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The dynamics of perturbed aircraft wake models is investigated in the two-dimensional
limit by means of a linear stability analysis. The base flow, computed by a direct numerical
simulation of the incompressible Navier-Stokes equations, is a viscous counter-rotating
vortex dipole obtained from an initial condition which is either a superposition of two
Lamb-Oseen vortices or a vorticity sheet with elliptical vorticity distribution. The former,
referred to as the Lamb-Oseen dipole (LOD), is a model for the far field of the wake and
gives rise to a family of quasisteady dipoles parametrized by their aspect ratio only. The
later approaches the near-field wake of a wing during the rolling phase which eventually
converges towards the LOD model at later times. First, a modal stability analysis of the
LOD under the assumption of a frozen base flow is performed for aspect ratios a/b
ranging from 0.05 to 0.36 at various Reynolds numbers. Several families of unstable
antisymmetric and symmetric modes are observed. The maximal growth rates are reached
at low Reynolds numbers. The results are consistent with those obtained by Brion et al.
[Phys. Fluids 26, 064103 (2014)] for the higher aspect ratio inviscid Lamb-Chaplygin
dipole (LCD). However, the a posteriori verification of the validity of the frozen base flow
assumption shows that, except for a few modes occurring at the highest aspect ratios and
large Reynolds numbers, these two-dimensional instabilities do not survive the base flow
unsteadiness due to viscous diffusion. They are thus not likely to develop in the flow.
Second, we focus on the transient dynamics of the dipoles by looking for the optimal
perturbations through a nonmodal stability analysis based on a direct-adjoint approach. The
observed energy gains are substantial and indicate the potential of transient mechanisms.
In the short time dynamics, the optimal perturbation consists of intertwined vorticity layers
located within each vortex core and leading to a m = 2 deformation Kelvin wave excited
by the Orr mechanism. For moderate to large horizon times, the optimal perturbation
takes the form of vorticity layers localized outside the vortex core which eventually give
rise to the two-dimensional unstable mode unveiled by the modal analysis through a
combination of Orr mechanism and velocity induction. The robustness of these modes
is examined by considering the initial stage of the development of aircraft wakes. The
optimal perturbations developing on an elliptic and a double-elliptic vorticity sheet present
a similar structure and rely on the same mechanisms as the ones observed for the LOD but
come with lower energy gains. It is concluded that the rolling-up of the vorticity sheet in
the near-field of the wake does not influence significantly the linear development of these
two-dimensional perturbations.
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Near-field Far field

FIG. 1. Sketch of the streamwise development of an aircraft wake. The first sectional plan lies in the near-
field region where the vorticity sheet rolls-up. The second one corresponds to the far-field region where the
wake takes the form of a counter-rotating vortex dipole. The scales are not representative of real wake.

I. INTRODUCTION

Since the 1960s and the democratization of air transportation, aircraft wake vortices have
been the subject of numerous research studies motivated by the associated economic, safety and
more recent environmental issues. Invisible in the absence of condensation, the trailing vortices
are very hazardous for a follower aircraft due to the intense rolling moment they can induce,
requiring the imposition of security standards which limit the takeoff and landing rates in airports,
and thereby their capacity and profitability. These vortices also play a role, though not yet
completely understood, in the formation and dissemination of condensation trails or “contrails”
generated by the aircraft engines. Under specific atmospheric conditions, these contrails lead to
the formation of artificial cirrus clouds [1] which affect significantly the local radiative forcing
and the photochemistry of the atmosphere. The contribution of aviation to the global radiative
forcing is estimated to lie between 3.5% to 4.9% [2]. For all these reasons, the characterization
and understanding of the dynamics of these trailing vortices take on an important scientific interest
motivated by their control to reduce their lifespan.

Trailing vortices observed in the far field of an aircraft wake result from the roll-up of the vorticity
sheet generated at the trailing edge of the wing [3,4] as illustrated in Fig. 1. This initial phase of
concentration of the vorticity sheet into two counter-rotating vortices is commonly referred to as the
near-field of the wake and extends a few wingspans downstream the trailing edge [4]. An important
part of the scientific effort dedicated to the dynamics of aircraft wake has focused on the far field
when it has already rolled-up into a vortex dipole, and more specifically on the development of
instabilities in the contrails. If an isolated vortex can be subjected to various kinds of instabilities,
such as centrifugal [5], trailing [6], viscous [7] or Rayleigh-Taylor [8] ones, then trailing vortices
exhibit a dipolar structure and are thus sensitive to three-dimensional instabilities specific to vortex
dipoles. Two main types of so-called cooperative instabilities can be observed in real trailing vortices
[9]: the Crow instability occurring at long wavelength of the order of the wingspan and the elliptic
instability active at shorter wavelength, of the order of the vortex core radius a. Naturally triggered
by disturbances and atmospheric turbulence, these instabilities lead to growing 3D distortions on
contrails before their reconnection and eventual dissipation after a few minutes. These two instabil-
ities were first predicted theoretically using a vortex filament model, respectively, by Crow [10] and
Widnall et al. and Moore and Safman [11–13]. Since these pioneering works, the stability of vortex
pairs has been extensively studied, like the inviscid Lamb-Chaplygin [14,15] and the viscous Lamb-
Oseen [16–18] dipoles, or the stability of a four-vortex model taking into account the wake generated
by the horizontal tail of the plane [19,20] (see the recent review of Leweke et al. [9] for a complete
description).

A new instability has been recently identified by Brion et al. [14] in the two-dimensional limit
for the Lamb-Chaplygin dipole (LCD) through a modal stability analysis at moderate Reynolds
numbers, i.e., Re < 3180. This two-dimensional instability takes the form of two displacement
modes located in each vortex core and induces a zigzag displacement of the vortex pair along
its unperturbed trajectory associated with viscous mechanisms that are not fully understood. In
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the case of the antisymmetric oscillatory mode, the authors point out three different ingredients
participating to the dynamics of the unstable mode. First, they note that the instantaneous growth
rate of the mode is maximal (respectively, minimal) when the rotating displacement modes
located in each vortex core are aligned with the direction of stretching (respectively, compression)
induced by the companion vortex. Second, they show that the vorticity of the mode which
is leaking outside the Kelvin oval is responsible for the rotation of the perturbation. Finally,
they notice that the vorticity of the mode located in the viscous tail of the dipole induces
a velocity field inside the dipole with a magnitude comparable to the velocity of the dipole
itself, which underlines the important role of the dipole viscous tail in the dynamics of the
instability.

