
focus on the dynamics in the inverse energy cascade range k < k f during the transient flow state
in this paper. This setup might be useful to understand many phenomena in the atmosphere and
oceans. However, since the atmosphere is never 3D isotropic at the synoptic scales (similarly for the
oceans), such a transition does not happen in the atmosphere and oceans. Therefore, readers should
be cautious with the applicability of this study to atmospheric or oceanic regimes.

To investigate the effects of stratification on the flow structures and kinetic-potential energy
exchange in rotating stratified turbulence, three simulation cases are carried out with the same
Rossby number Ro = 0.033, but with different Froude numbers Fr = ∞ (purely rotating case), Fr =
0.42, and Fr = 0.052. Parameters of the simulations are given in Table I. Chen et al. [25] have shown
that when Ro = 0.033, the rotation is rapid enough to make the turbulence two-dimensionalized
due to resonant interactions. For forced stratified turbulence, sufficiently long integration time is
important to the generation of slow large scales [12]. A 2563 grid was adopted to carry out long-time
integrations and a grid independence study was conducted using two different grid sizes (1283 and
2563), where further refinement of the 1283 grid does not have a significant effect on the results.
Note that although the Reynolds number Re(q) is large, the resolution is moderate that Zeman scale
and Ozmidov scale are not resolved by the simulations.

III. FLOW STRUCTURES

In this section, the evolutions of flow structures in the simulations are investigated. The classical
Q criterion is chosen to identify the flow structures and its threshold is set through the percolation
analysis [51]. Using other methods for the identification of flow structures, e.g., dissipation and
enstrophy, yield similar results as using Q criterion [52]. The Q criterion defines vortices as
connected fluid regions with positive second invariants of the velocity gradient tensor, Q = 1

2 [|�|2 −
|S|2] > 0, where S = 1

2 [∇u + (∇u)T ] is the rate-of-strain tensor and � = 1
2 [∇u − (∇u)T ] is the

vorticity tensor. Since Q is proportional to the difference between magnitudes of vorticity and shear
strain rate, regions with Q > 0 and Q < 0 are vortex dominated and strain dominated, respectively.
Figure 1 shows the percolation diagram of Q criterion for Run 3 at t = 480τ0. The percolation
results at different times for both Run 2 and Run 3 are similar. The solid line represents the volume
of the largest identified object, Vlar, normalized with the total volume Vtot satisfying Q > Qthres, and
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FIG. 1. Percolation diagram for the identification of Q criterion for Run 3 with Ro = 0.033 and Fr = 0.052
at t = 480τ0. Solid, ratio of the volume of the largest identified object to the volume of all identified objects,
Vlar/Vtot ; dashed, ratio of the number of identified objects to the maximum number of objects, N/Nmax. The
vertical dotted line indicates the chosen threshold, Qthres = 6000.

the dashed line is the ratio of total number of identified objects, N , to its maximums. The vertical
dashed line shows the threshold used in the present work, Qthres = 6000, where Vlar/Vtot and N/Nmax

are nearly constant.
Figure 2 displays the evolution of isosurfaces of Q criterion color-coded with vertical vorticity

ωz for all the simulations. For Run 1 under pure rotation, slender 2D vortices are formed at
t = 40τ0 [see Fig. 2(a)]. These structures remained two-dimensionalized and merged into larger
ones continuously [Fig. 2(b)], which agrees with the inverse cascade of kinetic energy from the
small scales to large scales [21,53,54]. Both cyclonic and anticyclonic vortices are present in the
flow, which is consistent with the observations in Chen et al. [25]. An obvious cyclone-anticyclone
asymmetry [55–57] dominated by the 2D long-lived cyclones can be seen in Figs. 2(a) and 2(b),
echoing the results in Ref. [58]. Whereas at t = 480τ0, the numbers of cyclones and anticyclones are
nearly equal [Fig. 2(c)], indicating the existence of an approximate cyclone-anticyclone symmetry.

For Run 2 with weak stratification, many short vertical vortices can be seen shortly after the
simulation started [Fig. 2(d)], which are very likely to be a manifestation of the vortex mode in
physical space, since they do not exist in the purely rotating turbulence [43]. At this time, the
small amount of box-scale vortices are all cyclonic, while the short vortices have both cyclonic and
anticyclonic types. The number of short cyclonic vortices decreases while the number of box-scale
cyclonic vortices increases at t = 240τ0. It is speculated that the box-scale vortices might be formed
through the alignment of the short vortices. At this moment, there is not any box-scale anticyclonic
vortex, but some short anticyclonic vortices lined up to form box-scale structures [Fig. 2(e)]. At
t = 480τ0, a large box-scale anticyclonic vortex structure is formed through the merging of short
anticyclonic vortices, while the largest box-scale cyclonic vortex structure is formed through the
merging of the box-scale cyclonic vortices. There are only a small number of short cyclonic vortices,
while there are a significant amount of short anticyclonic vortices at this moment [see Fig. 2(f)]. We
will discuss the differences between the observed cyclonic and anticyclonic vortices in Sec. V.

For Run 3 with strong stratification, there are numerous short and small vortices spreading
over the whole domain at t = 40τ0 [Fig. 2(g)]. As the turbulent system evolves, cyclonic vortices
become longer (by growing or merging) and tend to line up to form a box-scale vortex structure
with their shapes becoming more complex, while anticyclonic vortices just become larger and
have more complex shapes [Fig. 2(h)]. After a longtime evolution, a second box-scale vortex
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FIG. 2. The evolution of isosurfaces of Q (for Q = 6000) color-coded with vertical vorticity ωz for (a), (b),
and (c) Run 1, (d), (e), and (f) Run 2, and (g), (h), and (i) Run 3.

structure is formed through anticyclonic vortices [Fig. 2(i)]. This physical process indicates the
transfer of kinetic energy to the large scales, which is consistent with the existence of the inverse
cascade in rotating stratified turbulence [11,36,38]. It is found that cyclonic vortices grow faster
than anticyclonic ones. Generally, the numbers of the cyclonic vortices are less than anticyclonic
vortices, while the volumes of the cyclonic vortices are larger than anticyclonic vortices. Figure 3
gives a quantitative description of the number Ns and the average volume Vm of cyclonic and
anticyclonic vortices. They have similar trends for vortices of both types, and the number is less
and the average volume is larger for cyclonic vortices when t > 40τ0. The numbers Ns of vortices
of both types are found to first increase rapidly and then slowly decrease, which corresponds to
the generation and merging of structures, respectively. However, they remain nearly constant after
t = 200τ0 [Fig. 3(a)]. Meanwhile, the average volumes Vm of vortices of both types become larger at
early times, which indicates the growing up or merging of structures. Vm of cyclonic vortices varies
around a constant value when t > 120τ0, and Vm of anticyclonic vortices remains nearly constant
when t > 40τ0.

In this section, we investigated the evolution of flow structures in the purely rotating and rotating
stratified turbulence. Vortices get shorter as the strength of stratification increases and most of them
exhibits an aspect ratio close to f /N , which is consistent with previous studies [41,59]. Besides the
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FIG. 3. Time variations of (a) the number Ns and (b) the average volume Vm of cyclonic and anticyclonic
vortices in Run 3. Solid, for cyclonic vortices where ωz > 0; dashed, for anticyclonic vortices where ωz < 0.
V0 is the volume of a cubic mesh.

sustained forcing and the inverse cascade, the vertical columns observed here might be attributed
to poor vertical resolution and diffusion [41]. For both simulations with stratification (Run 2 and
Run 3), compared with the anticyclonic vortices (with ωz < 0), cyclonic vortices (with ωz > 0)
form the largest box-size vortex at a much earlier time. After t = 40τ0, cyclonic vortices are less in
number and have larger average volumes. We will discuss the differences between the two types of
vortices in detail in Sec. V. Note that the tracking method in Lozano-Durán and Jiménez [60] can be
used to investigate more details of the time evolution of the structures (for example, the advection,
generation, vanishing, splitting and merging of structures), which we devote to a future study.

