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In large eddy simulations (LESs), the large scales of turbulent motion are resolved
directly, whereas the small scales that are computationally expensive to solve are modeled.
The scale separation is performed either in the physical domain (space or time) or in
Fourier space, which involves application of an explicit or implicit scale filtering operation,
parting the resolved and subfilter-scales (well known as subgrid scales). Proper orthogonal
decomposition (POD) of a turbulent flow also leads to the scale separation, where the POD
modes represent characteristic scales of motion. In the present work, the similarity between
the physical and Fourier scales and the POD modes, in terms of their kinetic-energy content
and the interchange of energy among the scales and modes, is used to model the effect of
subfilter-scales of motion for the LES. The subfilter-scales stress tensors, namely, Leonard,
cross, and Reynolds are expressed directly in terms of the POD modes, while the cross and
Reynolds subfilter-scale stresses are modeled, incorporating the energy contribution of the
subfilter-scale POD modes. In addition to the mathematical properties of the subfilter-scale
stress tensor, the model inherently predicts the near-wall asymptotic behavior and the
backward transfer of subfilter-scale energy (the backscatter).

DOI: 10.1103/PhysRevFluids.5.014605

I. INTRODUCTION

Turbulent flows consist of a wide range of scales of motion, also known as eddies. In the
direct numerical simulation (DNS) of the governing flow equations, the Navier-Stokes equations,
all the eddies are resolved by means of a very fine numerical grid, leading to computationally
very expensive simulations. The cost of the DNS further depends on the scale separation, i.e., the
ratio between the most and least energetic eddies, which is typically very large for the flows of
practical interest (e.g., external aerodynamics), making DNS intractable for such flows. In large eddy
simulations (LESs), the most energetic large eddies are directly computed, whereas the contribution
of smaller eddies is modeled in order to lower the computational cost. Thus separation of the large
scales from the small scales is an important first step of the LES.

A filtering operation decomposes an instantaneous flow field into the large scales, referred to
here as “resolved” scales, and the small scales, referred here as “subfilter” scales. Let ϕ(x, t ) be a
spacetime variable, where x is three-dimensional space and t is time. The spatial filtering operation
on ϕ(x, t ) by a convolution kernel G gives the resolved part of the variable as

ϕ(x, t ) =
∫ ∞

−∞
ϕ(x − r, t )G(r,�x)dr, (1)
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whereas the subfilter component, denoted by ϕ′′(x, t ), can be obtained as

ϕ′′(x, t ) = ϕ(x, t ) − ϕ(x, t ). (2)

The overline · represents a filtered variable. A cutoff length scale, �x, is associated with the
filter kernel G, which is assumed to be isotropic and uniform, at this point. Furthermore, G
satisfies the following three conditions in order to apply the kernel to the Navier-Stokes equations:
normalization, linearity, and commutation with differentiation. The normalization ensures that
the integral of the kernel is unity, the commutation with derivative ensures that the filtering and
derivative operations commute, whereas the product of convolution automatically satisfies the
linearity irrespective of the definition of kernel G. The most commonly used filters are the box
or top hat filter, Gaussian filter, and sharp spectral filter. For instance, the kernel of the simplest top
hat filter, with a cutoff length of �x, is given as

G(r,�x) =
{

1
�x

if |r| � �x
2

0 otherwise.
(3)

It is local in physical space and nonlocal in spectral space, contrary to the sharp spectral filter, which
is local in spectral space and nonlocal in physical space. The Gaussian filter however, is nonlocal
in both physical and spectral space. The top hat and Gaussian filters are positive with their kernels
G(r) > 0.

The governing flow equations for the resolved flow can be obtained by applying the filtering
operation to the Navier-Stokes equations. At this point, the filter is assumed to be spatially uniform,
such that it commutes with the differentiation operation; later in the text (Sec. III), the effect of a
nonuniform filter is briefly described. The filtered mass and momentum conservation equations, in
an incompressible Cartesian form using index notation, are

∂ui

∂xi
= 0, (4)

∂ui

∂t
+ ∂ui u j

∂x j
= − 1

ρ

∂ p

∂x j
+ ν

∂2ui

∂xi∂x j
− ∂τi j

∂x j
, (5)

where ui and p are the velocity components and static pressure. ρ and ν denote the density and
kinematic viscosity, respectively. The additional term of τi j arises due the difference between the
filtered product and product of the filtered velocity in the nonlinear term [the second term of Eq. (5)],
which comprise the nonlinear triad interactions between the scales [1]. τi j is the subfilter-scale stress
tensor given by

τi j = uiu j − ui u j . (6)

Leonard [2] expressed the subfilter-scale stress in three components as

τi j = Li j + Ci j + Ri j . (7)

The term Li j is called Leonard subfilter-scale tensor and represents the interactions among the
resolved scales. It is expressed as

Li j = ui u j − ui u j . (8)

The second term, Ci j , represents interactions between the large resolved scales and the small subfilter
scales; thus it is called the cross tensor [3] and is given by

Ci j = uiu′′
j + u′′

i u j − uiu′′
j − u′′

i u j . (9)

Lastly, the term Ri j represents the interaction among the small subfilter scales, similar to the
Reynolds stress tensor, and it is expressed as

Ri j = u′′
i u′′

j − u′′
i u′′

j . (10)
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The Leonard decomposition of Eq. (7) is also preferred for its Galilean-invariant property [4], even
though the individual stresses (Li j, Ci j) are not Galilean invariant [5]. The subfilter-scale stress
tensor τi j is realizable or positive semidefinite if the filter kernel G of Eq. (1) is positive, which
is a necessary and sufficient condition [6]. The top hat and Gaussian filters satisfy this condition,
leading to a realizable subfilter-scale stress tensor. From a theoretical point of view, modeling of
the subfilter-scale stress tensor must retain its basic properties, including the tensor symmetry,
Galilean invariance and realizability. Such a requirement is also based on practical aspects such
as the numerical stability [7].

In the governing equations of LES [Eqs. (4) and (5)], the subfilter-scale stress tensor τi j must
be modeled accurately in order to represent the effects of subfilter scales on the resolved scale
dynamics. An important aspect modeling the subfilter-scale stress tensor is the transfer of kinetic
energy between the resolved and subfilter scales. In a fully developed isotropic turbulence, the
transfer of energy occurs from the resolved scales to the subfilter scales, the mechanism is known
as forward cascade of energy; whereas energy transfer from subfilter scales to resolved scales is
known as backward cascade or backscatter of energy [8,9]. On average, the forward transfer of
energy from resolved scales to subfilter scales is the main phenomenon [10]. The simplest model
for forward energy transfer has been proposed by Smagorinsky [11], which assumes that the effect
of subfilter scales on resolved scales is analogous to molecular diffusion; thus it is modeled in
terms of the subfilter-scale viscosity νs f s, similar to the Boussinesq eddy-viscosity assumption. The
trace-free subfilter-scale stress tensor is expressed as

τi j − 1
3τkkδi j = −2νs f sSi j, (11)

where Si j is the resolved rate-of-strain tensor defined as

Si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (12)

The subfilter-scale viscosity is modeled by using the mixing-length analogy as

νs f s = (Cs�x)2|S|, where |S| = (2Si jSi j )
1
2 . (13)

The derivation of the Smagorinsky model is based on Kolmogorov’s theory of isotropic turbulence
[12]. The filter cutoff length expected to lie in the inertial subrange, where the energy spectra exhibit
the k−5/3 power law, and the kinetic energy is only transferred from the large scales to the small
scales of turbulence. The theoretical value of the proportionality coefficient Cs, also Smagorinsky
coefficient, is ∼0.18, whereas the filter cutoff length �x is analogous to the mixing-length. The
value of the Smagorinsky coefficient is not universal and should change with the flow regimes and
configurations [13–15]; particularly, it should attenuate near a wall and become zero for laminar
flows.

Germano et al. [16] proposed a dynamic procedure to obtain locally varying values of the
Smagorinsky coefficient. In the dynamic procedure, the filtering operation is performed two times.
Let ·̃ denote the second filter of a larger size �̃x. The resolved stress tensor is then given as

Li j = ũiu j − ũĩu j, (14)

which is also known as the Germano identity. It represents an additional contribution to the subfilter-
scale stress due to the second filter of larger cutoff length. For the dynamic procedure, an expression
for the Smagorinsky coefficient Cs that best complies with the Germano identity is proposed by Lilly
[17]:

C2
s = 〈Mi jLi j〉

〈MklMkl〉 , (15)

where

Mi j = 2�2
x
˜|S|Si j − 2�̃2

x |̃S|̃Si j . (16)
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The brackets 〈·〉 indicate an ensemble, time, or space average in order to minimize the error, enabling
the dynamic model to be more stable. The ensemble averaging that was limited to homogeneous flow
directions can be extended to inhomogeneous flows by using the dynamic localization procedure of
Ghosal et al. [18] as well as the Lagrangian formulation of Meneveau, Lund, and Cabot [19]. In
addition to the dynamic estimation of the Smagorinsky coefficient, the model predicts the correct
behavior of the subfilter-scale viscosity in the vicinity of no-slip walls. The Smagorinsky model, on
the contrary, requires a damping function in order to ensure the accurate near-wall behavior.