Because the LCD presents a discontinuity in its vorticity field at the Kelvin oval boundary, Brion
et al. [14] also made a single stability calculation for a relatively high aspect ratio Lamb-Oseen
dipole (LOD), a/b = 0.3, at two Reynolds numbers, and found that the two-dimensional instability
observed for the LCD is also present, though with smaller growth rates. They also noted that, at
these Reynolds numbers, the characteristic growth time is comparable to the characteristic diffusion
time of the dipole, which questions the validity of the modal approach under the assumption
of a frozen base flow. Indeed, the vortex dipole evolves under viscous diffusion while being
advected downwards at the self-induced velocity �/2πb where � and b are, respectively, the vortex
circulation and vortex separation. The resulting effect of viscous spreading is twofold: the radius
of each vortex increases in time and so does the dipole aspect ratio a/b, and, as a consequence,
vorticity progressively diffuses beyond the Kelvin oval generating a viscous tail [21]. The inviscid
LCD model does not allow to take into account these combined effects. Besides, its high aspect ratio
of the order of a/b ≈ 0.448 [14] is not representative of real aircraft wake vortices which aspect ratio
is smaller, i.e., a/b ≈ 0.1 [22,23]. These limitations of the LCD model stress the need for a complete
stability analysis of a viscous vortex dipole more representative of real aircraft wakes. The present
work focuses on the influence of the dipole aspect ratio on this two-dimensional unstable mode.

The choice of the LOD model is motivated by the fact that, in a viscous fluid, most counter-
rotating vortex pairs converge, through axisymmetrization and mutual elliptical deformation,
towards the same family of dipoles characterized by their aspect ratio only and for which the
near Gaussian vorticity distribution obtained on each vortex is very close to the Lamb–Oseen
vortex [9,16,21]. Besides, the azimuthal velocity component of a real trailing vortex is correctly
represented by the Gaussian profile of the Lamb-Oseen vortex (see the Fig. 4 of Devenport et al.
[24]). As done previously by Sipp et al. [16], Donnadieu et al. [18], Delbende and Rossi [21],
the LOD is obtained numerically from a direct numerical simulation starting with an initial state
consisting of two well-separated counter-rotating Lamb-Oseen vortices. Starting from an initial
dipole of very small aspect ratio, i.e., a/b = 0.025, which evolves in time under viscous diffusion
and self-induced downward advection, we generate a complete family of LODs with aspect ratio up
to a/b = 0.36. Their characteristics are described in Sec. II together with the numerical method. A
great care has been taken to generate the base state, in particular to the compensation of the dipole
descent velocity Vd . In Sec. III, this family of LODs provides the base states needed to extend the
work of Brion et al. [14] and explore the influence of the aspect ratio on the two-dimensional
instability. The section ends with an analysis of the effect of the base flow viscous diffusion,
neglected in the modal analysis, on the development of these two-dimensional instability modes.
Finally, a nonmodal stability analysis is conducted in Sec. IV to investigate the transient growth
mechanisms potentially occurring in the LOD. This is a model for the far field and it does not take
into account the initial rolling phase of the vorticity sheet generated at the trailing edge of the wing.
Hence, the nonmodal analysis, particularly suited to capture short term transient growth, is applied
to near-field wake models to ascertain if the linear dynamics is modified by the initial development
of the wake. The search for the optimal perturbation is thus conducted for two near-field wake
models consisting of elliptical vorticity sheets modeling the cruise or the high-lift takeoff or landing
phases.

014701-3



JUGIER, FONTANE, JOLY, AND BRANCHER

II. THE LAMB-OSEEN DIPOLE

A. Base flow computation

We consider a two-dimensional viscous flow solution of the incompressible Navier-Stokes
equations:

∇ · v = 0, (1)

∂v
∂t

= v × ω ez − ∇
(

p + v2

2

)
+ ν�v, (2)

where v = (u, v), ω, p stand, respectively, for the velocity, vorticity, and pressure fields, and ν is
the kinematic viscosity. As done by Sipp et al. [16], Donnadieu et al. [18], the flow is initialized
with a superposition of two counter-rotating axisymmetric Lamb-Oseen vortices of circulation
�0 > 0 and −�0, dispersion radius a0 and vortex separation b0. There are three characteristic
time scales associated with the dynamics of the base flow: the characteristic vortex turn-over
time Ta = 2πa2

0/�0, the dipole advection time scale Tb = 2πb2
0/�0 and the viscous time scale

Tν = a2
0/4ν. Unless stated, the results presented in the following will be normalized using Tb. The

Reynolds number is classically defined by Re = �0/ν. In the Cartesian coordinate system (x, y)
corresponding, respectively, to the horizontal and vertical directions, the vortices are initially located
at (−b0/2, 0) and (b0/2, 0) so that the corresponding scalar vorticity field is

ωB(x, y) = − �0

πa2
0

e−[(x+b0/2)2+y2]/a2
0 + �0

πa2
0

e−[(x−b0/2)2+y2]/a2
0 . (3)

The base flow fields (vB, ωB, pB) are obtained by the time integration of Eqs. (1) and (2) from
this initial field in a doubly periodic box of size [−Lx/2, Lx/2] × [−Ly/2, Ly/2] with the same
2D Fourier pseudospectral method used by Donnadieu et al. [18], except that temporal integration
is done here by a fourth-order Runge-Kutta scheme rather than a second-order Adams-Bashforth
scheme. The complete description of the numerical method is already described in details in
Donnadieu et al. [18], Donnadieu [25], Jugier [26], so we only give here the details associated
with the selection of the numerical parameters. The size of the domain is chosen as Lx × Ly =
12b0 × 16b0, which has been checked to be sufficiently large so that the influence of the periodic
boundary conditions is negligible; see Jugier [26] for details. The initial aspect ratio of the dipole is
set to a0/b0 = 0.025 and the Reynolds number is equal to Re = 2500. We choose to have at least
10 grid points within each vortex core initially so that the mesh size is 2400 × 3200.

B. Definition of the relative frame of reference

Due to self-induction, the dipole moves downwards at a speed of approximately −�0/2πb0.
This descent velocity, noted Vd , is compensated so that the dipole is observed to be almost steady
in its own frame of reference, only slowly evolving under viscous diffusion. In the previous studies
on LOD dynamics [14,16,18,21,27], the definition of the relative frame of reference varies greatly
due to the different evaluations of the descent velocity Vd , and its influence on the LOD dynamics
has not been addressed carefully so far. We choose here to evaluate the descent velocity Vd as
the y component of the velocity at the vortex centers defined by the vorticity extrema, denoted
V1 in the following. But there are four other possible definitions: the Eulerian V2 = vB(xc, yc)
and Lagrangian V3 = dyc/dt vertical velocities of the vortex centroid calculated from the first
order vorticity momentum (xc, yc) = (

∫∫
D ωBx dS,

∫∫
D ωBy dS)/� (D is half of the domain where

x > 0), the y component of the vorticity-weighted velocity V4 = ∫∫
ωBvB dS/�, and the descent

velocity of a pair of point vortices with equivalent circulation and separation distance given by
the analytical expression V5 = �/2πb. A good criterion to discriminate the best evaluation of
the descent velocity is the minimization of the unsteadiness of the base flow in its own frame of
reference. The unsteadiness of the base flow can be assessed from both the velocity and vorticity
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FIG. 2. (a) Measure of the LOD unsteadiness as a function of the descent velocity relative deviation �Vd =
Vd/V1 − 1. (b) Influence of �Vd on the growth rate and frequency of the antisymmetric mode for (a/b, Re) =
(0.3, 788). The symbols correspond to the different evaluations of the descent velocity: V2 (+), V3 (×), V4 (©),
and V5 (�).