IV. KINETIC-POTENTIAL ENERGY EXCHANGE

Kinetic-potential energy exchange plays a key role in stratified turbulent flows [37]. In this
section, we try to find the primary carriers of kinetic-potential energy exchange in rapidly rotating
stratified turbulent systems and focus on the relevant coherent structures.

To compare the intensity of global kinetic-potential energy exchange in the simulations with
different stratification, we show in Fig. 4 the time evolution of the global kinetic-potential energy
exchange, namely, the energy transferred from kinetic energy to potential energy per unit volume,

FIG. 4. Time series of the intensity of global kinetic-potential energy exchange for Run 2 and Run 3.
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EKtoP = 1/V
∫

D vzNθ dx, rescaled by N for Run 2 and Run 3. In regard to kinetic-potential
energy exchange, rotation acts as a driving force, since it two-dimensionalizes the flow, imposing
vertical displacements on fluid particles during the process of two-dimensionalization, while stable
stratification acts as a stabilizing force. Therefore, it is not hard to explain that the intensity of global
kinetic-potential transport of Run 2 is stronger than that of Run 3 for t < 200τ0, because Run 2 has
weaker stratification.

For Run 2, there is an interesting observation that the global kinetic-potential energy exchange
begins to oscillate after around 200τ0 with an increasing magnitude and a period of 37τ0. Do
note that the magnitude will not increase infinitely (not shown). Therefore, two flow states can
be identified based on the global kinetic-potential energy exchange at early and late times. Such
behavior of the global kinetic-potential energy exchange is reminiscent of many other physical
systems subjected to a driving force and a stabilizing force, where an appropriate relative strength
of the two forces can make the flow structures more coherent, resulting in a higher efficiency of
turbulent transport [61].

A. Rotating turbulence with weak stratification

To investigate the kinetic-potential energy exchange in the physical space, we consider
eKtoP(x, t ) = vzNθ , which indicates the instantaneous amount of kinetic energy transferred to
potential energy at the spatial position x and time t (negative sign means the opposite direction
of transfer). Since the kinetic to potential energy transfer function in spectral space TKtoP(kh, kz )
concentrates on the kz = 0 plane (not shown), where kh = (k2

x + k2
y )1/2 is the magnitude of

horizontal wave number, and the flow structures in physical space are also two-dimensionalized
(Sec. III), we vertically average the 3D eKtoP as

ēz
KtoP = 1

H

∫ H

0
eKtoP(x, y, z)dz, (8)

with H representing the vertical height of the domain. Figure 5 displays the evolution of ēz
KtoP

for Run 2, normalized by its instantaneous largest absolute value. A large area of oscillating
ēz

KtoP/|ēz
KtoP|max with large magnitude is formed after around t = 200τ0 [Fig. 5(c) and 5(d)],

corresponding to the flow state at later times, where the most intense TKtoP oscillates in the 2D plane
(where kz = 0) and concentrates around a certain large scale kh ≈ 10 (not shown). The magnitude
of ēz

KtoP in most part of the region outside the large area of intense ēz
KtoP/|ēz

KtoP|max is negligible. The
overall contribution of the large-scale area of intense ēz

KtoP/|ēz
KtoP|max to the global kinetic-potential

energy exchange EKtoP is dominant, indicating that it is the formation of the large-scale area of
intense ēz

KtoP/|ēz
KtoP|max that causes the oscillation of the global kinetic-potential energy exchange.

Such a dominant area of intense kinetic-potential energy exchange is very likely related to certain
coherent structures, which will be discussed later.

Although the flow structures are two-dimensionalized, the structures of kinetic-potential energy
exchange eKtoP still have a large-scale variation in vertical direction. In order to study the large-scale
information of eKtoP, we use a filtering approach [62] to get a “coarse-grained” field, using a smooth
low-pass filter:

ul (x) =
∫

drGl (r)u(x + r), (9)

where Gl (r) = l−3G(r/l ) is a filtering kernel and G is a Gaussian function G(r) =
(6/π )3/2 exp(−6r2). So ul only contains information for scales > l . Therefore, we can consider
the exchange between kinetic and potential energies at large scales, eKtoP,l = v̄zN θ̄ . Figure 6 gives
the isosurfaces of eKtoP and eKtoP,l (for l = 2π/5) at t = 480τ0, exhibiting the large-scale vertical
variation of eKtoP clearly. The structures with intense large-scale kinetic-potential energy exchange
eKtoP,l are segmented as two cylinders with positive values and two cylinders with negative values
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FIG. 5. Isosurfaces of Q color-coded with vertical vorticity ωz (reddish color represents ωz > 0 and bluish
color represents ωz < 0) and normalized vertically averaged kinetic-potential energy exchange ēz

KtoP/|ēz
KtoP|max

(below) for Run 2 at different times. Note that areas of intense ēz
KtoP/|ēz

KtoP|max are always accompanied with
cyclonic vortices.
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FIG. 6. Isosurfaces of (a) kinetic-potential energy exchange eKtoP (for eKtoP = ±100) and (b) large-scale
kinetic-potential energy exchange eKtoP,l (for eKtoP,l = ±5) for Run 2 at 480τ0.

(not three parts, because of the periodicity). Note that at t = 480τ0, the buoyancy length scale
U/N ≈ 0.14, where U is the r.m.s. velocity.

To identify the coherent structures that are responsible for kinetic-potential energy exchange, we
plot the isosurfaces of Q (for Q = 6000) and normalized vertically averaged kinetic-potential energy
exchange ēz

KtoP/|ēz
KtoP|max for Run 2 in Fig. 5. It is remarkable that the areas of intense kinetic-

potential energy exchange are associated with cyclonic vortices rather than anticyclonic vortices,
especially for the large area of intense ēz

KtoP/|ēz
KtoP|max at t = 480τ0. Since the turbulence is rotation-

dominated, the vertical movement of the fluid particles is induced in the course of the flow to be two-
dimensionalized and thus, transferring kinetic energy to potential energy. This process corresponds
to the stretching and contracting of vortices. More details about this process will be discussed in
Sec. V. A long integration time resulted in a cyclonic vortex condensation, thus changing the global
kinetic-potential energy exchange significantly. Condensation of coherent structures also plays a
crucial role in the convective heat transfer of turbulent Rayleigh-Bénard convection system [63].

Figures 7(a) and 7(b) give the average of |eKtoP| conditioned on Q and ωz, 〈|eKtoP||Q〉 and
〈|eKtoP||ωz〉, normalized by its spatial average in the whole domain, 〈|eKtoP|〉. It is easy to find

FIG. 7. The average of |eKtoP| conditioned on (a) Q and (b) ωz, normalized by its spatial average in the
whole domain, for Run 2, at different times: 40τ0, black; 160τ0, green; 240τ0, red; 480τ0, blue.
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FIG. 8. The contribution fraction to global kinetic-potential energy exchange EKtoP,t (a) from different Q,
EKtoP(Q)/EKtoP,t , and (b) from different ωz, EKtoP(ωz )/EKtoP,t , for Run 2, at different times.

that |eKtoP| is very small when Q is near zero. Moreover, |eKtoP| is more likely to be larger in
vortex regions (Q > 0) than in strain regions (Q < 0). From t = 40τ0 to t = 240τ0, the curves
do not change significantly with time. However, the conditional average, 〈|eKtoP||Q〉 is found to
increase significantly in vortex regions (Q > 0), from t = 240τ0 to t = 480τ0. Figure 7(b) shows
that 〈|eKtoP||ωz〉 behaves in a similar way as 〈|eKtoP||Q〉. This is consistent with the observation in
Fig. 5 that the areas of intense kinetic-potential energy exchange are always associated with strong
cyclonic vortices.