Nicoud and Ducros [20] proposed a model that exhibits the expected asymptotic behavior in the
near-wall region, where the subfilter-scale viscosity is proportional to the cube of the wall normal
distance [21]. The subfilter-scale viscosity is defined as

νs f s = (Cw�x)2

(
Sd

i jS
d
i j

)3/2(
Si jSi j

)5/2 + (
Sd

i jS
d
i j

)5/4 . (17)

The coefficient Cw takes values between 0.55 and 0.6; where

Sd
i j = SikSk j + 	ik	k j − 1

3 (SmnSmn − 	mn	mn)δi j, (18)

with

	i j = 1

2

(
∂ui

∂x j
− ∂u j

∂xi

)
. (19)

There are numerous modeling attempts to accurately estimate the Smagorinsky constant. Horiuti
[22] proposed a velocity scale based model, where the velocity scale was determined based on
higher-order terms of anisotropic Reynolds stresses. Vreman [23] developed an algebraic framework
to better predict the subfilter-scale viscosity based on fundamental realizability inequality for the
theoretical subfilter-scale dissipation, which was further improved by Park et al. [24] by considering
a global equilibrium between the subfilter-scale dissipation and the viscous dissipation. Recently,
Piomelli, Rouhi, and Geurts [25] proposed and improved [26] a grid-independent definition of the
subfilter-scale viscosity, and based on an integral length scale, which is computed by using turbulent
kinetic energy and its dissipation.

In general, most of the subfilter-scale viscosity models are purely dissipative, i.e., they only
represent the forward cascade of energy. Furthermore, they lead to a perfect alignment between
the subfilter-scale stress tensor and the resolved rate-of-strain tensor, which is unphysical [15,27].
The desired properties of a subfilter-scale model are discussed by Silvis, Remmerswaal, and
Verstappen [28]. The dynamic procedures [16,18,29] to compute the Smagorinsky constant results
in negative subfilter-scale viscosity, a feature considered to represent the backscatter of energy. From
a theoretical point of view, however, the negative dissipation may not be appropriate to represent
the energy backscatter [10]. To better account for the backscatter of energy, in general, a stochastic
term is often considered. For instance, Carati, Ghosal, and Moin [30] modeled the backscatter of
energy in terms of negative subfilter-scale viscosity as well as a stochastic forcing term. However,
as observed by Schumann [31], the stochastic forcing cannot completely describe the nonlinear
interaction between the smallest resolved and largest subfilter scales, which are highly correlated.

The scale similarity models are based on the physical hypothesis that statistical flow structures
are similar at different levels of the scales of motion. Liu, Meneveau, and Katz [32] successfully
verified this hypothesis by using their experiments on jet turbulence and further confirmed that it
persists during rapid straining. The scale similarity the model of Bardina, Ferziger, and Reynolds
[33] assumes that the small resolved scales behave similar to the subfilter scales, and the subfilter-
scale stress tensor constructed from resolved scales must be similar to the actual subfilter-scale
stress tensor. It is expressed in terms of two cutoff levels as proposed by Liu, Meneveau, and
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Katz [32]:

τi j = Cb(ũiu j − ũĩu j ). (20)

The proportionality coefficient Cb is computed dynamically as proposed by Vreman, Geurts, and
Kuerten [34]. The similarity models include the effect of backward cascade of energy and leads
to good correlation with the subfilter-scale stress tensor even in anisotropic flows; however, they
underestimate the dissipation. The forward energy cascade in the similarity model is improved by
adding a subfilter-scale viscosity term, leading to mixed models. Bardina [35] proposed the first
mixed model using a linear combination of the similarity model by using the Smagorinsky model
as

τi j − 1
3τkkδi j = 1

2

(
Li j − 1

3Lkkδi j − 2νs f sSi j
)
. (21)

The scale similarity model of Bardina [35] defines the total subfilter-scale stress tensor in terms of
Leonard subfilter-scale stress tensor [Eq. (8)] by using a single filter cutoff, whereas Liu, Meneveau,
and Katz [32] used two levels of filtering. Nevertheless, the scale-similarity models lead to much
lower dissipation. The mixed models [36–38] use a subfilter-scale viscosity term to counteract the
lower dissipation of the scale similarity models. In an interesting development on the scale similarity
approach, Anderson and Domaradzki [39] separated the scales of turbulence in Fourier space in
order to accurately model the global and interscale energy transfer and associated dissipation. The
model [39] builds on prior investigations of the interscale energy transfer [40,41], where geometrical
relations for the triad interactions were used to define the energy exchange among different wave-
number regions, representing the small-, large-, and mixed-scale dynamics [42]. The dissipation
was improved by suppressing the energy producing terms in the scales (wave-number region) near
the LES filter cutoff, while preserving the characteristics of scale-similarity models. The governing
equations for the large scales were directly solved, whereas the small scales were separately solved
by using the subfilter-scale viscosity formulation of Smagorinsky. The approach was improved by
adapting to the dynamic models [43,44] and direct analytical modeling [45].

The cross and Reynolds subfilter-scale stress tensors [Eqs. (9) and (10), respectively] involve
subfilter turbulence scales, which are inaccessible in an LES; while the Leonard subfilter-scale
stress tensor can be directly computed by using the resolved scales [Eq. (8)]. To incorporate
effects of the interscale energy transfer (both the forward and backward), specifically between the
resolved and subfilter scales, the cross and Reynolds subfilter-scale stress tensors must be accurately
modeled. Zhou [46] analyzed the physical nature of the cross and the Reynolds subfilter-scale
stress tensors. The cross subfilter-scale stress tensor is responsible mainly for the backscatter of
subfilter-scale energy, alongside a partial contribution to the dissipation of energy; on the contrary,
the Reynolds subfilter-scale stress tensor constitutes primarily the dissipation of energy, while it may
contribute partially to the backward transfer of energy [46]. The majority of the subfilter-scale LES
models, including the scale-similarity–based models, fall short to incorporate these mathematical
and physical aspects of the cross and Reynolds subfilter-scale stresses.

In the present article, we first decompose the turbulent flow into linearly uncorrelated scales
of turbulence by performing proper orthogonal decomposition (POD). Second, we express the
subfilter-scale stress tensors (Leonard, cross, and Reynolds) directly in terms of the POD modes.
Lastly, the scale similarity among the high-rank (low-energy) POD modes is assumed, leading to
an accurate representation of the cross and Reynolds subfilter-scale stress tensors. The article is
arranged as follows: Section II presents the mathematical formulation of the POD-assisted subfilter-
scale model. The numerical methods are described in Sec. III, while the results are discussed
in Sec. IV by using two canonical test cases: the turbulent channel flow and decaying isotropic
turbulence. Furthermore, two Appendixes are included in order to demonstrate the convergence of
the results (in Appendix A) and the implementation of the POD algorithm (in Appendix B).
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II. PROPER-ORTHOGONAL-DECOMPOSITION–ASSISTED SUBFILTER-SCALE MODEL

Proper orthogonal decomposition (POD) is based on the two-point velocity correlation and
identifies coherent flow structures containing most energy. Lumley [47] introduced POD to fluid
dynamics for statistical analysis of turbulent flows. For a turbulent velocity field, POD provides an
expansion in terms of orthogonal real basis functions, also called as POD modes. A key property of
the POD expansion is that, for a given number of modes, it is an optimal of all decompositions of
energy measures in terms of quadratic error minimization [48,49]. An instantaneous velocity ui(x, t )
in terms of POD expansion can be expressed as

ui(x, t ) =
∞∑

n=1

φi
n(x)ψ i

n(t ); (22)

where φi
n(x) are the orthonormal POD modes that are invariant in time, whereas ψ i

n(t ) are the
space-invariant POD coefficients or modes. The bi-orthogonality of the POD expansion is explored
by Aubry [50]. The POD space modes are eigenfunctions of the (Fredholm) integral equation [49]∫ ∞

−∞
〈ui(x, t )ui(r, t )〉φi

n(x)dr = λi
nφ

i
n(x), (23)

where λi
n are the corresponding eigenvalues or the modal energies. Let the POD modes be ordered

in decreasing magnitude of λi
n such that λi

1 � λi
2 � · · · � λi

n > 0. Then the low-rank modes,
containing large energy, correspond to the large scales of flow motion; whereas the higher rank
low-energy modes represent small scales of turbulence. The POD and its variants have been
extensively used for identification of the coherent structures in turbulent flows [47,51,52], flow
intermittency events [53], and in the development of reduced-order modeling [54–58].

Poje and Lumley [59] investigated the energy exchange mechanism between different scales
of motion, providing an efficient method to extract coherent flow structures similar to the POD
modes. The POD basis functions are in some sense “characteristic scales of motion” of the flow
[51], and very few POD basis functions constitute most of the turbulent kinetic energy. However, the
high-rank low-energy modes play a key role in accurate description of the flow, which is equivalent
to the LES approach [10,60]. This is in the sense that, first, the large eddies of the flow contain
most of the energy and may not be dissipative, much like the lower POD modes of a POD-Galerkin
system of ordinary differential equations. Second, the smaller eddies must be accounted for their
(mainly) dissipative effect; similarly, the higher POD modes, which also have dissipative effect [61],
are important for the stability of a POD-Galerkin system of equations. Furthermore, the LES and
POD-Galerkin system of equations require, in general, some modeling for the stability of filtered or
truncated system. The filtering operation of Eq. (1) on the velocity can be expressed in terms of the
POD as

ui(x, t ) = ui(x, t ) + u′′
i (x, t ) (24)

=
Ni

c∑
n=1

φi
n(x)ψ i

n(t ) +
∞∑

n=Ni
c+1

φi
n(x)ψ i

n(t ), (25)

where Ni
c stands for the highest POD modes representing the resolved scales of motion. For

decreasing size of the filter cutoff length, i.e., �x → 0, Ni
c → ∞, whereas the subfilter contribution

u′′
i (x, t ) → 0 and the resolved part ui(x, t ) → ui(x, t ). Although the modes ψ i

n(t ) are space invari-
ant, the space filtering implicitly induces a time filtering due to the dynamics of the Navier-Stokes
equations; it is conversely true for the time filtering, which induces an implicit space filtering [10].