fields, namely, Tb ‖∂t vB‖/‖vBref‖ and Tb ‖∂tωB‖/‖ωB‖, where ‖ · ‖ stands for the L2-norm defined
by Eq. (11) and the velocity field in the absolute frame vBref is used for normalization to avoid
any bias in the measure. The unsteadiness of the LOD is measured as a function of the relative
deviation �Vd of the descent velocity from the definition retained here, namely, the y component of
the velocity at the vorticity extrema V1, i.e., �Vd = (Vd − V1)/V1. These evolutions are displayed in
Fig. 2(a), where it can be observed that none of the different options for the evaluation of Vd leads
to a perfectly steady solution. Nevertheless, Vd = V1 is the best choice since it gives the minimum
of base flow unsteadiness. Evaluations of the descent velocity by V3 and V4 are also good candidates
since they are very close to that minimum, but they were discarded anyway since V1 is much easier
to compute. A correct evaluation of the descent velocity is crucial when considering the modal
stability analysis of the dipole since the characteristics of the unstable modes are seen to be sensitive
to the compensation of Vd from Fig. 2(b). For the most amplified antisymmetric mode obtained for
(a/b, Re) = (0.3, 788), the relative deviations on the growth rate are as large as 30%.

C. Characterization of the base flow

As discussed by Sipp et al. [16] and Delbende and Rossi [21], the computation of the base
flow from the initial conditions Eq. (3) starts with a short transient regime during which the two
counter-rotating circular vortices adapt to the strain field imposed by their counterpart and become
elliptical. This transient adaptation phase is characterized by oscillations occurring in the vortex
core and takes the form of an elliptical rotating mode of period 4πTa. These oscillations are damped
within a few Ta.

After the initial transient adaptation, the vortex dipole evolves slowly under viscous diffusion
towards larger aspect ratios. Figure 3 illustrates the evolution of the vorticity field ωB and the
streamlines of the LOD in its frame of reference for increasing aspect ratios. A specific family
of logarithmic-linear hybrid scales has been adopted here for the representation of the vorticity
contours to emphasize the viscous tail in the wake of the dipole:

En = {±M10−n+i/3, i ∈ [0, 3(n − 1)]} ∪ {±iM/10, i ∈ [2, 10]}, (4)

where M stands for the maximal absolute value of the plotted quantity and n is a positive integer. As
already described by Delbende and Rossi [21], the viscous evolution of the LOD is divided in two
phases. For small values of a/b, the two vortices remain separated so that their respective vorticity
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FIG. 3. Streamlines (black solid lines) and vorticity contours (color scale E6, see Eq. (4) and text for details)
for four LODs of increasing aspect ratio: (a) a/b = 0.05, (b) a/b = 0.15, (c) a/b = 0.25, and (d) a/b = 0.35.
A small part of the computational domain is represented, i.e., (x, y) ∈ [−1.5b, 1.5b] × [−1.5b, 3b]. The dotted
thick line corresponds to the Kelvin oval.

fields do not overlap. The circulation � = ∫∫
D ωB dx dy of each vortex is constant and the symmetry

of the dipole with respect to the x-axis is preserved. In the second phase, vorticity diffusion across
the separatrix between the two vortices yields a decrease of the circulation. Besides, due to vorticity
diffusion across the Kelvin oval, a viscous tail forms in the dipole wake and breaks off its symmetry
with respect to the x axis. As mentioned in the Introduction, the evolution of the base flow after
the initial transient gives rise to a family of dipoles characterized by their aspect ratio only [16,21].
This is corroborated here by following the evolution of the dipole characteristics with its aspect ratio
a/b for four values of the initial Reynolds number Re = 2 500, 5 000, 7 500, and 10 000. We first
consider the ellipticity of the vortices, defined as the ratio ay/ax of the vortex core radii along the y
and x directions calculated from the second-order moments of vorticity:

ay =
√

1

�

∫∫
D

ωB(y − yc)2 dx dy and ax =
√

1

�

∫∫
D

ωB(x − xc)2 dx dy. (5)

Figure 4(a) shows that the ellipticity evolution does depend on a/b and that the influence of the
Reynolds number is negligible. Figure 4(b) shows the evolution of the total circulation � and
the inner circulation �i obtained by integration of the vorticity field over the area delimited by
the Kelvin oval, i.e., rejecting the contribution of the viscous tail. It can be seen that for aspect ratios
below a/b ≈ 0.3, all curves are superimposed. This result implies that the circulation decay only

FIG. 4. Evolution of (a) ellipticity ay/ax and (b) circulations �

�0
(solid lines), �i

�0
(dotted lines) of the

vortices as a function of the dipole aspect ratio a/b for various Reynolds numbers.
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depends on the aspect ratio of the dipole. The viscous effects become significant for larger aspect
ratios with the substantial contribution of the viscous tail to the total circulation, which amount is
driven by the Reynolds number. The decrease of the circulation given by the ratio �/�0 measured
for Re = 5000 differs from the one measured for Re = 2500 by about 1% when the dipole aspect
ratio is a/b = 0.36. We thus consider that the LOD is no longer Reynolds independent beyond this
value. Besides, the initial adaptation phase, which lasts few Ta, has already ended when the dipole
aspect ratio reaches the value of a/b = 0.05 by t ∼ 4500Ta. Thus only the base flows obtained for
0.05 � a/b � 0.36 and Re = 2500 will be used for the modal stability analysis in the next section.

III. LINEAR MODAL STABILITY ANALYSIS OF THE LOD

A. Numerical method

The Navier-Stokes Eqs. (1) and (2) are linearized around a frozen base state [vB, ωB, pB]
computed by the procedure described in Sec. II A and corresponding to a chosen aspect ratio a/b.
The linearization yields the following equations for a small 2D perturbation [v, ω, p]:

∇ · v = 0, (6)

∂v
∂t

= vB × ω ez + v × ωB ez − ∇(p + vB · v) + ν�v. (7)

These equations are advanced in time from an initial divergence-free white noise with the same
pseudospectral method used for the generation of the base flow. The constraint to have at least 10
grid points within each vortex core is maintained so the mesh size is adapted to the aspect ratio of
the LOD: 2400 × 3200 for a/b ∈ [0.05, 0.12], 1200 × 1600 for a/b ∈ [0.13, 0.2], and 600 × 800
for a/b ∈ [0.21, 0.36]. The temporal integration is made over a sufficiently long period so that the
2D perturbation fields have converged toward the most amplified mode. Since the coefficients of
this linear PDE system are time independent, in the long-term asymptotic limit, the solution is of
the form

v(x, y, t ) = �{v̂(x, y)eiωt } = [vr cos (2π f t ) − vi sin (2π f t )]eσ t , (8)

with v̂ = vr + ivi and ω = 2π f − iσ where f and σ stand, respectively, for the frequency and the
growth rate of the mode. For stationary modes, i.e., f = 0, the spatial structure is steady and reduces
to vr , and its energy grows exponentially. For oscillatory modes, i.e., f 	= 0, the fields vr and vi can
be chosen uniquely on a period so that 〈vr, vi〉 = 0 and ‖vr‖2 + ‖vi‖2 = 1 with ‖vr‖ � ‖vi‖, where
the scalar product 〈, 〉 and its associated norm are defined by Eq. (11) in the next section. The energy
presents oscillations of the form

