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We study the mixing of a passive scalar in homogeneous turbulent flow with and without
anisotropic external force. It is assumed that no scalar source exists and the scalar spectrum
at an initial time instant t0 is given by the form Ck2 + o(k2) at the wave number k → 0,
where C is independent of k. We have performed direct numerical simulations (DNSs) of
the mixing, in which the initial integral length scales of the scalar field are comparable
to those of the velocity field and the Schmidt number is unity. The DNSs show that even
though the large-scale anisotropy of the velocity field grows with time owing to the external
force, its scalar field counterpart remains almost unchanged, i.e., frozen with respect to
time, in a state where the scalar field evolves in a self-similar manner. The degree of
the anisotropy of each of the velocity and scalar fields is measured by the ratios of the
integral length scales in different Cartesian directions. The DNSs also suggest that the
scalar spectrum keeps the form Ck2 + o(k2) at small k for time t (� t0), and that C is time
independent.

DOI: 10.1103/PhysRevFluids.5.014604

I. INTRODUCTION

Turbulent mixing of scalar quantities is a phenomenon of multiscales and strong nonlinearity,
and is encountered in many flow circumstances in engineering and geophysics [1–3]. Temperature
fluctuations in a weakly heated flow, dye concentration in liquids, and so on can be modeled as
passive scalars. The passive scalars are convected by flow, but do not influence the flow dynamics.

The large-scale structure of passive scalar fields θ (x, t ) without any scalar source plays sig-
nificant roles in the decay of the scalar variance 〈θ2〉 in three-dimensional (3D) incompressible
homogeneous turbulence [4–10], where x is the position, t is time, 〈. . . 〉 denotes the ensemble
average of . . . and we assume here 〈θ〉 = 0. In homogeneous turbulence, the ensemble average
〈. . . 〉 is independent of the position x. The arguments x and t are omitted at will. The structure is
well characterized by the spectral scalar correlation �̂(k, t ) at k → 0, where k is the wave vector,
and �̂(k, t ) is defined by the Fourier transform of the second order two-point scalar correlation:
(2π )−3

∫
R3 �(r, t ) exp(−ik · r)dr and �(r, t ) = 〈θ (x)θ (x + r)〉.

A recent study [10] generalized the argument by Corrsin [4] for homogeneous isotropic passive
scalar turbulence, i.e., isotropic passive scalar fields in homogeneous isotropic turbulence, to
homogeneous anisotropic passive scalar turbulence. At an initial time instant t0, �̂(k, t0) is assumed
to be O(k0) at k → 0, where k = |k|. It was shown that for any t � t0, the leading order term
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of �̂(k, t ) at k → 0 keeps the zeroth order in k and is time independent, if | ∫R3〈u(x)θ (x)θ (x +
r)〉 exp(−ik · r)dr| = O(k0) at k → 0. Here, u is the fluctuating part of the velocity field of the
incompressible fluids. The time independence, called dynamical invariance, implies that the scalar
spectrum E θ (k) takes the form given by

E θ (k) = Ck2 + o(k2) (1)

at k → 0 for any t � t0 and that C is an invariant, where E θ (k) = (1/2)
∫

�̂(q)dSk and
∫

. . . dSk

denotes the integral of . . . over the spherical surface with a radius of |q| = k and a center at q =
0. We set here C �= 0. The invariant C is equivalent to the integral

∫
R3 �(r, t )dr, which is called

Corrsin’s integral invariant [4] if the scalar field is isotropic. It was also shown in Ref. [10] that if
the scalar field satisfies a certain kind of self-similarity at large scales where |r| is greater than or
comparable to Lθ

j , i.e., in the wave-number range where k is smaller than or comparable to 1/Lθ
j ,

then the degree of the anisotropy of the scalar field Lθ
i /Lθ

j is time independent, i.e.,

Lθ
i /Lθ

j � const, (2)

where Lθ
j is an integral length scale of θ (x, t ) in the jth Cartesian direction, and i, j =1, 2, 3 (i �= j).