The Leonard subfilter-scale stress tensor Li j of Eq. (8), the cross subfilter-scale stress tensor Ci j

of Eq. (9) and the Reynolds subfilter-scale stress tensor of Eq. (10) can be expressed in terms of the
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POD expansion of the resolved and subfilter-scale velocities from Eqs. (24) and (25), in symbolic
form, as

Li j =
Ni

c∑
n=1

N j
c∑

m=1

(
φi

nφ
j
m − φi

nφ
j
m
)
ψ i

nψ
j

m, (26)

Ci j =
⎛⎝ Ni

c∑
n=1

∞∑
m=N j

c +1

+
∞∑

n=Ni
c+1

N j
c∑

m=1

⎞⎠(
φi

nφ
j
m − φi

nφ
j
m
)
ψ i

nψ
j

m, (27)

Ri j =
∞∑

n=Ni
c+1

∞∑
m=N j

c +1

(
φi

nφ
j
m − φi

nφ
j
m
)
ψ i

nψ
j

m. (28)

The Leonard subfilter-scale stress tensor of Eq. (26) can be estimated directly by using resolved
POD modes; however, the cross subfilter-scale stress tensor [Eq. (27)] must be modeled partially
for the contribution of the POD modes with characteristic length scales smaller than the filter
cutoff, whereas the Reynolds subfilter-scale stress tensor [Eq. (28)] requires complete modeling.
The contribution of higher POD modes in the cross and Reynolds subfilter-scale stresses can be
represented in terms of the highest resolved POD modes, φi

Ni
c
(x, t ).

Anderson and Domaradzki [39] considered separation of turbulence scales in Fourier space,
dividing the flow energy spectrum in three discrete wave-number regions: smallest, intermedi-
ate, and largest. The nonlinear convection terms of Navier-Stokes equations were conveniently
expressed in terms of the wave-number regions, categorizing their roles in the interscale energy
transfer. The largest wave-number region was assumed to be the unresolved range of scales due to a
spectral filtering operation, while retaining only the terms that comprised resolved wave-number
regions (smallest and intermediate). Furthermore, based on the scale similarity assumption, the
energy production in the intermediate wave-number region was removed to balance the effect of
subfilter-scale turbulence. For the homogeneous flow directions, where the POD modes coincide
with the Fourier modes [61], the two scale separation approaches (POD and Fourier decomposition)
share some similarity, in addition to the assumption of the scale similarity of turbulence for the
subfilter-scale turbulence modeling. There are several aspects (which are not elaborated here for
brevity), however, where the two approaches differ; for instance, the binning of scales, model
symmetry, and modeling of the energy exchange between the resolved and subfilter scales.

The total kinetic energy associated with the subfilter-scale POD modes is

Ks f s = 1

2

∑
i

⎛⎝ ∞∑
n=Ni

c+1

λi
n

⎞⎠. (29)

In general, turbulent systems have high regularity, i.e., an instantaneous wave-number spectrum
decays rapidly [62]. The tail of the wave-number spectrum in turbulence decays exponentially (see
Tennekes and Lumley [63]). Berkooz, Holmes, and Lumley [48] established a connection between
the tail of the wave-number spectrum and tail of the eigenvalues of POD, and showed that the tail
of the POD eigen-spectrum decays faster than any other basis due to the maximization of energy
principle of the POD. However, the regularity results are relevant to the far dissipative range of
turbulence or the very high order of POD modes [64]. Couplet, Sagaut, and Basdevant [60] describe
the global features of energy transfers between the POD modes in a turbulent flow. The transfer
of energy between the POD modes is local, similar to the local exchange of energy between the
Fourier modes [65,66]. Furthermore, Couplet, Sagaut, and Basdevant [60] confirm the local forward
and backward transfer of energy in time and space, in addition to the overall forward transfer of
energy, in the mean sense, from the low-rank to high-rank POD modes. The effective forward
transfer (drain) of the modal energy can be obtained in terms of the POD eigenvalues. Assuming the
scale similarity between the highest resolved and subfilter-scale POD modes, the drain of the modal
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energy at the filter cutoff can be expressed in terms of a ratio, βi, as

βi =
λi

Ni
c

λi
Ni

c−1

, (30)

which is further assumed to be constant for the subfilter-scale (higher rank) POD modes. The energy
contribution of the higher POD modes, n > Nc, can be approximated in terms of the coefficients, αi,
defined as

αi =
⎛⎝1 +

∞∑
n=Ni

c+1

βi
(n−Ni

c )

⎞⎠1/2

. (31)

The amount of modal energy associated with a mode of rank n with respect to its lower rank mode
n − 1 is assumed to be constant for all the subfilter-scale modes, in terms of a constant value of the
parameter βi. The cross and Reynolds subfilter-scale stresses can be approximated as

Ci j ≈ α j

Ni
c∑

n=1

(
φi

nφ
j

N j
c
− φi

nφ
j

N j
c

)
ψ i

nψ
j

N j
c
+ αi

N j
c∑

m=1

(
φi

Ni
c
φ

j
m − φi

Ni
c
φ

j
m
)
ψ i

Ni
c
ψ

j
m, (32)

Ri j ≈ αiα j
(
φi

Ni
c
φ

j

N j
c
− φi

Ni
c
φ

j

N j
c

)
ψ i

Ni
c
ψ

j

N j
c
. (33)

The ensemble averaging used in Eq. (23) can be substituted with a time averaging under the
assumption of the ergodicity of flow [61]. Regardless of the ergodicity of flow, the time averaging
can be used to obtain the POD modes provided that it converges and satisfies the conditions of the
Hilbert-Schimidt and Mercer theorems [61]. There are two difficulties while solving Eq. (23): first,
performing such an averaging during a LES is not possible due to the inaccessibility of the future
time solutions and, second, the number of degrees of freedom of the space correlation matrix can
be very high, which equals the square of the number of computational grid points. To remedy this,
the POD modes can be obtained by the snapshot method proposed by Sirovich [67], where a set
of time solutions is used to compute a temporal correlation and an analogous integral equation is
solved for the eigenvalue problem. Traditionally, POD has been employed for eduction of the large
coherent flow structures and modes that represent the global statistics of a system, thus the ensemble
averaging over homogeneous directions of flow as well as the long-time statistical averaging are
regularly implemented. However, in the context of subfilter-scale dynamics, our interest lies in the
highest resolved POD modes and short-time evolving dynamics. Thus a short-time snapshot POD
is anticipated to provide the transient energy contribution of the subfilter-scale modes via Eqs. (30)
and (31), by substantially reducing the cost of POD.

The subfilter-scale stresses [Eqs. (26), (32), and (33)] require application of the filtering operation
twice. As anticipated by Germano [68], a multiple level short-time filtering should lead to a local
statistics of the turbulence, analogous to the wavelet analysis that provides a local spectral picture
of the flow. To complement the requirement of the snapshot POD, namely, caching a set of time
solutions, a continuous causal filter of the form [69]

ϕ̃(x, t ) =
∫ t

−∞
ϕ(x, t − t ′)G(t ′,�t )dt ′, (34)

can be conveniently used. The characteristic cutoff time, �t , is equivalent to the space filter cutoff
�x. Furthermore, it is uniform in the space and can be estimated based on a turnover time of the
highest resolved POD mode, ψ i

Ni
c
(t ). The kernel

G(t,�t ) = 1

�t
H (t + �t ), (35)
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where H (t ) is the Heaviside function, leads to

ϕ̃(x, t ) = 1

�t

∫ t

t−�t

ϕ(x, t ′)dt ′. (36)

The temporal filtering, in general for Navier-Stokes equations, results in frame-invariant veloc-
ity under the Galilean group of transformations [69]; in the context of LES, it is also true
for the subfilter-scale velocity [70]. However, the subfilter-scale velocity is not frame-invariant
under the Euclidean group of transformations [70]; unlike for the spatially filtered LES [5].
Applying the causal filter and rearranging [Eqs. (26), (32), and (33)] leads to the subfilter-scale
stress tensor of Eq. (7):

τi j ≈
Ni

c∑
n=1

N j
c∑

m=1

(˜
ψ i

nψ
j

m − ψ̃ i
nψ̃

j
m
)
φi

nφ
j
m︸ ︷︷ ︸

Li j

+α j

Ni
c∑

n=1

( ˜

ψ i
nψ

j

N j
c
− ψ̃ i

nψ̃
j

N j
c

)
φi

nφ
j

N j
c
+ αi

N j
c∑

m=1

( ˜

ψ i
Ni

c
ψ

j
m − ψ̃ i

Ni
c
ψ̃

j
m
)
φi

Ni
c
φ

j
m︸ ︷︷ ︸

Ci j

+αiα j
( ˜

ψ i
Ni

c
ψ

j

N j
c
− ψ̃ i

Ni
c
ψ̃

j

N j
c

)
φi

Ni
c
φ

j

N j
c︸ ︷︷ ︸

Ri j

. (37)

The exact expressions of the Leonard [Eq. (26)], cross [Eq. (27)], and Reynolds [Eq. (28)]
subfilter-scale stresses in terms of the POD modes preserve the realizability of the total subfilter-
scale stress tensor (τi j). Similar to the statistically averaged Reynolds stress tensor, which is also
a positive-semidefinite (or realizable) tensor [71], the subfilter-scale tress tensor must satisfy the
following inequalities for the realizability [6]:

τii � 0, (38)

τ 2
i j � τiiτ j j, (39)

det
(
τi j

)
� 0. (40)

The ratio of eigenvalues βi [Eq. (30)] is always in 0 < βi � 1, consequently, the coefficients αi

[Eq. (31)] are always >1, which retains the non-negativity of the trace of subfilter-scale stress tensor.
Thus, the modeling of subfilter-scale stress [Eq. (37)] in terms of the highest resolved POD modes
and the model parameters βi and αi still guarantees the first inequality [Eq. (38)]. However, it is a
necessary but not sufficient condition for the realizability.