E (t ) = ‖vr‖2 + ‖vi‖2

4
[1 + α cos(4π f t )]e2σ t , (9)

where α = ‖vr‖2−‖vi‖2

‖vr‖2+‖vi‖2 < 1 is a nondimensional coefficient that represents the amplitude of these
oscillations. When α → 0, the spatial structure of the mode transitions smoothly over the period
from vr → −vi → −vr → vi and back to vr , while when α → 1, the spatial structure of the mode
is mostly given by ±vr over the period except for rapid transitions to ∓vi around f t = 0.25 + 0.5n
with n ∈ Z. Finally, the base state being symmetric, the linearized Navier-Stokes Eqs. (1) and (2)
preserve symmetry and it is thus possible to compute separately the most amplified antisymmetric
and symmetric modes, as it is usually the case for dipole stability studies.

B. Antisymmetric modes

We now consider the most unstable antisymmetric mode which develops on the frozen base
flow described in the previous section as a function of the LOD aspect ratio for six values of the
Reynolds number, i.e., Re ∈ {223, 350, 500, 1280, 2500, 5000}. Cases Re = 223 and Re = 1280
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FIG. 5. Nondimensional growth rate σ ∗ (a) and frequency f ∗ (b) of the most amplified antisymmetric mode
as a function of the dipole aspect ratio a/b for different Reynolds numbers. Oscillatory and stationary branches
are, respectively, identified by the hollow and filled symbols positioned at the extremities and maximum
of each branch. Growth rates and frequencies for the LCD computed by Brion et al. [14] are added for
comparison.

are selected to allow comparison with the results of Brion et al. [14] obtained for the LOD. The
normalized growth rates σ ∗ = Tbσ and frequencies f ∗ = Tb f of these modes are shown in Fig. 5.
For large Reynolds numbers, i.e., Re � 1280, the most amplified mode is oscillatory and both its
growth rate and frequency are increasing monotonously with the dipole aspect ratio, with nearly
zero growth rate for the smallest aspect ratio. This suggests that the unstable mode disappears in the
limit of infinite Reynolds number and zero aspect ratio, a result which is consistent with the absence
of such two-dimensional instability in the inviscid analysis performed by Crow [10] for a pair of
vortex filaments. For smaller Reynolds numbers, the picture drastically changes: as the dipole aspect
ratio decreases, multiple unstable branches of oscillatory and stationary modes are observed with a
maximum amplification of each branch corresponding to a specific value of a/b. Surprisingly, each
branch exhibits larger growth rates when the Reynolds number decreases. This destabilizing effect
of viscosity is unusual since it is generally expected that decreasing the Reynolds number results in
the damping of the unstable modes. In the case of the LCD, Brion et al. [14] observed a similar trend
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when decreasing Reynolds number but the growth rate eventually reaches a maximum before the
mode becomes stable below a critical value of Rec = 75 [28]. This must be also the case for the LOD
since the linearized Navier-Stokes equations in the limit of zero Reynolds number show that these
2D modes must vanish. This is readily observable for both stationary modes with a/b ∈ [0.16, 0.17]
and oscillatory ones with a/b ∈ [0.34, 0.36] where the value of the growth rates are smaller for
Re = 223 than for Re = 350. In these figures, the results obtained by Brion et al. [14] for the LCD
are also reported for a/b ≈ 0.4297 [29], using our normalization based on � and b instead of using
the descent velocity Vd of the dipole and the diameter D of the Kelvin oval as characteristic scales
(D ≈ 2.174b and Vd ≈ 0.135�/b). Extrapolation of the different branches obtained for the LOD
towards larger aspect ratios seems to be in fair agreement with the values obtained by Brion et al.
[14] for the LCD. It suggests that the differences of internal structure between the two dipoles do
not have a significant impact on the development of these 2D modes, a conclusion which was hinted
by Brion et al. [14]. As a test case in their Appendix A, they made one stability calculation for the
LOD for a/b = 0.3 and Re = 223. However, it should be noted that the characteristics of the mode
they determined for this specific case do not match the present results, most probably because they
used V2 to evaluate the descent velocity of the dipole, which we proved to have a strong impact on
the stability calculations (see Sec. II B).

The vorticity field of these unstable modes is displayed in Fig. 6 for four different values
of (a/b, Re) corresponding to oscillatory modes. The vorticity is mostly concentrated into two
symmetric displacement modes [30] located in each vortex core of the LOD with some additional
residual vorticity spreading in the viscous tail of the dipole. The orientation of the perturbation in the
vortex cores changes in time along with the projection of the mode on its real and imaginary part,
according to Eq. (8). It results in a full rotation of the mode over a period which can be assessed
in Fig. 7(b) by the evolution of the angle θ between the x-axis and the line connecting the two
vorticity extrema of one of the displacement mode, as illustrated in Fig. 7(a). It can be seen that
the rotation rate is not uniform along the period and depends on the value of the coefficient α as
defined in Eq. (9). For a/b = 0.24 and Re = 223, α is small and the structure of the mode transitions
smoothly between its real and imaginary parts. The rotation is almost regular throughout the period.
However, for the same aspect ratio but at larger Reynolds numbers, i.e., Re = 1280 and Re = 2500,
the coefficient α is close to unity and therefore the mode remains projected on its real part most of
the period except for two very short intervals around f t = 0.25 and f t = 0.75 where its structure
is collinear to its imaginary part. This yields a fast rotation at these two instants while the angle θ is
almost constant during the rest of the period. These unevenly rotating displacement modes induce
a periodic zigzag motion of the LOD around its unperturbed downward straight trajectory [14].
Comparison between the two first columns of Fig. 6 points out the effect of the dipole aspect ratio
on the mode structure. When a/b is small, the displacement modes extend towards the Kelvin oval
into spiraling arms of vorticity that are not present for larger aspect ratios. A decrease of the aspect
ratio also induces a sharper and more irregular rotation of the mode associated with the increase of
the coefficient α, see the case corresponding to a/b = 0.06 in Fig. 7(b). The modifications of the
mode associated with the increase of the Reynolds number are also twofold. First, the extension of
the vorticity field in the viscous tail of the dipole reduces in width as seen in Fig. 6. Second, the
coefficient α increases towards unity which implies a more abrupt rotation of the mode. Finally, it
should be mentioned that the structure and the kinematics of the stationary modes (not shown) are
similar to those of the oscillatory ones except that the real and imaginary parts of the vorticity field
are equal.