See the Appendix, regarding the meaning of the self-similarity. The anisotropy of the scalar field
is frozen with respect to time in the state satisfying the self-similarity. In addition, it was pointed
out that Eq. (2) holds, irrespective of the velocity field, if the self-similarity and the invariance of
C are satisfied [10]. This implies that the velocity field may be subjected to external force, such
as buoyancy, the Coriolis force, and the Lorentz force. These forces are in general anisotropic, and
therefore statistics of the velocity field are anisotropic in general. The anisotropy of the velocity field
in the energy containing range, which is measured by Lu

i /Lu
j ’s, can grow or decay monotonically

with time in the presence of anisotropic forcing (e.g., Refs. [11,12]), where Lu
j is an integral length

scale of u. Therefore, Ref. [10] suggests that even if Lu
i /Lu

j ’s grow or decay, Eq. (2) can hold.
In contrast, it seems natural to think that the statistics of the passive scalar field must more or

less reflect the statistics of the velocity field. For the evolution of the passive scalar field in the range
where kLθ

j ∼ 1, one may think that the anisotropy of the scalar field evolves in accordance with the
anisotropy of the velocity field, i.e., Lθ

i /Lθ
j ∝ Lu

i /Lu
j , at least in the case that Lθ

j /Lu
j ∼ 1 at an initial

time instant.
We then pose the following questions. Can we observe the freezing anisotropy of the passive

scalar field? If yes, do the invariance of C and the self-similarity hold well? In order to get some
idea on these questions, we study here the passive scalar mixing by turbulent flow under a simple
and anisotropic external force by using direct numerical simulation (DNS). As such a force, we
choose the Lorentz force under a uniformly imposed magnetic field B, and consider passive scalar
fluctuations without any scalar sources in two types of incompressible homogeneous turbulence:
one is freely decaying hydrodynamic (HD) turbulence in the absence of B, and the other is decaying
magnetohydrodynamic (MHD) turbulence subjected to B at low magnetic Reynolds number such
that the quasistatic (QS) approximation [11,13] is applicable.

II. BASIC EQUATIONS AND DIRECT NUMERICAL SIMULATION

The velocity field u and passive scalar field θ obey

∂t u + (u · ∇)u = − 1

ρ
∇p + ν∇2u − σB2

ρ
∇−2∂2

3 u, (3)

∂tθ + (u · ∇)θ = κ∇2θ, (4)

and the incompressible condition ∇ · u = 0, where p(x, t ) is the modified pressure including the
magnetic pressure, ν is the kinematic viscosity, ρ is the fluid density, σ is the electric conductivity,
κ is the scalar diffusivity, ∂t = ∂/∂t , ∇ = (∂1, ∂2, ∂3), ∂i = ∂/∂xi, ∇−2 represents the inverse
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Laplace operator, and 〈u〉 = 〈θ〉 = 0. The direction of B is taken to be in the x3 direction so that
B = (0, 0, B). The kinetic energy 〈|u|2〉 and the scalar variance 〈θ2〉 decay with time monotonically.
In homogeneous turbulence, the ensemble average 〈. . . 〉 can be regarded as the space average of . . .

under appropriate assumptions (see, e.g., the textbook by Batchelor [14]).
In deriving the external forcing term −(σB2/ρ)∇−2∂2

3 u, in Eq. (3), we applied the QS
approximation to the induction equation and the Lorentz force term. The induction equation
is given as ∂t b + (u · ∇)b = (b · ∇)u + η∇2b, where b(x, t ) = B + b′(x, t ), ∇ · b = 0, b′(x, t ) is
the fluctuating magnetic field, η = 1/(σμ), η is the magnetic diffusivity, and μ is the magnetic
permeability. We assume that |b′| � |B|, the magnetic Reynolds number is much smaller than unity,
and |∂t b

′| is negligible in the induction equation. After a little algebra, the induction equation reads
as b′ = −σμB∇−2∂3u. In addition, the rotational part of the Lorentz force per unit mass results in
−(σB2/ρ)∇−2∂2

3 u. For the details, one may refer to Refs. [11,13].
We performed four DNSs of the turbulence in a (2π )3 periodic box using 10243 grid points: one