III. NUMERICAL METHOD

The governing flow equations (4) and (5), are solved by using a collocated finite-volume solver
[72,73] (see code-saturne.org). A second-order central time marching of the incompressible Navier-
Stokes equations is achieved by using the Crank-Nicolson scheme [74], which is similar to the
SIMPLEC algorithm [75]. The time step is constant in time and uniform in space. A fractional step
scheme is used to solve the mass and momentum equation (refer to Chorin [76]), which includes a
prediction step for the velocity components with an explicit pressure gradient, a pressure correction
step by solving the Poisson equation with a conjugate gradient method, and enforcing the mass
conservation. The interpolation of Rhie and Chow [77] is used when solving the pressure to avoid
oscillations, which introduces some numerical dissipation, removing energy equally at all wave
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numbers. This interpolation [77] has a stabilizing effect for nonuniform grids, preventing the odd-
even decoupling phenomenon in the solver that is otherwise kinetic-energy conserving [78]. The
subiterations on the predictor-corrector algorithm for the pressure or velocity coupling alongside
the Rhie and Chow [77] interpolation improve the convergence and, to some degree, the kinetic-
energy conservation. The convection-diffusion terms are spatially discretized by using a second-
order centered scheme. The linear system for the velocity is solved by means of Gauss-Seidel,
whereas the gradient reconstruction is performed by using a robust iterative process, achieving the
solver precision of 10−8 in all simulations.

Numerical discretization of the Navier-Stokes equations introduces spatial and temporal scales
associated with the computational grid and time stepping, which are supposed to be much smaller
compared with the cutoff length scale of an LES filter [see, e.g., Eq. (1)] to ensure a smaller
discretization error. The decoupling of the filter cutoff length from the discretization scales, also
called prefiltering [79], require explicit filtering [80–83], which is computationally expensive.
Therefore it is practical to consider the filter cutoff length equivalent to the grid size. The top-hat
filter [Eq. (3)] is compatible with the finite-volume discretization [84]. To reduce the computational
cost, it is useful to define filters with varying cutoff length, for example, near the no-slip walls or
in the region of solution with steep gradients. However, it is inconsistent with the homogeneity and
isotropy assumptions, which leads to nonzero commutation errors for the filtering and differentiation
operations. A general definition in terms of change of variable enables the use of homogeneous
filters, which commute at the second order with the differentiation [10,85]. The properties of the
top-hat filter for inhomogeneous cases, where the filter cutoff length varies in space, are described
by Ghosal and Moin [85].

As discussed in Sec. I, the dynamic Smagorinsky model uses an explicit second filter or a test
filter with a larger cutoff length. In the present flow solver, the default size of the test filter is twice
that of the computational grid size. The averaging of the numerator and denominator in Eq. (15),
in a general case, is performed locally over the extended neighboring grids (grids that share at least
one vertex with the considered grid cell). The trace of the subfilter-scale stress tensor, 1

3τkk , is added
to the pressure term. The dynamic computation of the Smagorinsky constant may lead to negative
values of the total viscosity (ν + νs f s), which is avoided by clipping the negative values to zero.

The subfilter-scale stress term, − ∂τi j

∂x j
, of Eq. (5) must be solved directly in the proposed POD-

assisted formulation. To be consistent with the convection-diffusion terms and preserve the time
convergence, the subfilter-scale stress term is also discretized by using the second-order scheme.
The cutoff size �t of the causal temporal filter in Eq. (36) is estimated by using the temporal modes,
ψ i

Ni
c
(t ). A simple time-correlation provides the three values of the turnover time corresponding to the

three velocity components, and the minimum value is selected as the cutoff �t . The flow solutions
are collected over this time (�t ) to perform the short-time snapshot POD. Thus, the number of
snapshots approximates the ratio of the cutoff time to the simulation time step. Most importantly,
the resolved POD modes satisfy

λi
n = 〈

ψ i
n

2〉
�t

, (41)

which leads to the cutoff POD mode number, Ni
c. The short-time snapshot-POD procedure is

discussed in more detail in Appendix B.

IV. RESULTS AND DISCUSSION

In this section, we present the results of simulations performed using the proper orthogonal
decomposition assisted subfilter-scale model for two canonical cases: turbulent channel flow and
decaying isotropic turbulence. The results for the turbulent channel flow are discussed in comparison
with the direct numerical simulations (DNS) as well as the dynamic Smagorinsky (DSM) and
wall-adapting local eddy-viscosity (WALE) models. The classical experiment of Comte-Bellot and
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TABLE I. Simulation details.

Model Reb uτ �x+ �y+
w �y+

c �z+

DNS 10000 0.054450 8.90 ≈0.0027 4.53 5.01
DSM 9839 0.054469 35.64 0.5447 8.357 13.37
WALE 9961 0.054119 35.42 0.5412 8.304 13.28
PODA 9508 0.054429 35.62 0.5443 8.351 13.36

Corrsin [86] on isotropic decaying turbulence is also simulated by using the three LES models in
Sec. IV B.

A. Turbulent channel flow

Turbulent channel flow at Reynolds number Reb ≈ 10 000 (Reτ ≈ 544) is simulated by using
the presented POD-assisted (PODA) model. Reb and Reτ are the Reynolds numbers based on the
bulk velocity ub and friction velocity uτ , respectively, as well as the channel height h. The bulk and
friction velocities are defined as

ub ≡ 1

h

∫ h

0
〈ux〉dy and uτ ≡

√
τw/ρ, (42)

respectively, where τw is the wall shear stress. The channel dimensions are 4πh, 2h, 3πh/2 in the
streamwise X , wall normal Y , and spanwise Z directions, respectively. The boundaries normal to
the Y direction are assigned with a no-slip wall condition, while the flow is periodic in the other
two, streamwise X and spanwise Z , directions. The mean flow is in the +X direction, which is
maintained by a body force in terms of the mean pressure gradient as [1]

−d p

dx
= ρu2

τ

h
. (43)

The computational domain is discretized by using 192, 308, and 192 finite volumes in the X , Y ,
and Z directions, respectively. The mesh is uniform in the X and Z directions. In the Y direction,
the first mesh point is placed such that the nondimensional wall distance, y+ = yuτ /ν, remains less
than unity; while the mesh is stretched away from the no-slip wall by using geometric progression
with a growth ratio of 1.02.

The flow configuration of the channel is adopted from the DNS database of Lee and Moser [87]
for the same Reynolds number. The first row of Table I provides more details of the DNS, where
�x+ and �z+ are the nondimensional mesh resolutions in the X and Z directions, respectively. The
wall unit quantities, throughout the article, that are indicated by superscript “+” are normalized
by using the friction velocity uτ and kinematic viscosity ν. In the DNS, the distance of the first
computational point away from the no-slip wall (in wall units) is �y+

1 ≈ 0.000 27, whereas the mesh
resolution at the center of the channel in the Y direction is �y+

c = 4.53. The kinematic viscosity ν

and friction velocity uτ in the DNS are 1 × 10−4 m2/s and uτ = 5.434 96 × 10−2 m/s, respectively.
The simulations are performed by using the three LES models (DSM, WALE, and PODA) for

approximately 240 flow passes through the channel, after the initial transient, ensuring a converged
statistics. Further details on the results convergence are provided in Appendix A. The statistics are
gathered along the wall normal direction, between y = 0 and y = h, at the midpoint of the channel
(x = 2πh, z = 3πh/4). Rows 2, 3, and 4 of Table I provide details of the simulations performed
by using the DSM, WALE, and PODA models, respectively, in terms of the bulk Reynolds number,
friction velocity, and mesh resolutions in the wall units. Although the simulations for the three LES
models (DSM, WALE, and PODA) are performed on the same mesh, the mesh resolution in wall
units differ (Table I) to some degree due to the difference in friction velocity uτ predictions, which
are within ≈0.03% of the relative error compared with the friction velocity for the DNS.
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FIG. 1. Comparison of time-averaged streamwise velocity and Reynolds stresses. (a) Time-averaged
streamwise velocity. (b) Reynolds stress component comprising the x velocity fluctuations. (c) Reynolds stress
component comprising the y velocity fluctuations. (d) Reynolds stress component comprising the z velocity
fluctuations. (e) Reynolds stress component comprising the x and y velocity fluctuations.

The time-averaged flow statistics in terms of the streamwise velocity and Reynolds stresses is
presented in Fig. 1. The mean streamwise velocity 〈ux〉+ profiles that are predicted by the three
models, Fig. 1(a), are in a reasonable agreement with the DNS results. The WALE subfilter-scale
viscosity model tends to over predict the mean velocity at about y+ ≈ 40, whereas the PODA
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TABLE II. Comparison of central processing unit (CPU) time.

DSM WALE PODA

1.0 0.83 1.12

model, to some degree, under predicts the mean velocity for y+ � 100. The Reynolds stress
component 〈u′

xu′
x〉+, Fig. 1(b), is well predicted by the three models; however, the profiles show

some discrepancies in the buffer region (10 � y+ � 40) as well as the y+ � 100 region of the
boundary layer. The 〈u′

yu′
y〉+ and 〈u′

zu
′
z〉+ components of the Reynolds stress tensor, displayed in

Figs. 1(c) and 1(d), respectively, are better captured by the PODA when compared with the DSM
and WALE models. Lastly, the deviatoric component 〈u′

xu′
y〉+, Fig. 1(e), predicted by the PODA and

WALE models show a good agreement with the DNS profile, while DSM slightly overpredicts the
values for 10 � y+ � 100.

A comparison of the computational cost among the DSM, WALE, and PODA models is provided
in Table II. The speed-ups for the WALE and PODA models with reference to the DSM are 0.83
and 1.12, respectively. The central processing unit (CPU) time for the PODA model can be reduced
by lowering the disk input-output overhead of the flow solutions that is required for the on-the-fly
snapshot POD.