C. Symmetric modes

The picture is quite similar for the symmetric unstable modes which normalized growth rate
σ ∗ and frequency f ∗ are displayed in Fig. 8 for the same Reynolds numbers. A notable difference
with the antisymmetric case is that most of the modes are stationary. For Reynolds numbers larger
than 1280, there is only one branch of stationary instability with moderate to low growth rates.
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FIG. 6. Real (top) and imaginary (bottom) parts of the vorticity field of antisymmetric oscillatory unstable
modes for various values of (a/b, Re) indicated above the figures. From left to right, α = 0.931, 0.621, 0.971,

and 0.987. A small part of the computational domain is represented, i.e., (x, y) ∈ [−2b, 2b] × [−1.5b, 10b].
The E4 scale is used. The dotted thick line corresponds to the Kelvin oval while the solid and dotted thin lines
correspond to ωB = ±0.1‖ωB‖∞.
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FIG. 7. (a) Definition of the orientation angle θ on a close-up view (left vortex) of the unstable mode
obtained for (a/b, Re) = (0.24, 223). (b) Evolution over one period of θ for antisymmetric modes presented
in Fig. 6: (a/b, Re) = (0.06, 223) (©), (a/b, Re) = (0.24, 223) (�), (a/b, Re) = (0.24, 1280) (�), and
(a/b, Re) = (0.24, 2500) (♦).

Below this value, there are successive branches of stationary and oscillatory instabilities with much
larger growth rates, up to σ ∗ = 0.65 for (a/b, Re) = (0.17, 223). As for the antisymmetric modes,
these instabilities must vanish in the limit of zero Reynolds number, which implies that, for a given
aspect ratio, the growth rate reaches a maximum before decreasing when the Reynolds number
is lowered. This Reynolds number of maximum growth rate has not been reached here and must
be smaller than Re = 223 for most of the aspect ratios explored, except for a/b � 0.3 where it
lies between Re = 223 and Re = 350. For the LCD, Brion et al. [14] found a value of Re = 4983
which is much larger. The growth rates corresponding to the modes of the LCD have also been
added for a/b = 0.4297 and they seem to be in good agreement with our results when the curves
obtained for the LOD are extrapolated towards larger aspect ratios. As for the antisymmetric modes,
the calculation performed by Brion et al. [14] for the LOD with (a/b, Re) = (0.3, 1280) does not
match the present results and has not been reported in Fig. 8. This discrepancy is again very likely
due to the way the dipole descent velocity is calculated.

Figure 9 shows the vorticity fields of these stationary symmetric modes for four different values
of (a/b, Re). They consist of two antisymmetric displacement modes located at each vortex core
which induce a symmetric translation of the two vortices. The influence of both the aspect ratio and
the Reynolds number on the structure of these modes is identical to what has been observed for the
antisymmetric modes. Spiraling arms of vorticity are present for small aspect ratios and the vorticity
extending in the viscous tail of the dipole is thinner when the Reynolds number is increased.

D. Damping due to base flow diffusion

The frozen base flow hypothesis used for the modal approach must be validated a posteriori
by comparing the growth rate of the unstable modes with the characteristic time of the base
flow evolution which is given by the viscous time scale Tν = a2

0/4ν. For the frozen base flow
approximation to be valid, one must ensure that σTν � 1. We recall that the time evolution of
the dispersion radius of a viscous vortex is given by a2(t ) = a2

0 + 4νt . The dispersion radius
thus increases by about 40% over one Tν unit. As already pointed out by Brion et al. [14], the
present two-dimensional instabilities, which exhibit particularly strong growth rates at low Reynolds
numbers, might be counteracted by the base flow diffusion. This is confirmed in Fig. 10 where the
growth rates have been normalized by Tν . Only the antisymmetric modes occurring at large aspect

014701-11



JUGIER, FONTANE, JOLY, AND BRANCHER

FIG. 8. (a) Growth rates σ ∗ and (b) frequencies f ∗ of the most amplified symmetric mode as a function of
the dipole aspect ratio a/b for different Reynolds numbers. Same conventions as described in the caption of
Fig. 5.

ratios and large Reynolds numbers might be able to develop upon the time dependent base flow
since they grow somewhat faster than the diffusion of the dipole (the largest value being Tνσ ≈ 5).
We have performed a direct numerical simulation of the linearized Navier-Stokes Eqs. (6) and
(7) initialized by an unstable mode, in which the base flow was allowed to evolve in time under
viscous diffusion. Two modes were considered: the oscillatory antisymmetric and the stationary
symmetric modes for a/b = 0.25 and Re = 5000 for which Tνσ is 1.35 and 5.55, respectively.
The linear evolution of the oscillatory mode can be initialized with the perturbation taken at any
instant within the oscillating period. Three different initial conditions have been tested according to
Eq. (9) for the evolution of the perturbation energy E (t ): the mode taken at the instants tM and tm
corresponding, respectively, to the local maximum and the local minimum of the perturbation energy
over a given period, as well as at an intermediate time tmed = tm1 +tm2

2 corresponding to the mean
time between two consecutive local minima of energy. The corresponding energy gain evolutions
are displayed in Fig. 11 along with the ones obtained for a frozen base flow. As expected, if the
diffusion of the base flow does not alter significantly the growth of the antisymmetric mode, it
quickly stops the development of the symmetric one. When the antisymmetric mode is initialized at
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FIG. 9. Vorticity field of symmetric stationary modes for various values of (a/b, Re) indicated above the
figures. Same conventions as described in the caption of Fig. 6.

tm, it benefits from the instantaneous positive growth rate and its energy increases while its energy
decreases if initialized at tM where the instantaneous growth rate turns negative. When initialized
at tmed, the evolution of the energy lies in between, exhibiting a weaker growth. Other simulations
(not presented here) have been conducted for smaller aspect ratios and smaller Reynolds numbers
[26] and the conclusion remains unchanged: the base flow diffusion prevents the growth of these
two-dimensional modes.

IV. LINEAR NONMODAL STABILITY ANALYSIS OF THE LOD

Since most of the previously identified two-dimensional modes do not grow fast enough when
the base flow is submitted to viscous diffusion, we now examine the transient linear dynamics by
looking at the optimal perturbation maximizing the energy gain over a given interval of time [0, Tf ].
We first consider the LOD which corresponds to the far field of an aircraft wake. Then we turn
towards the near-field wake with a base flow taken as a vorticity sheet rolling up into a counter-
rotating vortex dipole.