To show the contribution from regions with different values of Q and ωz to the global
kinetic-potential energy exchange EKtoP,t = ∫

D eKtoP(x) dx, we defined EKtoP(Q̃) = ∫
D δ(Q(x) −

Q̃)eKtoP(x) dx and EKtoP(ω̃z ) = ∫
D δ(ωz(x) − ω̃z )eKtoP(x) dx, where D represents the whole do-

main and δ(x) is the Dirac delta function. Figure 8(a) shows EKtoP(Q)/EKtoP,t , representing the
contribution fraction to EKtoP,t from regions with different values of Q. For the early flow state
(t < 200τ0) when the global kinetic-potential energy exchange is nearly constant, EKtoP(Q)/EKtoP,t

distributes approximately symmetrically around Q = 0 and the total EKtoP(Q)/EKtoP,t from strain
regions (Q < 0) is approximately equal to that from vortex regions (Q > 0). At this moment, none
of the largest structures is formed. Although the intensity of kinetic-potential energy exchange
(indicated by 〈|eKtoP||Q〉/〈|eKtoP|〉) is large for large positive values of Q (Fig. 7), the contribution
mainly comes from the regions where |Q| < 3000, because of the cancellation and rarity of areas of
intense kinetic-potential energy exchange [Figs. 5(a) and 5(b)]. Moreover, EKtoP(Q)/EKtoP,t is found
to be greater than zero for almost all Q. As the turbulent system evolves into the later flow state
(t > 200τ0) with oscillating global kinetic-potential energy exchange, more vortex regions (Q > 0)
get significant EKtoP(Q)/EKtoP,t and there is a negative EKtoP(Q)/EKtoP,t from Q = 0 to Q = 2000
at t = 480τ0. The total EKtoP(Q)/EKtoP,t from strain regions (Q < 0) is less when compared to that
from vortex regions (Q > 0) at t = 480τ0. This is consistent with the formation of a dominant area
of intense kinetic-potential energy exchange associated with a large cyclonic vortex [Fig. 5(d)].

Figure 8(b) shows the contribution fraction to EKtoP,t from different regions with ωz,
EKtoP(ωz )/EKtoP,t . For the early flow state (t < 200τ0) when the global kinetic-potential energy
exchange is nearly constant, EKtoP(ωz )/EKtoP,t distributes approximately symmetrically around a
negative value of ωz and the total EKtoP(ωz )/EKtoP,t from the regions with ωz < 0 is larger than
that from the regions with ωz > 0. Moreover, EKtoP(ωz )/EKtoP,t concentrates in the regions where
−150 < ωz < 100, and it is almost all positive in these regions. As the turbulent system evolves into
the other flow state (t > 200τ0) with oscillating global kinetic-potential energy exchange, there are
more ωz > 0 regions with significant EKtoP(ωz )/EKtoP,t at t = 240τ0, consistent with the emergence
of the areas of intense kinetic-potential energy exchange accompanied with cyclonic vortices.
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FIG. 9. Isosurfaces of kinetic-potential energy exchange eKtoP (for eKtoP = ±1000) (a) without and (b) with
isosurfaces of Q (for Q = 6000), for Run 3, at t = 480τ0. Typical quadrupolar structures around small vortices
are circled.

Moreover, the area with ωz from around 0 to 100 has negative EKtoP(ωz )/EKtoP,t at t = 480τ0. The
total EKtoP(ωz )/EKtoP,t from the regions with ωz < 0 is approximately equal to that from the regions
with ωz > 0 at t = 480τ0.

B. Rotating turbulence with strong stratification

The isosurfaces of kinetic-potential energy exchange, eKtoP, in a 1283 subdomain of the entire
2563 domain at t = 480τ0 is shown in Figs. 9(a) and 9(b) for Run 3 without and with the isosurfaces
of Q, respectively. Comparing Figs. 9(a) and 9(b), we can observe that eKtoP has “quadrupolar”
structures around the vortices (by Q criterion). For the two largest structures, we can also show
that eKtoP around them has “quadrupolar” structures. Figure 10(a) gives the vertically averaged
kinetic-potential energy exchange ēz

KtoP for Run 3 at t = 480τ0, where quadrupole transfer structures
distribute around the two box-scale structures. Figure 10(b) displays the isosurfaces of large-scale
kinetic-potential energy exchange eKtoP,l (for l = 2π/5) for Run 3 at t = 480τ0 (the relevant
buoyancy length scale is U/N ≈ 0.011), showing quadrupole patterns around the two box-scale
structures. Quadrupolar structures of different quantities are also observed in many other physical
processes. Xiao et al. [64] found “quadrupolar” structures of the kinetic energy flux associated to
strong vortices in 2D turbulence, which is similar to the quadrupolar structure of vorticity gradient
stretching observed by Kimura and Herring [65]. Parashar and Matthaeus [66] also found that
the current sheet formation led to generation of vorticity quadrupole in weakly collisional plasma
turbulence.

The quadrupole structures near the strong vortices give rise to areas of intense eKtoP, with both
positive and negative values. Figure 11 depicts the average of |eKtoP| conditioned on Q criterion
(〈|eKtoP||Q〉) and ωz (〈|eKtoP||ωz〉), normalized by its spatial average in the whole domain, 〈|eKtoP|〉,
at different times. |eKtoP| is very small in regions where Q or ωz is near zero. Moreover, |eKtoP| is
more likely to be larger in the region with Q > 0 (ωz > 0) than in the region with Q < 0 (ωz < 0).
〈|eKtoP||Q〉 and 〈|eKtoP||ωz〉 increase significantly in time in the region with Q > 0 (ωz > 0), while
change slightly in the region with Q < 0 (ωz < 0). This is consistent with the observation above
that quadrupolar structures of intense kinetic-potential energy exchange are associated with strong
vortices.
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FIG. 10. (a) Vertically averaged kinetic-potential energy exchange ēz
KtoP and (b) isosurfaces of large-scale

kinetic-potential energy exchange eKtoP,l (for eKtoP,l = ±80), for Run 3, at t = 480τ0.

The quadrupole kinetic-potential energy exchange structures give little net contribution to the
global kinetic-potential energy exchange, because of their relative rarity and the cancellation
between oppositely signed exchange from the four quadrants. To show this quantitatively, we
considered kinetic-potential energy exchange from regions with different values of Q and ωz,
EKtoP(Q), and EKtoP(ωz ). Figure 12(a) shows the contribution fraction to global kinetic-potential
energy exchange EKtoP,t from regions with different values of Q, EKtoP(Q)/EKtoP,t . Most of the
contributions come from the regions where the magnitude of Q is small, and the total contribution
from strain regions (Q < 0) is larger than that from vortex regions (Q > 0). Figure 12(b) shows
EKtoP(ωz )/EKtoP,t , namely, the contribution fraction to EKtoP from regions with different values of
ωz. We find that EKtoP(ωz )/EKtoP is very small when ωz ≈ 0. Moreover, there is one intriguing ob-
servation that EKtoP(ωz )/EKtoP concentrates on the regions where |ωz| < 100, and the regions with
ωz < 0 (ωz > 0) have negative (positive) EKtoP(ωz )/EKtoP,t . However, the total EKtoP(ωz )/EKtoP,t

from regions with ωz < 0 is less than that from regions with ωz > 0.

FIG. 11. The average of |eKtoP| conditioned on (a) Q (b) ωz, normalized by its spatial average in the whole
domain, for Run 3, at different times: 40τ0, black; 160τ0, green; 240τ0, red; 480τ0, blue.
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FIG. 12. The contribution fraction to global kinetic-potential energy exchange EKtoP,t (a) from different Q,
EKtoP(Q)/EKtoP,t , and (b) from different ωz, EKtoP(ωz )/EKtoP,t , for Run 3, at different times.