The one-dimensional energy spectra of the streamwise velocity along the spanwise direction
are shown in Fig. 2, where the spectra are normalized by u2

τ . The longitudinal energy spectra at
y+ = 541 that are predicted by the three models in comparison with the DNS spectrum are shown in
Fig. 2(a), while the spectral comparison at y+ = 18.11 is displayed in Fig. 2(b). The energy spectra
near the center of channel (y+ = 541), Fig. 2(a), exhibit the −5/3 behavior for the wave-number
range 10 � kzh � 50, indicating the inertial subrange [1]. The implicit filter (numerical grid) cutoff
for the three LES models is at kzh = 128, which is towards the higher end (in terms of the wave
number) of the inertial subrange. The spectra predicted by the DSM and WALE model show lower
energy levels when compared with the PODA spectrum, particularly near the filter cutoff (kzh � 40).
The energy spectra in the near-wall buffer region (at y+ = 18.11) exhibit relatively shorter inertial
subrange (30 � kzh � 50), as shown in Fig. 2(b). The higher magnitudes of 〈u′

xu′
x〉+ for the WALE

and PODA models in the buffer region [Fig. 1(b)] are also reflected in the energy spectra of Fig. 2(b),
where the WALE and PODA models exhibit higher energy for kzh � 30 when compared with the
DNS and DSM spectra.
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FIG. 2. Energy spectra of the streamwise velocity component along the spanwise direction (a) near the
center of the channel (at y+ = 541) and (b) in the buffer region (at y+ = 18.11).
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FIG. 3. Time-averaged energy transfer between the resolved and subfilter-scales. (a) Total energy transfer
to subfilter-scales. (b) Forward and backward energy transfer.

The transfer of energy from the resolved scales to the subfilter-scales is given as

Ps f s = −τi jSi j, (44)

which is also known as the production of subfilter-scale energy. For the LES filter cutoff in the
inertial subrange, the time-averaged Ps f s equals the dissipation of kinetic energy, which is positive
only; however, it can become negative instantaneously due to inviscid, inertial processes [1]. The
time-averaged subfilter-scale production of kinetic energy for the three models is shown in Fig. 3(a),
where the normalized production is obtained by 〈Ps f s〉+ = 〈Ps f s〉ν/u4

τ . In the limit y+ → 0, the
resolved rate-of-strain tensor Si j follows O(1) [20], whereas the elements of subfilter-scale stress
tensor τi j exhibits different power laws based on the velocity components, leading the subfilter-scale
energy production to follow O(y+3).

The three LES models, as shown in Fig. 3(a), exhibit the accurate near-wall behavior by following
the O(y+3) power law; however, the DSM and WALE models produce much higher subfilter-scale
energy compared with the PODA model. In the log-layer region, y+ � 30, the DSM and WALE
models produce the subfilter-scale energy at approximately the same order of magnitude, whereas
in the near-wall region the DSM is more dissipative compared with the WALE and PODA. The DSM
and WALE models are purely dissipative, as they only account for the transfer of energy from the
resolved scales to subfilter scales in terms of the subfilter-scale viscosity νs f s. As noted before, the
production of subfilter-scale energy can be negative instantaneously, leading to backward transfer
of energy from the subfilter-scales to the resolved scales. The DSM model predicts negative values
for the Smagorinsky constant, an indication of the backward transfer of energy from the subfilter-
scales; however, from a theoretical point of view the backward energy cascade is not associated with
the negative subfilter-scale viscosity [10]. Furthermore, the negative values of the subfilter-scale
viscosity are clipped to avoid the negative value of total viscosity (ν + νs f s) and possible numerical
instability.

The PODA model exhibits a considerable amount of backward transfer of energy, an observation
consistent with the theoretical work of Chasnov [9] as well as the DNS results of Piomelli et al.
[88] and Domaradzki, Liu, and Brachet [40], which show that the backscatter and forward cascade
of energy are of the same order magnitude, resulting in lower values of the time-averaged effective
production of the subfilter-scale energy [Fig. 3(a)]. Figure 3(b) shows the time-averaged forward and
backward transfer of energy, denoted by 〈Ps f s〉+F and 〈Ps f s〉+B , respectively. The peaks of the forward
and backward energy transfer occur in the buffer region at y+ ≈ 12, which is also the region of peak
turbulent kinetic energy; similar results were obtained by Piomelli et al. [88] for the channel flow at
a lower Reynolds number Reb = 3300, where the peaks of forward and backward transfer of energy
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FIG. 4. Instantaneous energy transfer between the resolved and subfilter-scales. (a) Instances of subfilter-
scale production, P+

s f s. (b) Instantaneous subfilter-scale production, P+
s f s.

were observed also at y+ ≈ 12. Here, the backscatter of energy 〈Ps f s〉+B constitutes nearly 75% of
the forward transfer 〈Ps f s〉+F in the log-layer, which further increases for increasing wall distance,
leading to ≈85% towards the center of the channel. In the buffer layer region the backward energy
transfer is approximately 65% of the forward energy transfer, which decreases to 55% for y+ ≈ 10;
however, this percentage increases for further decrease in the wall normal distance, which tends to
≈65% near the wall. The ratio 〈Ps f s〉+F /〈Ps f s〉+B behaves like O(y+0.15) in the near-wall region (for
y+ � 10). Figure 4 shows the instantaneous production of the subfilter-scale energy, P+

s f s, along the
wall normal distance [Fig. 4(a)] and in the vertical mid-planes [Fig. 4(b)] of channel, where the
instantaneous production shows peaks of positive and negative values near the buffer layer region.

The LES subfilter-scale models that are based on the dissipation of kinetic energy from
the resolved scales to subfilter-scales entail the filter cutoff to be in the inertial or dissipative
range of the energy spectrum. However, it is desired to use a large filter cutoff length and
incorporate only the large scales of motion in order to reduce the computational cost. The construct
of the PODA model is based on the similarity among the scales near the filter cutoff, allowing the
use of larger filter cutoffs. Here we consider a filter cutoff that is ≈20% larger than the small filter;
the small filter cutoff corresponds to mesh M1 in Table III, whereas the larger one corresponds to
mesh M2. Table III provides more details on the mesh resolution and friction velocity estimates.
The values of friction velocity for the meshes M1 and M2 are 5.4429 × 10−2 and 5.4157 × 10−2,
respectively; for the nominal mesh M2, it leads to a mesh resolution of �x+ = 42.54, �y+

c = 13.76,
and �z+ = 15.95.

The time-averaged flow statistics in terms of the streamwise velocity and Reynolds stresses for
the two grids are compared with the DNS results in Fig. 5, where the model predictions for the
nominal mesh M2 are reasonable. The time-mean streamwise velocity 〈ux〉+, Fig. 5(a), for the

TABLE III. Details of the two mesh resolutions.

Mesh Reb uτ �x+ �y+
w �y+

c �z+

M1 9508 0.054429 35.62 0.5443 8.351 13.36
M2 9535 0.054157 42.54 0.5415 13.76 15.95
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FIG. 5. Mean flow and Reynolds statistics for the two mesh resolutions. (a) Time-averaged streamwise
velocity. (b) Reynolds stress component comprising the x velocity fluctuations. (c) Reynolds stress component
comprising the y velocity fluctuations. (d) Reynolds stress component comprising the z velocity fluctuations.
(e) Reynolds stress component comprising the x and y velocity fluctuations.

nominal mesh M2 shows a good agreement with the finer mesh M1 and DNS profiles. The diagonal
components of the Reynolds stress tensor 〈u′

iu
′
i〉+, Fig. 5(b) through Fig. 5(d), for the nominal mesh

M2 exhibit minor discrepancies, particularly in the buffer layer region when compared with the finer
mesh M1 as well as DNS profiles. The deviatoric component 〈u′

xu′
y〉+ of Fig. 5(e), on the other hand,

manifests a good agreement between both the mesh resolutions as well as with the DNS profile.
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FIG. 6. Comparison of the energy spectra and subfilter-scale energy production for the two mesh resolu-
tions. (a) Spanwise energy spectra of the streamwise velocity at y+ = 541. (b) Time-averaged subfilter-scale
energy production.

The energy spectra of the streamwise velocity in the spanwise direction at y+ = 541 for the two
mesh resolutions (Table III) are shown in Fig. 6(a). The filter cutoff for the meshes M1 and M2
correspond to the spanwise wave numbers of kzh = 128 and kzh = 106.67, respectively, compared
with kzh ≈ 341 for the DNS. However, for both the mesh resolutions, the filter cutoffs lie towards
the higher end (in terms of the wave number) of the inertial subrange [Fig. 6(a)]. The normalized
energy spectra [Fig. 6(a)] for both the mesh resolutions show a reasonable agreement with the DNS
energy spectrum, with some under-prediction of energy towards the lower and higher ends of (the
LES) spectra.

The time-averaged production of subfilter-scale energy, 〈Ps f s〉+, for the two filter cutoff cases is
shown in Fig. 6(b). In addition to the PODA model, the figure includes a comparison of the subfilter-
scale energy production for the two mesh resolutions for the DSM. The subfilter-scale production
follows the near-wall y+3 power law for both the mesh resolutions. As anticipated, the subfilter-scale
production increases for increasing filter cutoff size, i.e., for the nominal mesh, particularly in the
log-layer region (y+ � 10). In general, a similar trend is observed for the DSM, where the nominal
mesh M2 results in, to some degree, higher production of subfilter-scale energy [Fig. 6(b)].

As discussed before, the causal filter in Eq. (36) applies a temporal cutoff equivalent to the
spatial filter cutoff due to the spatiotemporal properties of Navier-Stokes equations. The temporal
filter cutoffs equivalent to the spatial filter cutoffs associated with the two mesh resolutions M1
and M2 are provided in Table IV. The size of the causal filter cutoff 〈�t 〉+, normalized by ν/u2

τ ,
increases for the nominal mesh M2 compared with the finer mesh M1. The energy ratio of the

TABLE IV. Effect of mesh resolution (filter size) on the model parameters.