A. Numerical method

The nonmodal stability analysis focuses on the 2D transient dynamics of perturbed aircraft wakes
models by computing the optimal perturbation over a given time interval [0, Tf ]. The optimal
perturbation is classically defined as the initial condition maximizing the energy gain over the
considered time interval:

G(Tf ) = E (Tf )

E0
, (10)
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FIG. 10. Growth rates Tνσ normalized by the dipole viscous time scale for both (a) antisymmetric and
(b) symmetric two-dimensional modes as a function of a/b for different Re. Same conventions as described in
the caption of Fig. 5.

where E0 stands for the initial kinetic energy of the perturbation. The energy definition is associated
with the scalar product 〈, 〉 calculated over the computational domain:

E (t ) = 〈v, v〉 = ‖v‖2 =
∫ Lx/2

−Lx/2

∫ Ly/2

−Ly/2
v∗ · v dx dy. (11)

Here the superscript ∗ denotes the conjugate transpose. This optimization problem is solved within
the framework of the optimal control theory. Constraints are imposed to the perturbation: its initial
amplitude is fixed to some constant, i.e., ‖v(0)‖ = vc and the perturbation must be a solution of the
linearized Navier-Stokes Eqs. (6) and (7). This can be transformed into an optimization problem
without constraint using the variational method of the Lagrange multipliers [31]. The optimal
solution is determined by use of the gradient descent, which in turn requires the solving of the
so-called linearized Navier-Stokes adjoint equations [18,31]:

∇ · v+ = 0, (12)
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FIG. 11. Energy gain evolution of (a) the antisymmetric oscillatory mode and (b) the symmetric stationary
mode for (a/b, Re) = (0.25, 5000), for a frozen (solid line) and a time-evolving (dashed line) base flow. The
oscillatory mode is initialized at three different instants within the period: tm (�), tmed (©), and tM (�).

−∂v+

∂t
= ωB ez × v+ − ∇ × (vB × v+) − ∇p+ + ν�v+. (13)

These equations are solved backward in time from t = Tf to t = 0, as indicated by the minus sign in
front of the time derivative in Eq. (13), using the same pseudospectral method as for the generation
of the base flow. The complete description of the optimization algorithm is provided in Ref. [26].
We only give here the main lines:

(1) The velocity field v is initialized with a white noise with the condition ‖v(0)‖ = vc (vc = 1
for instance).

(2) The direct linearized Navier-Stokes Eqs. (6) and (7) are advanced in time up to the horizon
time Tf .

(3) The initial condition for the adjoint equations is computed from the terminal condition
v+(Tf ) = 2 v(Tf )/E0.

(4) The adjoint linearized Navier-Stokes Eqs. (12) and (13) are integrated backward in time from
t = Tf to t = 0.

(5) A new initial condition for the direct equations is obtained from the optimality condition
v(0) = E (Tf )v+(Tf )/2E2

0 before going back to step 2.
This optimization loop is stopped when the convergence is reached in terms of the optimal energy

gain, namely, |Gn+1(Tf ) − Gn(Tf )|/Gn(Tf ) < 10−2.

B. Transient growth on a far-field LOD

As mentioned in Sec. II C, there are three possible time scales that can be used to characterize
the dynamics of the LOD, namely, Ta, Tb, and Tν . Given the values of the aspect ratios and
Reynolds numbers considered here, Ta is the smallest time scale since Ta/Tb = (a0/b0)2 � 1 and
Ta/Tν = 8π/Re � 1. Therefore, we chose to observe the short time dynamics of the LOD in
number of vortex core rotations, namely, 2πTa. We consider the optimal perturbation developing
over a time-evolving LOD of initial aspect ratio a0/b0 = 0.15 for three horizon times corresponding
to 1, 10, and 60 vortex core rotations: Tf = 2πTa ≈ 0.15Tb, Tf = 20πTa ≈ 1.5Tb, and Tf =
120πTa ≈ 9Tb. Figure 12 presents the energy gain evolution of these optimal perturbations for
both the antisymmetric and symmetric cases and for three different Reynolds numbers. The levels
of amplification observed are substantial and both modes exhibit similar energy gains except for
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FIG. 12. Time evolution of the energy gain of the (a) antisymmetric and (b) symmetric optimal perturba-
tions obtained for a LOD of aspect ratio a0/b0 = 0.15 for three horizon times, Tf /Tb ∈ {0.15, 1.5, 9}, and three
Reynolds numbers, Re = 223 (�), Re = 1280 (©), and Re = 5000 (�).

the large horizon time where the energy gains of the antisymmetric perturbation are one order of
magnitude higher than the symmetric ones. As the horizon time is increased, the mean growth rate
log G(Tf )

2Tf
decreases which indicates that the most efficient mechanisms of energy growth are active in

the short time dynamics. For the largest horizon time Tf = 9Tb, a drop in the energy growth is even
observed around t ≈ 2Tb and it is more pronounced for the symmetric perturbations. In contrast
with the modal analysis, the influence of the Reynolds number is here standard, with a decrease of
the optimal energy gain with the diminution of the Reynolds number. The energy gains obtained
here for (a/b, Re) = (0.15, 1280) are in good agreement with those computed recently by Navrose
et al. [32] for a LOD with (a/b, Re) = (0.18, 1000) [see their Fig. 18(a)].

The vorticity field of both the optimal perturbations ω0 and the optimal outcomes ω f are dis-
played in Fig. 13 for Re = 1280 and the three horizon times investigated. The fields corresponding
to the short time dynamics, Tf = 0.15Tb, are noticeably different from those obtained for medium to
large horizon times. In the first case, the optimal perturbation consists of intertwined thin vorticity
layers with a double helix periodicity located inside each vortex core. They progressively uncoil
under the differential base flow rotation to give rise to the optimal response under the form of a
m = 2 deformation mode inside each vortex core [30]. Even if the final state at t = Tf is similar to
the one obtained for an isolated Lamb-Oseen vortex [33,34], the physical mechanism responsible for
the energy growth relies here solely on the classical Orr mechanism; there is no core-contamination
induced by a resonance because the vorticity layers are here located within the vortex core. Once
uncoiled, the initial vorticity layers concentrate directly into a m = 2 deformation mode of the vortex
cores.

For larger horizon times, the initial perturbation is localized outside the vortex core and takes also
the form of vorticity layers which are mainly localized along the contracting manifold of the trailing
(respectively, leading) hyperbolic stagnation point for the antisymmetric (respectively, symmetric)
case. These perturbations are very similar to those observed by Donnadieu et al. [18], Brion et al.
[35] for the three-dimensional optimal perturbations leading at large time to the Crow instability.
These optimal perturbations ultimately lead to a response which is similar to the modes identified
in the previous section and consists of a m = 1 displacement mode located within each vortex
core. The associated mechanism of energy growth is here slightly different from the one unveiled
by Brion et al. [35] for the Crow instability since vortex-stretching is not active here in this two-
dimensional flow. The initial growth relies again on the Orr mechanism which is then taken over by a

014701-16



LINEAR TWO-DIMENSIONAL STABILITY OF A …

FIG. 13. Optimal perturbation ω0 and optimal outcome ω f vorticity fields obtained for a LOD with
(a0/b0, Re) = (0.15, 1280) and three different horizon times. A small part of the computational domain is
represented, i.e., (x, y) ∈ [−2b, 2b] × [−1.5b, 10b] and the E3 scale is used. The solid and dotted thin lines
correspond, respectively, to ωB = ±0.1‖ωB‖∞.

core-contamination through velocity induction, as originally described by Antkowiak and Brancher
[33]. The resemblance of the unstable modes of Sec. III with the optimal response at the horizon
time indicates that such instabilities can nevertheless develop in a time evolving base flow when the
structure of the initial perturbation anticipates the evolution of the base flow and takes advantage of
mechanism of transient energy growth in its early development.
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The structures of the optimal perturbations and associated outcomes have been also examined
for different values of the aspect ratio and the Reynolds number. They do not differ from the ones
described previously for (a0/b0, Re) = (0.15, 1280) and are not shown here. There is only one
difference at low Reynolds numbers for the short time dynamics. For Re = 223 and Tf = 0.15Tb,
the optimal perturbation is structured on a m = 1 pattern of vorticity layers and gives rise to a
displacement mode within each vortex core rather than the m = 2 deformation mode observed in
Fig. 13.