V. THE CONNECTION BETWEEN THE VELOCITY FIELD AND THE DENSITY FIELD

In this section, the connection between the velocity field and the density field is discussed,
especially for the regions around the coherent structures. There have been many researches about
this connection, including the famous thermal wind model [1,37,67,68]. However, none of them
connected the velocity to density specifically around the vortices. We believe that this is important
for the quasigeostrophic model which considers the dynamics principally as the interaction between
vortices [41].

For our simulations with stratification, Figs. 13 and 14 show that there is a relation in vortices
between the signs of ωz and the density θ distributions at different times. Figures 13 and 14 plot
the isosurfaces of Q color-coded with θ and ωz for Run 2 and Run 3, respectively. In the cyclonic
vortices with ωz > 0, θ has low values on the top while high values at the bottom, and the case is
exactly opposite in the anticyclonic vortices with ωz < 0. It is worth noting that the isosurfaces of
|ωz| are quite similar to those of Q when their values are large. Therefore, ωz has a relation with
the density θ distribution in areas of large |ωz|. This is interesting because it gives the possibility of
establishing a concrete relation between the velocity field v and the density field θ .

We give a heuristic explanation of the relation between the signs of ωz and the density θ

distributions in vortices. Consider the evolution of the homogeneous isotropic turbulence after
the rotation and stratification are added. They act on the turbulence in the time scales t f = O(Ro)
and tN = O(Fr), respectively. For both cases, Run 2 and Run 3, rotation acts first because t f < tN .
Therefore, there should be many vertical vortex tubes in the flow field initially, as in Fig. 2(a). For
a vertical vortex tube with ωz > 0, the Coriolis force FC acts as a stretching force in the horizontal
direction. The vortex tube will contract vertically because of incompressibility, accompanied with
the transport of density. In consequence, compared with the background density, the density is lower
on the top of the vortex tube while higher at the bottom of the vortex tube because of the stable
stratification. The induced buoyancy force Fb stretches the vortex tube, balancing the contraction
effect. For a vertical vortex tube with ωz < 0, the situation is an opposite to that scenario described
earlier. Figure 15 shows the sketches of the vortices of both types and the forces imposed on them,
where the grayscale is proportional to θ . Suppose the vortex is an incompressible deformable body,
Fig. 15 indicates that only when the relation between the sign of ωz and the density θ distribution
is satisfied, the forces imposed on the vortex can balance with each other. Take Fig. 15(a) as an
example, the Coriolis force exerted on a vortex with ωz > 0 stretching it horizontally. Meanwhile,
θ > 0 on the top and θ < 0 at the bottom of the vortex, thus the induced buoyancy force stretches
the vortex vertically, balancing with the Coriolis force.
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FIG. 13. Isosurfaces of Q (for Q = 6000) color-coded with (a)(c) density θ and (b)(d) vertical vorticity ωz

for Run 2 [(a) and (b) at t = 160τ0, (c) and (d) at t = 480τ0]. Typical vortices satisfying the relation between
ωz and the density θ distribution are circled.

Seeing that a cyclonic vortex is under tension, while an anticyclonic one is under compression,
it is a natural explanation on why cyclonic vortices are easier to grow and merge with others than
anticyclonic ones. Since the vortex that is under compression can easily be unstable when becoming
longer (similar to the Euler buckling of a slender rod), the cyclonic vortices are less in number and
larger than anticyclonic vortices, consistent with the observations about the number and volume of
the two types of vortices in Sec. IV B. The formation of both types of vortices is accompanied by the
positive kinetic-potential energy exchange. For vortices violating the relation between ωz and the
density θ distribution, they would be compressed (for those with ωz > 0) or broken (for those with
ωz < 0) due to the imbalance of Coriolis force and buoyancy force, with negative kinetic-potential
energy exchange. Such processes for vortices could be regarded as part of the primary processes of
kinetic-potential energy exchange in rotating stratified turbulence.

In order to understand the relation between ωz and the density θ distribution quantitatively, we
considered the average of ∂θ/∂z conditioned on ωz. Figure 16(a) shows that for Run 2, 〈∂θ/∂z|ωz〉
and ωz have the same sign when ωz > −140, while having opposite signs when ωz < −180. This
is consistent with the aforementioned relation between ωz and θ in vortices, which implies that
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FIG. 14. Isosurfaces of Q (for Q = 6000) color-coded with (a) and (c) density θ and (b) and (d) vertical
vorticity ωz for Run 3 [(a) and (b) at t = 160τ0, (c) and (d) at t = 480τ0]. Typical vortices satisfying the relation
between ωz and the density θ distribution are circled.

FIG. 15. Sketches of (a) a cyclonic vortex and (b) an anticyclonic vortex and the corresponding Coriolis
force FC and buoyancy force Fb imposed on them for the heuristic analysis. Note that the grayscale is
proportional to θ .
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FIG. 16. The average of ∂θ/∂z conditioned on ωz for (a) Run 2 and (b) Run 3, at different times: 40τ0,
black; 160τ0, green; 240τ0, red; 480τ0, blue. Thin solid lines have slopes of N/ f for references.

∂θ/∂z and ωz have opposite signs when |ωz| is large. Moreover, 〈∂θ/∂z|ωz〉 varies slightly over
time for |ωz| < 200. The regions with |ωz| < 200 take more than 99% of the whole domain during
the evolution of the turbulent system. For Run 3, Fig. 16(b) shows that 〈∂θ/∂z|ωz〉 and ωz have the
same sign when ωz varies approximately from −100 to 150, but they have opposite signs when the
magnitude of ωz is large. From t = 40τ0 to t = 160τ0, 〈∂θ/∂z|ωz〉 has some noticeable differences
for ωz > 100, while has negligible differences for ωz < 600 from t = 160τ0 to t = 480τ0. The
regions with ωz < 600 take more than 99.99% of the whole domain during the evolution of the
turbulent system. Note that near the origin, 〈∂θ/∂z|ωz〉 has a nearly linear dependency on ωz for
both Run 2 and Run 3, which is consistent with the theory of conservation of potential vorticity
[12]. In the linear limit, potential vorticity conservation reduces to

∂

∂t
( f ẑ · ∇θ − N ẑ · ω) = 0, (10)

from which a linear dependency ∂θ/∂z ∝ (N/ f )ωz can be drawn. Thin solid lines with slopes
of N/ f are plotted in Fig. 16 for reference. Figure 16 shows that, for Run 2, the linear slope of
〈∂θ/∂z|ωz〉 is quite close to N/ f near the origin. However, for Run 3, the linear slope of 〈∂θ/∂z|ωz〉
is far less than N/ f , which is probably because the nonlinear part of the potential vorticity is not
negligible and Eq. (10) is violated in the last case.

VI. CONCLUSIONS

We performed numerical simulations of forced homogeneous rotating stratified turbulence in
transient state for long integration times, focusing on the flow structures and kinetic-potential energy
exchange in physical space. Three simulations with a fixed Reynolds number Re(q) ≈ 2100 and a
low Rossby number Ro = 0.033 are carried out with Froude numbers Fr = ∞ (purely rotating
case), 0.42, and 0.052. A constant rate of kinetic energy input ε f is provided by a forcing localized
at a large wave number k f . We focus on the long-time evolution of the turbulent systems from the
initial isotropic turbulence. Three main aspects of our conclusions are summarized as below.

The evolution of the flow structures for all three runs has been investigated. For the purely
rotating case with Ro = 0.033 and Fr = ∞, slender 2D vortices dominated by cyclones spread
in the whole domain, and the cyclone-anticyclone asymmetry seems to disappear at the end of the
simulation as the vortices become larger and less. When stratification exists, short and small vortices
fill the whole domain at the beginning, and two largest box-scale structures with opposite signs of
ωz are formed as the turbulent systems evolves. We point out the differences between the flow
structures with ωz of different signs in numbers, shapes, and evolutions. Compared to the cyclonic
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vortices, anticyclonic ones are lower in number, easier to grow or merge with others, and form the
box-scale structure earlier.