M1 M2

〈�t 〉+ 1.0369 1.3492

〈βx〉 1.56 × 10−5 2.19 × 10−5

〈βy〉 2.74 × 10−3 3.03 × 10−3

〈βz〉 2.68 × 10−3 3.25 × 10−3

〈αx〉 1 + 1.76 × 10−6 1 + 1.32 × 10−5

〈αy〉 1 + 1.27 × 10−3 1 + 1.29 × 10−3

〈αz〉 1 + 1.24 × 10−3 1 + 1.41 × 10−3
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highest (low-energy) resolved POD modes, i.e., βi of Eq. (30), and the modal coefficient αi increase
(Table IV) for the nominal mesh M2 when compared with the finer mesh M1.

The total subfilter-scale stress as well as the individual subfilter-scale stresses (Leonard, cross
and Reynolds tensors) are functions of both the space and time, representing local and global
complex interactions among the turbulence scales [1,32]. Thus the subfilter-scale model coefficients
are desired to be a function of local flow variables, varying in space and time such that the model
is applicable for flows involving inhomogeneous directions and/or complex geometries [18,19].
The mathematical formulation of PODA model naturally ensures the local-global and space-time
properties of the subfilter-scale stress tensors, because of the scale similarity of turbulence. However,
the absolute time-local nature of the PODA model is, to some extent, compromised due to the short-
time snapshot POD procedure. The time locality is restricted to the turnover time of smallest eddies,
corresponding to the highest resolved (low-energy) POD modes. The estimation of subfilter-scale
stress tensor [Eq. (37)] comprises all resolved POD modes, incorporating the effect of global and
local flow scales, which span across the entire domain as well as evolve in time. Importantly, the
transfer of energy between the resolved and subfilter scales is modeled in terms of the POD modal
energies λi, which are global in space and local (or rather pseudolocal due to the short-time snapshot
POD) in time; the transfer of energy is local in space, because it follows the spatial support of the
POD modes, as well as time.

The highest resolved or cutoff POD modes (φi
Ni

c
, ψ i

Ni
c
) are crucial for the modeling of the cross

and Reynolds subfilter-scale stresses, as described in Sec. II. Figure 7 displays the highest resolved
POD space and time modes for an arbitrary state in the LES simulation, where the orthonormal
POD space modes for the streamwise (φu

Nu
c
), wall normal (φv

Nv
c
), and spanwise (φw

Nw
c

) components of
velocity are shown in Figs. 7(a)–7(c), respectively. The corresponding orthogonal POD time modes
(ψ i

Ni
c
) are shown in Fig. 7(d), where they are normalized by the square root of their corresponding

eigenvalues. At this arbitrary state, the turnover time (�t ) and temporal evolution of the time POD
modes ψv

Nv
c

and ψw
Nw

c
are indistinguishable [Fig. 7(d)], indicating a very similar temporal evolution of

the flow structures that correspond to the spatial POD modes φv
Nv

c
and φw

Nw
c

, respectively; however, the
energy contribution of the individual POD mode may differ. On the other hand, the turnover time of
ψu

Nu
c

(the cutoff time POD mode of the streamwise velocity) is approximately double when compared

with ψv
Nv

c
and ψw

Nw
c

modes [Fig. 7(d)], indicating slower temporal evolution of the corresponding flow
structures at the filter cutoff. Although this is a short-time flow dynamics, the proper orthogonal
decomposition dictates the separation of scales as well as the time invariance of φi

Ni
c

and space

invariance of ψ i
Ni

c
over the time duration of �t . More details on the short-time snapshot POD in

a parallel computing environment as well as a procedure to estimate the highest resolved POD
modes and corresponding eddy turnover time are provided in Appendix B, where the high-energy
lower-rank POD modes are also presented.

The necessary statistical properties of the total subfilter-scale stress tensor are laid out in
Meneveau [89] in terms of the real (filtered) flow and subfilter-scale stress tensor. The time-averaged
total subfilter-scale tensor 〈τi j〉+ as well as the Leonard 〈Li j〉+, cross 〈Ci j〉+, and Reynolds 〈Ri j〉+
subfilter-scale stress tensors are displayed in Fig. 8. The total subfilter-scale stress tensor of Fig. 8(a)
exhibits a close similarity with the Reynolds stress tensor obtained by using the time-averaging
filter [Figs. 1(b)–1(e)], in terms of the profiles, relative magnitudes and the peak locations of the
stresses. On the contrary, the DSM and WALE models do not exhibit such similarity for all the stress
components (not shown). As anticipated, the diagonal terms of the Leonard (〈Lii〉+) and Reynolds
(〈Rii〉+) subfilter-scale stress tensors mainly contribute to the diagonal terms 〈τii〉+ of the total
subfilter-scale stress tensor, whereas the cross subfilter-scale stress component 〈C12〉+ [Fig. 8(d)]
predominantly contributes to the off-diagonal term 〈τ12〉+. The space or time integration of the
diagonal stresses of cross subfilter-scale stress tensor must be zero due to the bi-orthogonality of the
POD modes [50].
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FIG. 7. The highest resolved POD modes at a time instance: (a) φu
Nu

c
, (b) φv

Nv
c
, (c) φw

Nw
c

, (d) ψ i
Ni

c
.

The scale similarity models are known for their appropriate behavior in different flow regimes.
For instance, in the near-wall region, it is desired to have correct near-wall scaling of the modeled
subfilter-scale stresses; particularly, the most relevant component, τ12 [16,90]. The near-wall scaling
for the components of exact subfilter-scale stress tensor can be obtained by performing a Taylor-
series expansion of the velocity in the wall normal direction, which leads to

τ11 ∼ y2, τ22 ∼ y4, τ33 ∼ y2, τ12 ∼ y3, τ13 ∼ y2, τ23 ∼ y3. (45)

As discussed in Liu, Meneveau, and Katz [32], the DSM exhibits accurate near-wall scaling only
for τ12 and τ23, predicting inaccurate near-wall behavior for the other components of subfilter-scale
stresses. The near-wall behavior of the PODA model in terms of τ11, τ22, τ33, and τ12 is shown
in Fig. 8(e), where the subfilter-scale stresses exhibit the accurate near-wall scaling of Eq. (45).
Similarly in the other regions of the flow, the PODA model is expected to manifest good correlations
with the exact subfilter-scale stress tensor.

In the scale similarity model of Bardina [35], the subfilter-scale stress tensor has been modeled
by using a Leonard subfilter-scale stress like term [which becomes Leonard subfilter-scale stress of
Eq. (8) for uiu j ≈ uiu j], ignoring the cross and Reynolds subfilter-scale stresses. The model locally
led to better correlations with actual subfilter-scale stresses, but did not dissipate energy, promoting
the development of mixed models [1,35]. The PODA model leverages the properties of POD, where
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FIG. 8. Time-averaged components of subfilter-scale stress tensors and the near-wall scaling of total
subfilter-scale stress tensor. (a) Total subfilter-scale stresses. (b) Leonard subfilter-scale stresses. (c) Cross
subfilter-scale stresses. (d) Reynolds subfilter-scale stresses. (e) Near-wall scaling of the total subfilter-scale
stresses.

the flow is decomposed into linearly uncorrelated modes, leading to better capturing of the cross and
Reynolds subfilter-scale stresses in terms of POD modes. As shown in Fig. 8, the cross subfilter-
scale stress mainly contributes to the deviatoric components of the total subfilter-scale stress, while
Reynolds subfilter-scale stress represents a significant fraction of the total subfilter-scale stress.
Consequently, the PODA model appears to be dissipative enough to accommodate the large energy
backscatter of Figs. 3(b) and 4.

014605-20



PROPER ORTHOGONAL DECOMPOSITION ASSISTED …

(a)

(b)

(c)

FIG. 9. Instantaneous flow fields by using PODA model. (a) Velocity magnitude (||u||/ub) in XY plane at
z/h = 0. (b) Velocity magnitude (||u||/ub) in XZ plane at y+ = 18.11. (c) Streamwise vorticity (ωxh/ub) in Y Z
plane at x/h = 2πh.

The instantaneous flow fields in terms of the velocity magnitude and streamwise vorticity are
shown in Fig. 9. The velocity magnitude ||u||, normalized by the bulk velocity ub, is shown in an
XY plane (at z/h = 3π/4) and a horizontal XZ plane at y+ = 18.11 (y/h = 0.034) in Figs. 9(a) and
9(b), respectively. The XZ plane [Fig. 9(b)] is located in the buffer layer and shows the near-wall
streamwise elongated flow structures. The normalized streamwise vorticity ωxh/ub is shown in a
Y X plane at location x = 2πh in Fig. 9(c), exhibiting the turbulent vortical structures.

B. Decaying isotropic turbulence

In this section, we consider a test case of the decaying isotropic turbulence. The LES are
performed based on the experimental data of Comte-Bellot and Corrsin [86], referred to as CBC.
In this experiment, a grid turbulence is generated by using a grid of size M = 5.08 × 10−2 m in a
flow with the mean flow velocity of Uo = 1000 × 10−2 m/s. The decaying isotropic turbulence
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FIG. 10. Decaying isotropic turbulence. (a) Decay of total kinetic energy. (b) Energy spectra at the three
stations.

is measured at 42M, 98M, and 171M downstream of the grid in terms of the second-order
turbulence statistics, including energy spectra. The streamwise evolution of temporally stationary
grid turbulence resembles the time evolution of an ideal isotropic turbulence, whose statistical
properties are invariant under all axes rotations and reflections. Thus, simulation of a time evolving
isotropic turbulence in a cubical box should match the experiment at t = 42M/Uo, t = 98M/Uo,
and t = 171M/Uo, respectively, when started with an initial condition of turbulence at the grid
location. Equivalently, for an initial condition of turbulence at the first location (42M), the results are
expected to match for second (98M) and third (171M) locations at t = 56M/Uo and t = 129M/Uo,
respectively. The experimental data are nondimensionalized by using the reference velocity and
length scales; where the reference length scale considered is Lref = 11M, in order to accommodate
approximately four integral scales [91]. The reference velocity uref is based on the measured velocity
fluctuations at the first location, given as uref = √

3〈u′
xu′

x〉/2 = 27.19 × 10−2 m/s.
The LES computations are preformed on a unit cube that is discretized in 64 cells in each

direction, and a dimensionless time step of 1.594 32 × 10−3. The Reynolds number based on the
size of the computational domain is Re = 101 29, similar to Rozema et al. [92]. The decaying
isotropic turbulence is simulated by using the presented subfilter-scale PODA model as well as
the DSM and WALE models. In DSM simulations, the Smagorinsky constant is estimated by
averaging the numerator and denominator of Eq. (15) in all the homogeneous directions. The
simulations are initialized by using the experimental velocity spectrum at the first location, where
the one-dimensional energy spectrum is assumed to be the radial three-dimensional spectrum due to
the isotropy. The initial velocity field is generated by the energy spectrum and random phases, which
requires a synchronization of the phase information. Thus, a precursor simulation is performed from
t = 0M/Uo to t = 42M/Uo, and the resulting velocity field is adjusted [93], providing a new initial
condition at t = 42M/Uo.