The structure and the evolution of the optimal perturbations computed in the present work do
not correspond exactly to what has been recently observed by Navrose et al. [32] for a LOD with
(a/b, Re) = (0.18, 1000) [see their Fig. 20(b)]. If their optimal perturbation obtained for Tf = 2.5Tb

consists in similar spiraling arms of vorticity located at the periphery of the vortex centers as those
illustrated in Fig. 13 for Tf = 1.5Tb, then their evolved state at the horizon time takes the form of
a m = 2 deformation mode in each vortex core rather than the displacement mode observed in the
present study. This optimal outcome corresponds to what has been observed here for the short time
dynamics, i.e., Tf = 0.15Tb, and this difference in the results is not understood.

C. Transient growth on a near-field elliptical vorticity sheet

The aim of this section is to verify if the two-dimensional modes can still emerge when
considering the complete history of the aircraft wake, i.e., taking into account the rolling phase of the
vorticity sheet generated at the trailing edge of the wing. We consider two different configurations
used by Spalart [3] and corresponding to the cruise and the high-lift takeoff or landing phases.
The initial vorticity field of the base flow is obtained from the convolution of a given circulation
distribution �(x) with the Gaussian function G(x, y) = exp ( x2+y2

h2
e

),

ωB(x, y) =
∫∫

−d�(x − x′)
dx

δ(y − y′) exp

(
x2 + y2

h2
e

)
dx′dy′, (14)

where he measures the initial width of the vorticity sheet and δ is the Dirac function. The two
circulation distributions used are an ideal elliptic distribution �1(x) for the cruise phase and a
double-elliptic one �2(x) for the high-lift configuration defined, respectively, by

�1(x) =
⎧⎨
⎩�0

√
1 − 4x2/l2

w if |x| � lw/2

0 if |x| > lw/2
(15)

and

�2(x) =

⎧⎪⎪⎨
⎪⎪⎩

�2

√
1 − 4x2/l2

w2 + �1

√
1 − 4x2/l2

w1 if |x| � lw2/2

�1

√
1 − 4x2/l2

w1 if lw2/2 < |x| � lw1/2

0 if |x| > lw1/2

, (16)

where lw = 4l0/π , lw1 = 1.496l0, lw2 = 0.6l0, �1 = 0.7514�0, and �2 = 0.2486�0. The wingspan
denoted l0 is used as the characteristic length scale and the initial width of the vorticity sheet
is chosen arbitrarily to be he = 0.05l0. As for the LOD, the base flow is obtained by the time
integration of Eqs. (1) and (2) from the initial fields Eqs. (14)–(16) using the same pseudospectral
code. The size of the domain is unchanged, i.e., Lx × Ly = 12b0 × 16b0, and the mesh size is
kept to 2400 × 3200 so that �x = �y � he/5 and consequently �x = �y � a/5 throughout the
simulation since a � he. The evolution of the vorticity sheet toward a LOD is obtained for three
values of the Reynolds number, Re ∈ {223, 1280, 5000}, and the corresponding vorticity fields are
illustrated in Fig. 14 for Re = 1280. The extrema of vorticity are initially localized at the inflection
points of the circulation distributions: two for the elliptic one Eq. (15) and four for the double-elliptic
one Eq. (16). The vorticity sheet progressively rolls up to give rise ultimately to a dipolar structure
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FIG. 14. Time evolution of the vorticity field (scale E5) for an elliptic (top) and a double-elliptic (bottom)
vorticity sheets at Re = 1280. A small part of the computational domain is represented, i.e., (x, y) ∈
[−1.5b, 1.5b]2 for t/Tb ∈ {0, 0.015, 0.15} and (x, y) ∈ [−2b0, 2b0]2 for t/Tb = 1.5.

close to one of the LOD. In the double-elliptic case, the evolution of the vorticity sheet exhibits
first a quadrupolar form which converges towards the LOD through the merger of the smaller inner
vortices with the outer larger ones.

As for the transient dynamics of the LOD, the optimal perturbations developing on the vorticity
sheets are investigated for three different horizon times when seeded at the initial time of the
base flow, which would correspond to a perturbation injected at the trailing edge of the wing.
The three chosen horizon times correspond, respectively, to 1, 10, and 100 vortex core rotations:
Tf = 2πTa ≈ 0.015Tb, Tf = 20πTa ≈ 0.15Tb, and Tf = 200πTa ≈ 1.5Tb, where the vortex core a

and the vortex separation distance b have been computed classically by a =
√

a2
x + a2

y and b = 2xc.
Figure 15 presents the energy gain evolution of these optimal perturbations for three Reynolds
numbers, Re ∈ {223, 1280, 5000}, for both the antisymmetric and the symmetric cases. The trends
are similar to what has been observed for the LOD except that the levels of energy gain are much
weaker, especially for the antisymmetric perturbations with a difference up to almost three orders
of magnitude for the largest energy gain measured at Tf = 1.5Tb and Re = 5000. While the energy
gain increases with the horizon time and with the Reynolds number, the mean growth rate log G(Tf )

2Tf

decreases, which indicates again that the most efficient mechanisms for energy growth operate in the
short time dynamics. The perturbations grow faster in the short times, i.e., Tf /Tb ∈ {0.015, 0.15}, for
the elliptic vorticity sheet than for the double-elliptic one. Conversely, the energy growths are larger
for the double-elliptic case for the largest horizon time Tf = 1.5Tb. In the case of the double-elliptic
vorticity sheet, the evolution of the energy gain is not monotonous for the largest Reynolds number,
i.e., Re = 5000, which might be related to the merger of the inner vortices with the outer ones.