The kinetic-potential energy exchange eKtoP is important for rotating stratified turbulence. For
the case with Ro = 0.033 and Fr = 0.42, we found that there are two flow states at the early and
late times, distinguished by whether the global kinetic-potential energy exchange oscillates with
time or not. We investigated the structures of eKtoP and their relevance with flow structures. For the
case with weak stratification, Ro = 0.033 and Fr = 0.42, a box-size structure of eKtoP is formed
at the later flow state, which is responsible for the time oscillation of the global kinetic-potential
energy exchange and associated to the condensation of a cyclonic vortex. When the strength of
stratification is comparable to that of rotation, for Ro = 0.033 and Fr = 0.052, both the structures
of kinetic-potential energy exchange eKtoP and large-scale kinetic-potential energy exchange eKtoP,l

have quadrupole structures. For both cases, it is remarkable that intense kinetic-potential exchange
is always associated with cyclonic vortices. Note that many important destructive events in nature,
such as hurricanes or typhoons, are cyclones.

We found a relation between the signs of ωz and the distributions of density θ in vortices during
the evolution of the rotating stratified turbulent systems. θ has low values on the top while high
values at the bottom in cyclonic vortices, and the case is opposite in anticyclonic vortices. Heuristic
explanations were introduced to illustrate this connection between the velocity field and the density
field. We found that the conditional average 〈∂θ/∂z|ωz〉 is nearly time-invariant for most part of the
whole domain at later times, which could be valuable for the future modeling of density field by the
velocity field.

Our current work has several limitations that are worth investigating in the future.
First, the present study has simulated cases with fixed Reynolds and Rossby numbers at various

Froude numbers (Fr = ∞, 0.42 and 0.052). Varying all these parameters and comparing the results
from simulations with different Reynolds and Rsossby numbers would be more informative. Note
that all cases considered here have Ro < Fr, while atmospheric flows on the earth have Ro > Fr.
In addition, the aspect ratio of the flow domain also influences the flow structures [12] because the
existence of the rotation and stratification introduces anisotropy to the turbulence, thus it influences
the kinetic-potential energy exchange as well. Therefore, the study of the effect of the aspect ratio
is warranted.

The second limitation of our study is about the integration time. We have run the simulations
for about 500 large eddy turnover times, which can be considered to be sufficiently long for
turbulence simulations in general. Smith and Waleffe [12] showed that some flow phenomenon
emerges only after a long integration time in forced rotating stratified turbulence. Considering that
for 2D turbulence forced at small scale, the energy condensation could saturate and the system
could reach a statistically stationary state [69]. There are possibilities for our simulations to reach
stationary states after a tremendous amount of time. However, it is difficult to assess how long it
takes from the end time of our simulations to the statistically stationary states, and whether our
conclusions would change at later times.

Additionally, the geometry of the flow structures in rotating stratified turbulence is worth more
investigating. Moisy and Jiménez [70] studied the geometry and clustering of intense structures
in isotropic turbulence. In this paper, Q has been chosen as the indicator of the flow structures.
Our results show that flow structures change shapes and have different distributions in the space at
different conditions. A comprehensive study about the geometry of the structures should answer how
geometric shapes of the structures and their distribution in the space change with the flow parameters
(Re, Ro, Fr, and aspect ratio). Furthermore, we haven’t discussed the structures of (kinetic and
potential) energy fluxes at different scales, which are as important as those of kinetic-potential
energy exchange. The energy fluxes and kinetic-potential energy exchange are associated to the
evolution of the flow structures. The forms of the evolution are as following: advection, which
includes inflation and shrinking, generation, vanishing, splitting and merging of the flow structures.
Investigating the connections of the energy fluxes at different scales and kinetic-potential energy
exchange with the change of flow structures requires us to track the flow structures in time [60,71].
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Finally, please note that forced rotating stratified turbulence in transient state is investigated in
this study. The steady-state regime is also very important to real atmospheric and oceanic turbulence.
Stationary-state simulations have been carried out by using large scale forcing and linear damping.
Preliminary results are found to be consistent with those found in the transient states, indicating
our conclusions are independent of the effect of domain size or periodic boundary. More detailed
analysis of the stationary states will be our future work.

ACKNOWLEDGMENTS

This work has been supported by NSFC Grant Nos. 91752201, 11672123, and NSFC Basic Sci-
ence Center Program (Grant No. 11988102); Department of Science and Technology of Guangdong
Province Grant No. 2019B21203001. Shenzhen Science and Technology Innovation Commission
Grant No. KQTD20180411143441009. Numerical simulations have been supported by Center for
Computational Science and Engineering of Southern University of Science and Technology. M.W.
acknowledges the support from Centers for Mechanical Engineering Research and Education at
MIT and SUSTech.

[1] J. Pedlosky, Geophysical Fluid Dynamics, 2nd ed. (Springer, Verlag, New York, 1987).
[2] G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics (Cambridge University Press, New York, 2017).
[3] E. Lindborg, The effect of rotation on the mesoscale energy cascade in the free atmosphere, Geophys.

Res. Lett. 32, L01809 (2005).
[4] E. Lindborg, The energy cascade in a strongly stratified fluid, J. Fluid Mech. 550, 207 (2006).
[5] Y. Kimura and J. Herring, Energy spectra of stably stratified turbulence, J. Fluid Mech. 698, 19 (2012).
[6] M. K. Sharma, M. K. Verma, and S. Chakraborty, On the energy spectrum of rapidly rotating forced

turbulence, Phys. Fluids 30, 115102 (2018).
[7] A. Gargett, P. Hendricks, T. Sanford, T. Osborn, and A. Williams, A composite spectrum of vertical shear

in the upper ocean, J. Phys. Oceanogr. 11, 1258 (1981).
[8] A. Gargett, T. Osborn, and P. Nasmyth, Local isotropy and the decay of turbulence in a stratified fluid,

J. Fluid Mech. 144, 231 (1984).
[9] G. Nastrom and K. S. Gage, A climatology of atmospheric wavenumber spectra of wind and temperature

observed by commercial aircraft, J. Atmos. Sci. 42, 950 (1985).
[10] J. J. Riley and M.-P. Lelong, Fluid motions in the presence of strong stable stratification, Annu. Rev. Fluid

Mech. 32, 613 (2000).
[11] O. Métais, P. Bartello, E. Garnier, J. Riley, and M. Lesieur, Inverse cascade in stably stratified rotating

turbulence, Dyn. Atmos. Cceans 23, 193 (1996).
[12] L. M. Smith and F. Waleffe, Generation of slow large scales in forced rotating stratified turbulence,

J. Fluid Mech. 451, 145 (2002).
[13] G. Hernandez-Duenas, L. M. Smith, and S. N. Stechmann, Investigation of Boussinesq dynamics using

intermediate models based on wave–vortical interactions, J. Fluid Mech. 747, 247 (2014).
[14] M. Remmel, J. Sukhatme, and L. M. Smith, Nonlinear gravity-wave interactions in stratified turbulence,

Theor. Comput. Fluid Dyn. 28, 131 (2014).
[15] H. A. Kafiabad and P. Bartello, Balance dynamics in rotating stratified turbulence, J. Fluid Mech. 795,

914 (2016).
[16] S. B. Dalziel, Decay of rotating turbulence: Some particle tracking experiments, Appl. Sci. Res. 49, 217

(1992).
[17] O. Zeman, A note on the spectra and decay of rotating homogeneous turbulence, Phys. Fluids 6, 3221

(1994).
[18] Y. Zhou, A phenomenological treatment of rotating turbulence, Phys. Fluids 7, 2092 (1995).
[19] A. Babin, A. Mahalov, and B. Nicolaenko, Global splitting, integrability and regularity of 3D Euler and

Navier-Stokes equations for uniformly rotating fluids, Eur. J. Mech. B 15, 291 (1996).