The decay of total turbulent kinetic energy predicted by the three models alongside the
experimental results of CBC are displayed in Fig. 10(a). The isotropic turbulence in the simulations,
starting with an initial condition based on the first station (42M), is allowed to decay from
t = 42M/Uo to t = 171M/Uo. In general, the three models accurately predict the turbulent kinetic
energy at the last station (171M) [Fig. 10(a)]; however, the rates of energy decay differ among the
models, particularly between the first and second stations. The LES predictions of the energy spectra
at the two downstream stations, t = 98M/Uo and t = 171M/Uo, are compared with the experimental
results in Fig. 10(b). As expected, the DSM and WALE models provide sufficient dissipation near
the filter cutoff wave number, whereas the PODA model is less dissipative, as was observed for
the turbulent channel flow in Fig. 3(a). The energy spectra for the DSM exhibit a good match with
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(a) (b) (c)

FIG. 11. Decaying isotropic turbulence at different times, in terms of Q criterion isosurface (Q = 150)
colored with velocity magnitude by using PODA model. (a) tU0/M = 42. (b) tU0/M = 98. (c) tU0/M = 171.

box-filtered experimental data, as shown in Rozema et al. [92]. The temporal evolution and spectral
energies predicted by the WALE model are slightly higher when compared with the DSM model;
a similar trend was also observed by Toda, Truffin, and Nicoud [21]. The PODA model shows
better agreement with the unfiltered experimental data, due to its lower dissipation; however, the
energy spectra exhibit some discrepancies in the spectral energy profile at the third station (171M),
particularly for kLref ≈ 50 and near the filter cutoff wave number.

The three-dimensional flow fields of decaying isotropic turbulence are displayed in Fig. 11 for
the three time instances tU0/M = 42 [Fig. 11(a)], tU0/M = 98 [Fig. 11(b)], and tU0/M = 171
[Fig. 11(c)], which correspond to the three stations of the CBC experiment, 42M, 98M, and
171M, respectively. The figures show Q criterion, defined as Q = 1/2(	i j	i j − Si jSi j ), isosurface
for Q = 150 and colored by velocity magnitude, indicating the decay of three-dimensional flow
structures for the increase of time.

V. CONCLUSION

This article presents a proper orthogonal decomposition (POD) assisted approach of subfilter-
scale turbulence modeling for large eddy simulations (LES). The subfilter-scale stress tensors
(Leonard, cross, and Reynolds tensors) are directly expressed in terms of POD modes, in their
complete form. The cross and Reynolds subfilter-scale tensors, which comprise the subfilter
scales, are modeled by means of high-rank low-energy resolved POD modes, assuming the scale
similarity of turbulence. The scale similarity is also used to estimate the energy transfer between
the resolved and subfilter scales, leading to a flow- and filter-specific model parameter computed
on the fly. The POD-assisted (PODA) model naturally exhibits the correct near-wall scaling as
well as the backscatter of subfilter-scale energy. The features of the PODA model are discussed by
simulating two canonical test cases: the turbulence channel flow and decaying isotropic turbulence,
in comparison with the dynamic Smagorinsky model (DSM) and wall-adapting local eddy-viscosity
(WALE) models of LES. The computational cost overhead is ≈12% compared with the DSM, which
can be reduced by efficiently handling the data. In addition to the computational efficiency and
application to complex turbulent flows, the PODA modeling approach can be conveniently leveraged
for the modeling of subfilter-scale stresses in multiphysics flows.
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FIG. 12. Total kinetic-energy statistics. (a) Time signal of total kinetic energy at (x/h = 2π , y/h = 1,
z/h = 3π/4). (b) Variance and variability of the total kinetic energy versus time.

APPENDIX A: STATISTICAL CONVERGENCE OF RESULTS

The uncertainty in the stationary flow statistics of high-fidelity simulations, e.g., direct numerical
simulations (DNS), large eddy simulations (LES), is crucial; particularly where experimental
results are not available [94]. In addition to parameters such as the computational domain extents,
discretization errors, nonuniqueness of the statistically stationary state, and numerical methods,
the statistical errors can cause some discrepancies in the turbulent flow statistics for the same
flow conditions [95]. A first step in the statistical convergence analysis is to identify the initial
transient response time and the stationary response time. The initial transient time for the turbulent
channel flow DNS is usually estimated in terms of the linear profile of total shear stress and
quasiperiodic total kinetic energy (KE) [96,97]. The flow stationarity, on the contrary, is often
loosely defined; Moser, Kim, and Mansour [97] considered the turbulent channel flow to be
stationary for t � 10Lx/ub, based on their prior experience.

A stationary response of the total kinetic energy (KE) is shown in Fig. 12(a) for the LES
performed using the proper orthogonal decomposition assisted (PODA) model, where the KE is
probed at x/h = 2π , y/h = 1, z/h = 3π/4, inside the computational domain described in Sec. IV A.
The temporal evolution of the KE exhibits an initial transient of tub/h ≈ 100, which approximately
corresponds to the above estimate of t � 10Lx/ub by Moser, Kim, and Mansour [97] for their
DNS. The variance of the KE with increasing time, Fig. 12(b), indicates the initial transient and
convergence to a stationary response. The variance can be estimated by using a discrete temporal
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FIG. 13. Temporal autocorrelations of the velocity components and the time-averaged spanwise velocity.
(a) Autocorrelations of the velocity components. (b) 〈uz〉+ for the three LES and DNS.

data as

var{KE} = 1

N

N∑
n=1

(KEn − 〈KE〉)2, (A1)

where 〈KE〉 is the time averaged kinetic energy (KE), which also reaches a stationary state for
increasing time (not shown). N denotes the number of samples. A measure of convergence in terms
of the variability, ε, can be given as

ε2 = 1

N

var{KE}
〈KE〉2

, (A2)

which can provide an estimate of the smallest N for a given level of fluctuations in KE. Figure 12(b)
shows the variability of KE estimated using Eq. (A2).

As noted earlier, the LES statistics are gathered after the initial transient and for ≈240 flow-
through times. The spatial and temporal extents of the large eddies in the flow can be obtained in
terms of the space and/or time autocorrelations of the flow variables. The temporal autocorrelations
for the three velocity components at the probe location (x/h = 2π , y/h = 1, z/h = 3π/4) are shown
in Fig. 13(a), which are given as

�ii
(
τ�

) = 〈u′
i(t )u′

i

(
t + τ�

)〉
〈u′

i(t )u′
i(t )〉 . (A3)

The Wiener-Khinchin theorem allows us to estimate the autocorrelation in an efficient way by using
a fast Fourier transform (FFT) as

Fi( f ) = FFT {u′
i(t )}, (A4)

Sii( f ) = Fi( f )F∗
i ( f ), (A5)

�ii
(
τ�

) = IFFT {Sii( f )}, (A6)

where IFFT denotes the inverse FFT. F∗ is the complex conjugate of F ( f ), while Sii( f ) represents
the power spectral density of the velocity fluctuation u′

i(t ). At first, the normalized autocorrelations
[Fig. 13(a)] decrease monotonically following a Gaussian profile and become negative at τ�ub/h ≈
0.2. The negative correlations gradually increase to zero at τ�ub/h ≈ 3, which indicates that the
correlation or turnover time of the large eddies is ≈3, resulting in ≈1000 turnovers of the large
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FIG. 14. Comparison of the time-averaged Reynolds stress deviatoric components and pressure profiles
between the LES and DNS. (a) Reynolds stress component comprising the x and z velocity fluctuations.
(b) Reynolds stress component comprising the y and z velocity fluctuations. (c) Time-averaged pressure.
(d) Root-mean-squared (rms) pressure fluctuations.

flow structures for the estimation of statistics. The correlations [Fig. 13(a)] also exhibit peaks at
τ�ub/h ≈ 12, which appears to be due to the streamwise periodicity, of 4π , of the computational
domain.

The turbulent channel flow is homogeneous in the spanwise direction with zero mean flow, thus
the time-averaged spanwise velocity provides an indication of numerical convergence. Figure 13(b)
shows the time-mean spanwise velocity, 〈uz〉+, for the LES using the three models along with the
DNS. Similar to the DNS profile, the LES profiles manifest peaks of 〈uz〉+ near the buffer or log-
layer regions of the boundary layer (10 � y+ � 500); however, the magnitudes of spanwise velocity
are ≈4 to 6 times higher for the LES computations when compared with the DNS.