Figures 16 and 17 show, respectively, the vorticity field of the optimal perturbation ω0 and opti-
mal outcome ω f for the elliptic and double-elliptic vorticity sheets. Both the symmetric and antisym-
metric perturbations are displayed for the three selected horizon times Tf /Tb ∈ {0.015, 0.15, 1.5}
and a Reynolds number of Re = 1280. At large horizon time Tf /Tb = 1.5, these vorticity fields are
very similar to those observed for the LOD. The optimal perturbation consists of coiled vorticity
layers located at the periphery of the vorticity sheet and they give rise to a displacement mode
within each vortex core, which corresponds to the two-dimensional unstable mode of the dipole. The
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FIG. 15. Time evolution of the energy gain of the (a), (c) antisymmetric and (b), (d) symmetric optimal
perturbations obtained for an elliptic (top) and a double-elliptic (bottom) vorticity sheet of initial width he/l0 =
0.05 for three horizon times, Tf /Tb ∈ {0.05, 0.15, 1.5}, and three Reynolds numbers, Re = 223 (�), Re = 1280
(©), and Re = 5000 (�).

energy growth is thus associated with the same physical mechanisms combining the Orr mechanism
together with a core contamination due to velocity induction. This similarity is not surprising since
both the elliptic and double-elliptic vorticity sheets converge towards a LOD at large times. For the
intermediate horizon time Tf /Tb = 0.15, the optimal response takes also the form of a displacement
mode inside each vortex core but it is triggered by initial vorticity layers localized closer to, if not
inside, the vorticity sheet. Finally, the short transient dynamics differs from the one of the LOD since
the optimal outcome exhibits also two dipolar structures located at the outer sides of the vorticity
sheet rather than the deformation Kelvin waves observed in each vortex of the LOD. Because the
optimization time interval is very short, Tf /Tb = 0.015, the structure of the optimal perturbation
is very close to the optimal response and the energy gain results only from the Orr mechanism in
this case. These results allow to conclude that the rolling of the vorticity layer in the near-field of
the wake does not have a significant influence on the linear development of the two-dimensional
perturbations. Brion [36] drew the same conclusion for axial wave numbers corresponding to the
Crow instability.
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FIG. 16. Optimal perturbation ω0 and optimal outcome ω f vorticity fields obtained for an elliptic vorticity
sheet with (he, Re) = (0.05, 1280) and three different horizon times. A small part of the computational domain
is represented, i.e., (x, y) ∈ [−1.5b, 1.5b]2 for t/Tb ∈ {0, 0.015, 0.15} and (x, y) ∈ [−2b0, 2b0]2 for t/Tb = 1.5.
The E4 scale is used. The solid and dotted thin lines correspond, respectively, to ωB = ±0.1‖ωB‖∞.

V. CONCLUSIONS

The two-dimensional linear dynamics of aircraft wake models has been investigated by means
of modal and nonmodal stability analyses. In a first part, we extended the study of Brion et al.
[14] who identified a new two-dimensional unstable mode thanks to a modal stability analysis
performed on the Lamb-Chaplygin dipole (LCD). The present analysis was conducted for a family
of viscous dipoles named Lamb-Oseen dipoles (LOD) because they are obtained numerically from
the initial superposition of two counter-rotating Lamb-Oseen vortices. As shown by Sipp et al. [16],
Delbende and Rossi [21], their characteristics depend only on the dipole aspect ratio a/b where
a and b are the vortex dispersion radius and the vortex separation distance. A specific attention
has been paid to the evaluation of the dipole descent velocity necessary to study the vortex pair
in its own frame of reference since it has a strong influence on the unsteadiness of the dipole and
consequently on the stability results. It has been shown that the velocity of the vorticity extrema is
the best choice to minimize the unsteadiness of the base flow. The two-dimensional modal analysis
has been conducted for the LOD family with aspect ratios in the range of a/b ∈ [0.05; 0.36] and
various Reynolds numbers. Different branches of both oscillatory and stationary unstable modes
were identified, all of them consisting of two displacement modes located within the core of each
vortex of the dipole, like the one observed by Brion et al. [14] for the LCD. Their growth rates
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FIG. 17. Optimal perturbation ω0 and optimal outcome ω f vorticity fields obtained for a double-elliptic
vorticity sheet with (he, Re) = (0.05, 1280) and three different horizon times. Same conventions as described
in the caption of Fig. 16.

increase for decreasing Reynolds numbers indicating a non trivial destabilizing action of viscosity.
These modes induce a rotation and a translation of the vortex pair which results in a zigzagging
motion of the dipole. When compared to the viscous characteristic time scale Tν = a2

0/4ν, most
of the unstable modes are not growing fast enough to survive the base flow diffusion except the
antisymmetric ones occurring at large aspect ratios and large Reynolds numbers. This is confirmed
by linear numerical simulations in which the base flow is allowed to evolve under viscous diffusion.
The growth of two-dimensional modes is quickly stopped implying that these modes are not likely
to develop.

Despite these negative conclusions, it turns out that these two-dimensional modes can ne-
vertheless occur in LOD by taking advantage of transient growth mechanisms. This is attested
by looking for the optimal perturbations thanks to a nonmodal stability analysis based on a
direct-adjoint approach. The observed energy gains are substantial indicating the efficiency of
transient mechanisms. In the short time dynamics, the optimal perturbation consists of intertwined
vorticity layers located within each vortex core and leading to a m = 2 deformation Kelvin wave
thanks to the Orr mechanism. For moderate to large horizon times, the optimal perturbation takes
the form of vorticity layers localized outside the vortex core along the contracting manifold of
the trailing (respectively, leading) hyperbolic stagnation point for the antisymmetric (respectively,
symmetric) case. They eventually give rise to the two-dimensional unstable mode unveiled by the
modal analysis through a combination of Orr mechanism and core contamination. We finally look at
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the robustness of the modes by considering the initial stage of the development of aircraft wakes. The
optimal perturbations developing on an elliptic and a double-elliptic vorticity sheet present lower
but significant energy gains and they do not differ notably from the ones observed for the LOD. It
indicates that the rolling of the vorticity sheet in the near-field of the wake does not have a strong
influence on the linear development of the two-dimensional perturbations, a conclusion previously
inferred by Brion [36] for three-dimensional perturbations with axial wave numbers corresponding
to the Crow instability.

The present study confirms the existence of the two-dimensional modes of Brion et al. [14]
in more realistic vortex dipole models and provides a convincing and positive conclusion about
their possible occurrence in time-varying wake vortex models. In a three-dimensional flow, they
would compete with the classic Crow and elliptic instabilities which growth rates are substantially
higher than those measured here for the two-dimensional modes. Donnadieu et al. [18] obtained
normalized growth rate of σ ∗ = 0.73 for the Crow instability and σ ∗ = 0.5 for the elliptic instability
at Re = 2000 for a LOD of aspect ratio a/b = 0.206, which is at least five times greater than the
growth rate measured here for the antisymmetric mode for the same parameters. This difference
could explain why these two-dimensional modes have never been observed experimentally so far.
Besides, in real aircraft wakes, the trailing vortices exhibit a wake component associated with a
non zero axial velocity. In the two-dimensional limit, this axial flow does not have any influence on
the development of the instability since the equation of the axial velocity perturbation is decoupled
from the equations of the two other components of the perturbation velocity. Thus, for a prescribed
axial velocity of the base flow, it is possible to reconstruct directly the third component of the
perturbation velocity from the two-dimensional mode corresponding to the base flow without axial
flow. Consequently, the results obtained in the present study are also relevant for a vortex dipole with
axial flow. Nevertheless, some extensions to this work could be performed. It would be interesting
to look at the influence of the nonlinear terms on the development of these modes by performing
direct numerical simulations. The effect of the stratification could be also investigated. In the three-
dimensional case, Nomura et al. [37] and Donnadieu et al. [38] showed that a strong stratification
(Fr � 1) induces significant variations of both the perturbation wave number and its radial structure
due to base flow modifications where the two vortices of the dipole are getting closer because of
baroclinic effects.
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