014802-19

https://doi.org/10.1029/2004GL021319
https://doi.org/10.1029/2004GL021319
https://doi.org/10.1029/2004GL021319
https://doi.org/10.1029/2004GL021319
https://doi.org/10.1017/S0022112005008128
https://doi.org/10.1017/S0022112005008128
https://doi.org/10.1017/S0022112005008128
https://doi.org/10.1017/S0022112005008128
https://doi.org/10.1017/jfm.2011.546
https://doi.org/10.1017/jfm.2011.546
https://doi.org/10.1017/jfm.2011.546
https://doi.org/10.1017/jfm.2011.546
https://doi.org/10.1063/1.5051444
https://doi.org/10.1063/1.5051444
https://doi.org/10.1063/1.5051444
https://doi.org/10.1063/1.5051444
https://doi.org/10.1175/1520-0485(1981)011<1258:ACSOVS>2.0.CO;2
https://doi.org/10.1175/1520-0485(1981)011<1258:ACSOVS>2.0.CO;2
https://doi.org/10.1175/1520-0485(1981)011<1258:ACSOVS>2.0.CO;2
https://doi.org/10.1175/1520-0485(1981)011<1258:ACSOVS>2.0.CO;2
https://doi.org/10.1017/S0022112084001592
https://doi.org/10.1017/S0022112084001592
https://doi.org/10.1017/S0022112084001592
https://doi.org/10.1017/S0022112084001592
https://doi.org/10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2
https://doi.org/10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2
https://doi.org/10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2
https://doi.org/10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2
https://doi.org/10.1146/annurev.fluid.32.1.613
https://doi.org/10.1146/annurev.fluid.32.1.613
https://doi.org/10.1146/annurev.fluid.32.1.613
https://doi.org/10.1146/annurev.fluid.32.1.613
https://doi.org/10.1016/0377-0265(95)00413-0
https://doi.org/10.1016/0377-0265(95)00413-0
https://doi.org/10.1016/0377-0265(95)00413-0
https://doi.org/10.1016/0377-0265(95)00413-0
https://doi.org/10.1017/S0022112001006309
https://doi.org/10.1017/S0022112001006309
https://doi.org/10.1017/S0022112001006309
https://doi.org/10.1017/S0022112001006309
https://doi.org/10.1017/jfm.2014.138
https://doi.org/10.1017/jfm.2014.138
https://doi.org/10.1017/jfm.2014.138
https://doi.org/10.1017/jfm.2014.138
https://doi.org/10.1007/s00162-013-0305-2
https://doi.org/10.1007/s00162-013-0305-2
https://doi.org/10.1007/s00162-013-0305-2
https://doi.org/10.1007/s00162-013-0305-2
https://doi.org/10.1017/jfm.2016.164
https://doi.org/10.1017/jfm.2016.164
https://doi.org/10.1017/jfm.2016.164
https://doi.org/10.1017/jfm.2016.164
https://doi.org/10.1007/BF00384624
https://doi.org/10.1007/BF00384624
https://doi.org/10.1007/BF00384624
https://doi.org/10.1007/BF00384624
https://doi.org/10.1063/1.868053
https://doi.org/10.1063/1.868053
https://doi.org/10.1063/1.868053
https://doi.org/10.1063/1.868053
https://doi.org/10.1063/1.868457
https://doi.org/10.1063/1.868457
https://doi.org/10.1063/1.868457
https://doi.org/10.1063/1.868457


LI, WAN, WANG, AND CHEN

[20] P. Bartello, O. Métais, and M. Lesieur, Coherent structures in rotating three-dimensional turbulence,
J. Fluid Mech. 273, 1 (1994).

[21] C. Cambon, N. N. Mansour, and F. S. Godeferd, Energy transfer in rotating turbulence, J. Fluid Mech.
337, 303 (1997).

[22] L. M. Smith and F. Waleffe, Transfer of energy to two-dimensional large scales in forced, rotating three-
dimensional turbulence, Phys. Fluids 11, 1608 (1999).

[23] F. Waleffe, The nature of triad interactions in homogeneous turbulence, Phys. Fluids A 4, 350 (1992).
[24] F. Waleffe, Inertial transfers in the helical decomposition, Phys. Fluids A 5, 677 (1993).
[25] Q. Chen, S. Chen, G. L. Eyink, and D. D. Holm, Resonant interactions in rotating homogeneous three-

dimensional turbulence, J. Fluid Mech. 542, 139 (2005).
[26] J. R. Herring and O. Métais, Numerical experiments in forced stably stratified turbulence, J. Fluid Mech.

202, 97 (1989).
[27] O. Métais and M. Lesieur, Spectral large-eddy simulation of isotropic and stably stratified turbulence,

J. Fluid Mech. 239, 157 (1992).
[28] G. Brethouwer, P. Billant, E. Lindborg, and J.-M. Chomaz, Scaling analysis and simulation of strongly

stratified turbulent flows, J. Fluid Mech. 585, 343 (2007).
[29] F. S. Godeferd and C. Cambon, Detailed investigation of energy transfers in homogeneous stratified

turbulence, Phys. Fluids 6, 2084 (1994).
[30] M. L. Waite and P. Bartello, Stratified turbulence dominated by vortical motion, J. Fluid Mech. 517, 281

(2004).
[31] R. Marino, P. D. Mininni, D. Rosenberg, and A. Pouquet, Emergence of helicity in rotating stratified

turbulence, Phys. Rev. E 87, 033016 (2013).
[32] W. J. McKiver and D. G. Dritschel, Balance in non-hydrostatic rotating stratified turbulence, J. Fluid

Mech. 596, 201 (2008).
[33] G. Roullet and P. Klein, Available potential energy diagnosis in a direct numerical simulation of rotating

stratified turbulence, J. Fluid Mech. 624, 45 (2009).
[34] C. Ménesguen, B.-L. Hua, C. Papenberg, D. Klaeschen, L. Geli, and R. Hobbs, Effect of bandwidth on

seismic imaging of rotating stratified turbulence surrounding an anticyclonic eddy from field data and
numerical simulations, Geophys. Res. Lett. 36, L00D05 (2009).

[35] C. Garrett, P. MacCready, and P. Rhines, Boundary mixing and arrested Ekman layers: Rotating stratified
flow near a sloping boundary, Annu. Rev. Fluid Mech. 25, 291 (1993).

[36] P. Bartello, Geostrophic adjustment and inverse cascades in rotating stratified turbulence, J. Atmos. Sci.
52, 4410 (1995).

[37] H. Hanazaki, Linear processes in stably and unstably stratified rotating turbulence, J. Fluid Mech. 465,
157 (2002).

[38] R. Marino, P. D. Mininni, D. Rosenberg, and A. Pouquet, Inverse cascades in rotating stratified turbulence:
Fast growth of large scales, Europhys. Lett. 102, 44006 (2013).

[39] J. C. McWilliams, J. B. Weiss, and I. Yavneh, Anisotropy and coherent vortex structures in planetary
turbulence, Science 264, 410 (1994).

[40] J. N. Reinaud and D. G. Dritschel, The merger of vertically offset quasi-geostrophic vortices, J. Fluid
Mech. 469, 287 (2002).

[41] J. N. Reinaud, D. G. Dritschel, and C. Koudella, The shape of vortices in quasi-geostrophic turbulence,
J. Fluid Mech. 474, 175 (2003).

[42] C. Cambon, Turbulence and vortex structures in rotating and stratified flows, Eur. J. Mech. 20, 489 (2001).
[43] L. Liechtenstein, F. S. Godeferd, and C. Cambon, Nonlinear formation of structures in rotating stratified

turbulence, J. Turbul. 6, N24 (2005).
[44] E. Itsweire, K. Helland, and C. Van Atta, The evolution of grid-generated turbulence in a stably stratified

fluid, J. Fluid Mech. 162, 299 (1986).
[45] C. Van Atta et al., The decay of turbulence in thermally stratified flow, J. Fluid Mech. 210, 57 (1990).
[46] K. Yoon and Z. Warhaft, The evolution of grid-generated turbulence under conditions of stable thermal

stratification, J. Fluid Mech. 215, 601 (1990).