To further assess the results convergence, we compare the deviatoric Reynolds stress components
and pressure profiles along the wall normal direction between the three LES and DNS. The
comparison is displayed in Fig. 14. The Reynolds stress components 〈u′

xu′
z〉+ and 〈u′

yu′
z〉+ are shown

in Figs. 14(a) and 14(b), respectively, exhibiting discrepancies between the LES and DNS profiles
mainly in the 10 � y+ � 100 range. For the LES as well as DNS, 〈u′

xu′
z〉+ is higher than 〈u′

yu′
z〉+,

due to the higher magnitude of streamwise velocity fluctuations.
The time-averaged pressure and root-mean-squared (rms) pressure fluctuations along the wall

normal direction are compared between the LES and DNS in Figs. 14(c) and 14(d), respectively. The
pressure profiles, 〈p〉+ and p′+

rms, are normalized by using the friction velocity uτ as 〈p〉+ = 〈p〉/u2
τ
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and p′+
rms = p′

rms/u2
τ . The mean-pressure profiles for the LES show a good agreement with the

DNS profile [Fig. 14(c)] with some discrepancies in the 10 � y+ � 100 range; whereas the LES
predictions of the rms pressure fluctuations by using the three LES models show a reasonable match
with the DNS profile [Fig. 14(d)]. For both the pressure profiles, the PODA model predictions
are in a better agreement with the DNS results when compared with the DSM and WALE
models.

APPENDIX B: SHORT-TIME SNAPSHOT PROPER ORTHOGONAL DECOMPOSITION

As discussed in Sec. II, the classical proper orthogonal decomposition (POD) and its variants,
in general, use long-time stationary flow data in order to educe time-invariant modes. The snapshot
POD procedure [67] considers a number of flow fields and leads to equal numbers of POD modes.
The first POD mode represents the time average of the considered flow fields, while the remaining
POD modes represent the fluctuating part of the flow fields. For a stationary flow, the first POD time
mode (temporal coefficient) must remain constant over the time, whereas for a nonstationary flow,
it may vary with time. The low rank energy dominant POD modes (e.g., mode no. 2, 3) provide
dominant unsteadiness, particularly for the time-periodic flows (e.g., flow past a cylinder). The
snapshot POD has been successfully used for nonstationary flows [98], where the classical POD is
extended for a short-time flow realizations. For periodic flows, a short-time snapshot POD analysis
can be performed on as small as one period of the flow, yet it leads to POD modes almost identical
to the modes obtained by considering a large number of flow periods [99,100].

In the present approach, the time duration of the snapshots collection is equal to the turnover
time of the smallest resolved eddies, i.e., �t . Thus for a constant time step of simulation, δt , the
number of snapshots, Nt , to perform POD becomes

Nt = �t

δt
. (B1)

In a parallel computing environment, each central processing unit (CPU) locally stores Nt number
of snapshots, leading to sets of Nt time-evolving flow fields of the partial computational domains. At
first, a time-correlation matrix of size Nt × Nt is locally constructed; and then the summation of the
local correlation matrices over all CPUs is performed in order to obtain a global time-correlation
matrix of the same dimensions. Each processor then solves the global correlation matrix for an
eigenvalue problem, obtaining an identical set of eigenvectors ei

n(tn) and eigenvalues λi
n. The real-

symmetric correlation matrix is solved by using a standard Jacobi eigenvalue algorithm [101]. The
POD space modes on each processor are obtained by using the partial flow fields and eigenvectors
as

�i
n(xl |xl ⊂ x) = 1√

Nt

(
ui(xl |xl ⊂ x, ·), ei

n(·))
�t

, (B2)

φi
n(xl |xl ⊂ x) = �i

n(xl |xl ⊂ x)/||�i
n(x)||, (B3)

where xl is a partial computational domain on a CPU. The Euclidean L2 norm || · || is computed on
the total computational domain x. The standard inner product in terms of arbitrary variables a and b
is defined as

(a, b)D =
∫
D

a · bWdx or (a, b)D =
∫
D

a · bdt, (B4)

where D is the space or time domain for the inner product, while W denotes the weights of
nonuniform computational grid. Thus, the norm is given as

||a|| =
√

(a, a)D. (B5)
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By using the partial orthonormal POD space modes, the time modes are obtained as,

ψ i
n(t ) = (

φi
n(·), ui(·, t )

)
xl
. (B6)

An algorithm (Algorithm 1) to perform the short-time snapshot POD is provided below:

Algorithm 1: Short-time snapshot POD

Input: ui(x, t ) ∈ RNx×Nt

Output: φi
n(x) ∈ RNx , ψ i

n(t ) ∈ RNt , λi
n

# Construct a local time-correlation matrix on each processor
1: Cl = (

ui(·, t ), ui
∗(·, t )

)
xl
, Cl ∈ RNt ×Nt

# Construct a global time-correlation matrix on each processor
2: Cg = ∑

l Cl , Cg ∈ RNt ×Nt

# Solve Cg for eigenvectors and eigenvalues using iterative
Jacobi eigenvalue algorithm (convergence criterion: 10−8)

3: Cgei
n = λi

nei
n, ei

n(t ) ∈ RNt

# Compute the orthogonal space modes on partial spatial domain
4: �i

n(xl ) = 1√
Nt

(
ui(xl , ·), ei

n(·))
�t

, �i
n(xl ) ∈ RNxl

# Compute the partial orthonormal space modes using a global norm
5: φi

n(xl ) = �i
n(xl )/||�i

n(x)||, φi
n(xl ) ∈ RNxl

# Compute the orthogonal time POD modes
6: ψ i

n(t ) = (
φi

n(·), ui(·, t )
)

xl
, ψ i

n(t ) ∈ RNt

# Compute complete spatial modes if needed (e.g., for postprocessing)
7: φi

n(x) = φi
n(

∑
l xl ), φi

n(x) ∈ RNx

The results of short-time snapshot POD analysis for an intermediate stage are presented in
Figs. 15 and 16 for simulation using mesh M1 (refer to Table III). The average turnover time of
the smallest resolved eddies for mesh M1 is 〈�t 〉+ = 1.0369 (Table IV); for a simulation time step
of (δt )ub/h = 0.0025, the average number of snapshots used for the short-time snapshot POD gives
〈Nt 〉 ≈ 14. For the presented POD modes, the number of snapshots obtained were Nt = 50, leading
to three resolved POD modes for the streamwise velocity component, and four resolved POD modes
for the spanwise and wall normal velocity components. The orthonormal space modes, φi

n(x), are
displayed in Fig. 15, where the Fig. 15(g) shows the cutoff mode for the streamwise velocity. The
cutoff modes for the wall normal and spanwise velocity components are shown in Figs. 7(b) and
7(c), respectively. The first POD mode φu

1 [Fig. 15(a)] corresponds to the streamwise flow velocity,
indicating the mean flow, 〈ux〉�t , in the short-time sense; similarly, modes φv

1 [Fig. 15(b)] and
φw

1 [Fig. 15(c)] represent the short-time mean flow in the wall normal and spanwise directions,
respectively. The second and higher rank POD modes, e.g., Figs. 15(d) to 15(i), and the cutoff modes
of Fig. 7, represent the decomposition of unsteady flow structures exhibited during the short-time
window. It is evident from Fig. 15 that the sizes of the spatial POD modal structures (characteristic
eddies) decrease for the higher rank POD modes for a particular component of the velocity.

The orthogonal temporal POD modes ψ i
n(t ), that are obtained using Eq. (B6), are shown in

Figs. 16(a)–16(c) for the streamwise, wall normal, and spanwise velocity components, respectively.
As anticipated, the temporal POD modes exhibit increased variations and oscillations for the higher-
rank POD modes, an attribute analogous to their spatial counterparts φi

n(x). The temporal modes
dictate the time-varying contribution of the corresponding spatial POD modes to the flow field.
Although the POD spatial modes are dissimilar for different velocity components, the temporal
dynamics appears identical for the POD modes of the same rank. The eigenvalues λi

n of the resolved
and a few high-rank POD modes are shown in Fig. 16(d), where the eigenvalues are normalized by
λi

1. The energy contribution of the subfilter-scale modes, for the present example, is approximated
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 15. Resolved POD space modes for the three velocity components: (a) φu
1 , (b) φv

1 , (c) φw
1 , (d) φu

2 ,
(e) φv

2 , (f) φw
2 , (g) φu

3 , (h) φv
3 , (i) φw

3 .

in terms of the ratio λu
3/λ

u
2 for the streamwise velocity and λi

4/λ
i
3 for the wall normal and spanwise

velocity components, as discussed in Sec. II, Eq. (30).
To obtain the highest resolved (cutoff) POD mode, the POD modal energies are, at first, estimated

by using the short-time averaging: 〈ψ i
n

2〉�t , and then compared with the corresponding eigenvalues
λi

n; where Eq. (41) is satisfied for the resolved POD modes. Figure 17(a) shows the comparison
between the modal energies for the streamwise velocity component, where the energies estimated
by the two means are compared. The discrepancy in the energy values for the rank-4 POD mode
is evident, making the rank-3 mode the highest resolved POD mode. A temporal autocorrelation of
the cutoff POD time mode is performed in order to capture the turnover time of the corresponding
eddies. In a similar effort, Pruett [102] estimated an autocorrelation of velocity in order to extract
a temporal scale. Figure 17(b) shows the autocorrelation of the highest resolved POD mode for the
spanwise velocity component, where the correlation is estimated by using the procedure described
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FIG. 16. POD time modes and associated eigenvalues. (a) POD time modes of streamwise velocity.
(b) POD time modes of wall normal velocity. (c) POD time modes of spanwise velocity. (d) Eigenvalues
of the POD modes.

in Appendix A. The eddy turnover time for the cutoff time POD mode of the streamwise velocity
component is �t ≈ 0.128; similarly an estimate of the eddy turnover time for the wall normal and
spanwise components is ≈0.070, resulting in a fewer number of snapshots Nt = 28 for the next
short-time POD.
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FIG. 17. Estimation of the cutoff POD mode and turnover time of the associated flow eddies.
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