014802-20

https://doi.org/10.1017/S0022112094001837
https://doi.org/10.1017/S0022112094001837
https://doi.org/10.1017/S0022112094001837
https://doi.org/10.1017/S0022112094001837
https://doi.org/10.1017/S002211209700493X
https://doi.org/10.1017/S002211209700493X
https://doi.org/10.1017/S002211209700493X
https://doi.org/10.1017/S002211209700493X
https://doi.org/10.1063/1.870022
https://doi.org/10.1063/1.870022
https://doi.org/10.1063/1.870022
https://doi.org/10.1063/1.870022
https://doi.org/10.1063/1.858309
https://doi.org/10.1063/1.858309
https://doi.org/10.1063/1.858309
https://doi.org/10.1063/1.858309
https://doi.org/10.1063/1.858651
https://doi.org/10.1063/1.858651
https://doi.org/10.1063/1.858651
https://doi.org/10.1063/1.858651
https://doi.org/10.1017/S0022112005006324
https://doi.org/10.1017/S0022112005006324
https://doi.org/10.1017/S0022112005006324
https://doi.org/10.1017/S0022112005006324
https://doi.org/10.1017/S0022112089001114
https://doi.org/10.1017/S0022112089001114
https://doi.org/10.1017/S0022112089001114
https://doi.org/10.1017/S0022112089001114
https://doi.org/10.1017/S0022112092004361
https://doi.org/10.1017/S0022112092004361
https://doi.org/10.1017/S0022112092004361
https://doi.org/10.1017/S0022112092004361
https://doi.org/10.1017/S0022112007006854
https://doi.org/10.1017/S0022112007006854
https://doi.org/10.1017/S0022112007006854
https://doi.org/10.1017/S0022112007006854
https://doi.org/10.1063/1.868214
https://doi.org/10.1063/1.868214
https://doi.org/10.1063/1.868214
https://doi.org/10.1063/1.868214
https://doi.org/10.1017/S0022112004000977
https://doi.org/10.1017/S0022112004000977
https://doi.org/10.1017/S0022112004000977
https://doi.org/10.1017/S0022112004000977
https://doi.org/10.1103/PhysRevE.87.033016
https://doi.org/10.1103/PhysRevE.87.033016
https://doi.org/10.1103/PhysRevE.87.033016
https://doi.org/10.1103/PhysRevE.87.033016
https://doi.org/10.1017/S0022112007009421
https://doi.org/10.1017/S0022112007009421
https://doi.org/10.1017/S0022112007009421
https://doi.org/10.1017/S0022112007009421
https://doi.org/10.1017/S0022112008004473
https://doi.org/10.1017/S0022112008004473
https://doi.org/10.1017/S0022112008004473
https://doi.org/10.1017/S0022112008004473
https://doi.org/10.1029/2009GL039951
https://doi.org/10.1029/2009GL039951
https://doi.org/10.1029/2009GL039951
https://doi.org/10.1029/2009GL039951
https://doi.org/10.1146/annurev.fl.25.010193.001451
https://doi.org/10.1146/annurev.fl.25.010193.001451
https://doi.org/10.1146/annurev.fl.25.010193.001451
https://doi.org/10.1146/annurev.fl.25.010193.001451
https://doi.org/10.1175/1520-0469(1995)052<4410:GAAICI>2.0.CO;2
https://doi.org/10.1175/1520-0469(1995)052<4410:GAAICI>2.0.CO;2
https://doi.org/10.1175/1520-0469(1995)052<4410:GAAICI>2.0.CO;2
https://doi.org/10.1175/1520-0469(1995)052<4410:GAAICI>2.0.CO;2
https://doi.org/10.1017/S0022112002001064
https://doi.org/10.1017/S0022112002001064
https://doi.org/10.1017/S0022112002001064
https://doi.org/10.1017/S0022112002001064
https://doi.org/10.1209/0295-5075/102/44006
https://doi.org/10.1209/0295-5075/102/44006
https://doi.org/10.1209/0295-5075/102/44006
https://doi.org/10.1209/0295-5075/102/44006
https://doi.org/10.1126/science.264.5157.410
https://doi.org/10.1126/science.264.5157.410
https://doi.org/10.1126/science.264.5157.410
https://doi.org/10.1126/science.264.5157.410
https://doi.org/10.1017/S0022112002001854
https://doi.org/10.1017/S0022112002001854
https://doi.org/10.1017/S0022112002001854
https://doi.org/10.1017/S0022112002001854
https://doi.org/10.1017/S0022112002002719
https://doi.org/10.1017/S0022112002002719
https://doi.org/10.1017/S0022112002002719
https://doi.org/10.1017/S0022112002002719
https://doi.org/10.1016/S0997-7546(01)01126-8
https://doi.org/10.1016/S0997-7546(01)01126-8
https://doi.org/10.1016/S0997-7546(01)01126-8
https://doi.org/10.1016/S0997-7546(01)01126-8
https://doi.org/10.1080/14685240500207407
https://doi.org/10.1080/14685240500207407
https://doi.org/10.1080/14685240500207407
https://doi.org/10.1080/14685240500207407
https://doi.org/10.1017/S0022112086002069
https://doi.org/10.1017/S0022112086002069
https://doi.org/10.1017/S0022112086002069
https://doi.org/10.1017/S0022112086002069
https://doi.org/10.1017/S0022112090001227
https://doi.org/10.1017/S0022112090001227
https://doi.org/10.1017/S0022112090001227
https://doi.org/10.1017/S0022112090001227
https://doi.org/10.1017/S0022112090002786
https://doi.org/10.1017/S0022112090002786
https://doi.org/10.1017/S0022112090002786
https://doi.org/10.1017/S0022112090002786


FLOW STRUCTURES AND KINETIC-POTENTIAL …

[47] D. Ramsden and G. Holloway, Energy transfers across an internal wave-vortical mode spectrum,
J. Geophys. Res.: Oceans 97, 3659 (1992).

[48] E. Deusebio, A. Vallgren, and E. Lindborg, The route to dissipation in strongly stratified and rotating
flows, J. Fluid Mech. 720, 66 (2013).

[49] B. T. Nadiga, Nonlinear evolution of a baroclinic wave and imbalanced dissipation, J. Fluid Mech. 756,
965 (2014).

[50] H. A. Kafiabad and P. Bartello, Spontaneous imbalance in the non-hydrostatic Boussinesq equations,
J. Fluid Mech. 847, 614 (2018).

[51] A. Lozano-Durán, O. Flores, and J. Jiménez, The three-dimensional structure of momentum transfer in
turbulent channels, J. Fluid Mech. 694, 100 (2012).

[52] A. Perry and M. Chong, Topology of flow patterns in vortex motions and turbulence, Appl. Sci. Res. 53,
357 (1994).

[53] E. Yarom, Y. Vardi, and E. Sharon, Experimental quantification of inverse energy cascade in deep rotating
turbulence, Phys. Fluids 25, 085105 (2013).

[54] A. Campagne, B. Gallet, F. Moisy, and P.-P. Cortet, Direct and inverse energy cascades in a forced rotating
turbulence experiment, Phys. Fluids 26, 125112 (2014).

[55] L. M. Polvani, J. McWilliams, M. Spall, and R. Ford, The coherent structures of shallow-water turbulence:
Deformation-radius effects, cyclone/anticyclone asymmetry and gravity-wave generation, Chaos 4, 177
(1994).

[56] G. Roullet and P. Klein, Cyclone-Anticyclone Asymmetry in Geophysical Turbulence, Phys. Rev. Lett.
104, 218501 (2010).

[57] F. Moisy, C. Morize, M. Rabaud, and J. Sommeria, Decay laws, anisotropy and cyclone–anticyclone
asymmetry in decaying rotating turbulence, J. Fluid Mech. 666, 5 (2011).

[58] B. Gallet, A. Campagne, P.-P. Cortet, and F. Moisy, Scale-dependent cyclone-anticyclone asymmetry in a
forced rotating turbulence experiment, Phys. Fluids 26, 035108 (2014).

[59] O. Praud, J. Sommeria, and A. M. Fincham, Decaying grid turbulence in a rotating stratified fluid, J. Fluid
Mech. 547, 389 (2006).

[60] A. Lozano-Durán and J. Jiménez, Time-resolved evolution of coherent structures in turbulent channels:
Characterization of eddies and cascades, J. Fluid Mech. 759, 432 (2014).

[61] K. L. Chong, Y. Yang, S.-D. Huang, J.-Q. Zhong, R. J. Stevens, R. Verzicco, D. Lohse, and K.-Q. Xia,
Confined Rayleigh-Bénard, Rotating Rayleigh-Bénard, and Double Diffusive Convection: A Unifying
View on Turbulent Transport Enhancement through Coherent Structure Manipulation, Phys. Rev. Lett.
119, 064501 (2017).

[62] M. Germano, Turbulence: The filtering approach, J. Fluid Mech. 238, 325 (1992).
[63] K. L. Chong, S.-D. Huang, M. Kaczorowski et al., Condensation of Coherent Structures in Turbulent

Lows, Phys. Rev. Lett. 115, 264503 (2015).
[64] Z. Xiao, M. Wan, S. Chen, and G. Eyink, Physical mechanism of the inverse energy cascade of two-

dimensional turbulence: A numerical investigation, J. Fluid Mech. 619, 1 (2009).
[65] Y. Kimura and J. R. Herring, Gradient enhancement and filament ejection for a non-uniform elliptic vortex

in two-dimensional turbulence, J. Fluid Mech. 439, 43 (2001).
[66] T. N. Parashar and W. H. Matthaeus, Propinquity of current and vortex structures: Effects on collisionless

plasma heating, Astrophys. J. 832, 57 (2016).
[67] O. Métais and J. R. Herring, Numerical simulations of freely evolving turbulence in stably stratified fluids,

J. Fluid Mech. 202, 117 (1989).
[68] O. Iida and Y. Nagano, Coherent structure and heat transfer in geostrophic flow under density stratifica-

tion, Phys. Fluids 11, 368 (1999).
[69] C.-k. Chan, D. Mitra, and A. Brandenburg, Dynamics of saturated energy condensation in two-

dimensional turbulence, Phys. Rev. E 85, 036315 (2012).
[70] F. Moisy and J. Jiménez, Geometry and clustering of intense structures in isotropic turbulence, J. Fluid

Mech. 513, 111 (2004).
[71] J. I. Cardesa, A. Vela-Martín, and J. Jiménez, The turbulent cascade in five dimensions, Science 357, 782

(2017).

014802-21

https://doi.org/10.1029/91JC02819
https://doi.org/10.1029/91JC02819
https://doi.org/10.1029/91JC02819
https://doi.org/10.1029/91JC02819
https://doi.org/10.1017/jfm.2012.611
https://doi.org/10.1017/jfm.2012.611
https://doi.org/10.1017/jfm.2012.611
https://doi.org/10.1017/jfm.2012.611
https://doi.org/10.1017/jfm.2014.464
https://doi.org/10.1017/jfm.2014.464
https://doi.org/10.1017/jfm.2014.464
https://doi.org/10.1017/jfm.2014.464
https://doi.org/10.1017/jfm.2018.338
https://doi.org/10.1017/jfm.2018.338
https://doi.org/10.1017/jfm.2018.338
https://doi.org/10.1017/jfm.2018.338
https://doi.org/10.1017/jfm.2011.524
https://doi.org/10.1017/jfm.2011.524
https://doi.org/10.1017/jfm.2011.524
https://doi.org/10.1017/jfm.2011.524
https://doi.org/10.1007/BF00849110
https://doi.org/10.1007/BF00849110
https://doi.org/10.1007/BF00849110
https://doi.org/10.1007/BF00849110
https://doi.org/10.1063/1.4817666
https://doi.org/10.1063/1.4817666
https://doi.org/10.1063/1.4817666
https://doi.org/10.1063/1.4817666
https://doi.org/10.1063/1.4904957
https://doi.org/10.1063/1.4904957
https://doi.org/10.1063/1.4904957
https://doi.org/10.1063/1.4904957
https://doi.org/10.1063/1.166002
https://doi.org/10.1063/1.166002
https://doi.org/10.1063/1.166002
https://doi.org/10.1063/1.166002
https://doi.org/10.1103/PhysRevLett.104.218501
https://doi.org/10.1103/PhysRevLett.104.218501
https://doi.org/10.1103/PhysRevLett.104.218501
https://doi.org/10.1103/PhysRevLett.104.218501
https://doi.org/10.1017/S0022112010003733
https://doi.org/10.1017/S0022112010003733
https://doi.org/10.1017/S0022112010003733
https://doi.org/10.1017/S0022112010003733
https://doi.org/10.1063/1.4867914
https://doi.org/10.1063/1.4867914
https://doi.org/10.1063/1.4867914
https://doi.org/10.1063/1.4867914
https://doi.org/10.1017/S0022112005007068
https://doi.org/10.1017/S0022112005007068
https://doi.org/10.1017/S0022112005007068
https://doi.org/10.1017/S0022112005007068
https://doi.org/10.1017/jfm.2014.575
https://doi.org/10.1017/jfm.2014.575
https://doi.org/10.1017/jfm.2014.575
https://doi.org/10.1017/jfm.2014.575
https://doi.org/10.1103/PhysRevLett.119.064501
https://doi.org/10.1103/PhysRevLett.119.064501
https://doi.org/10.1103/PhysRevLett.119.064501
https://doi.org/10.1103/PhysRevLett.119.064501
https://doi.org/10.1017/S0022112092001733
https://doi.org/10.1017/S0022112092001733
https://doi.org/10.1017/S0022112092001733
https://doi.org/10.1017/S0022112092001733
https://doi.org/10.1103/PhysRevLett.115.264503
https://doi.org/10.1103/PhysRevLett.115.264503
https://doi.org/10.1103/PhysRevLett.115.264503
https://doi.org/10.1103/PhysRevLett.115.264503
https://doi.org/10.1017/S0022112008004266
https://doi.org/10.1017/S0022112008004266
https://doi.org/10.1017/S0022112008004266
https://doi.org/10.1017/S0022112008004266
https://doi.org/10.1017/S0022112001004529
https://doi.org/10.1017/S0022112001004529
https://doi.org/10.1017/S0022112001004529
https://doi.org/10.1017/S0022112001004529
https://doi.org/10.3847/0004-637X/832/1/57
https://doi.org/10.3847/0004-637X/832/1/57
https://doi.org/10.3847/0004-637X/832/1/57
https://doi.org/10.3847/0004-637X/832/1/57
https://doi.org/10.1017/S0022112089001126
https://doi.org/10.1017/S0022112089001126
https://doi.org/10.1017/S0022112089001126
https://doi.org/10.1017/S0022112089001126
https://doi.org/10.1063/1.869886
https://doi.org/10.1063/1.869886
https://doi.org/10.1063/1.869886
https://doi.org/10.1063/1.869886
https://doi.org/10.1103/PhysRevE.85.036315
https://doi.org/10.1103/PhysRevE.85.036315
https://doi.org/10.1103/PhysRevE.85.036315
https://doi.org/10.1103/PhysRevE.85.036315
https://doi.org/10.1017/S0022112004009802
https://doi.org/10.1017/S0022112004009802
https://doi.org/10.1017/S0022112004009802
https://doi.org/10.1017/S0022112004009802
https://doi.org/10.1126/science.aan7933
https://doi.org/10.1126/science.aan7933
https://doi.org/10.1126/science.aan7933
https://doi.org/10.1126/science.aan7933