(run 1) simulates HD passive scalar turbulence and the other three (runs 2, 3, and 4) simulate QS
MHD passive scalar turbulence. The DNS method and other parameters such as ν are the same as
those presented in Ref. [15]. The Schmidt number ν/κ is set to unity. The initial velocity field is
identical for all the runs, and the same is true for the passive scalar field. They are statistically quasi-
isotropic and random. The initial energy spectrum and passive scalar spectrum E θ (k), respectively,
take forms proportional to k2 exp(−k2/k2

p) and 〈|u|2〉 = 〈θ2〉 = 1 at the initial time t = t0. Here and
in the following, 〈. . . 〉 denotes the space average over the periodic box, and t0 = 0. We put kp = 60
(see, e.g., Ref. [16] for velocity fields in freely decaying HD turbulence). The initial Reynolds
number defined by u′Lu/ν is 107, where u′ = 1/

√
3, Lu = Lu3

3 (0), and the definition of Lu3
3 (0) is

given in the next paragraph. The initial Lθ
j (0) is comparable to L

uj

j (0). The difference among the
runs lies in the difference of the interaction parameters N defined as N = σB2Lu/(ρu′) at t = 0,
where N = 0, 0.1, 0.25, and 0.5 in runs 1, 2, 3, and 4, respectively.

Since the turbulence is statistically axisymmetric, it is convenient to introduce the integral length
scales in the direction perpendicular to and parallel to B;

Lθ
⊥(t ) = 1

2

(
Lθ

1 + Lθ
2

)
, Lθ

‖ (t ) = Lθ
3 , Lu

⊥(t ) = 1
2

(
Lu1

1 + Lu2
2

)
, Lu

‖ (t ) = Lu3
3 . (5)

for the scalar and velocity fields. Here, Lξ
j (t ) (ξ = θ, u j ) is defined as

Lξ
j (t ) =

∫ π

0 〈ξ (x, t )ξ (x + re j, t )〉dr

〈ξ 2(x, t )〉 , (6)

where e j is the unit vector pointing to the jth direction. Corresponding to Eq. (5), we introduce
〈u2

⊥〉 = (〈u2
1〉 + 〈u2

2〉)/2 and 〈u2
‖〉 = 〈u2

3〉. For all runs, it was confirmed that Lθ
1 ≈ Lθ

2 , Lu1
1 ≈ Lu2

2 , and
〈u2

1〉 ≈ 〈u2
2〉 in fully developed states of the turbulent scalar and velocity fields (figure omitted).

III. NUMERICAL RESULTS

In Sec. III A, we briefly describe the DNS results about the evolution of the anisotropy of the
velocity field in the energy containing range. Next, in Secs. III B and III C, we examine whether
Eq. (2), the invariance of C, and the self-similarity of the scalar field evolution at the large scales
well hold, by using the DNSs.

A. Growing anisotropy of the velocity field

Figures 1(a) and 1(b), respectively, show the evolution of the anisotropy represented by the ratio
of the integral length scales Lu

‖/Lu
⊥, and the evolution of 〈u2

‖〉/〈u2
⊥〉. The time is normalized by the

initial large-eddy turnover time T and T = 1/kp. In run 1 (N = 0), Lu
‖/Lu

⊥ and 〈u2
‖〉/〈u2

⊥〉 are close to
unity. On the other hand, the ratio Lu

‖/Lu
⊥ grows with time in runs 2, 3, and 4 (N �= 0), which implies
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FIG. 1. Evolution of (a) Lu
‖/Lu

⊥, (b) 〈u2
‖〉/〈u2

⊥〉, (c) 〈u2
⊥〉, and (d) Lu

⊥ in run 1 (N = 0), run 2 (N = 0.1), run
3 (N = 0.25), and run 4 (N = 0.5).

the anisotropy growing with time. It can be also seen in Fig. 1(b) that for t/T � 50, 〈u2
‖〉/〈u2

⊥〉 is
nearly constant in run 2 whereas 〈u2

‖〉/〈u2
⊥〉 decays in runs 3 and 4. The latter is compatible with

previous DNSs [17,18]. Figures 1(a)–1(d) show that in run 1, the decay of the kinetic energy and
the growth of the integral length scales for t/T � 50, in the fully developed state of the velocity
field, well agree with Saffman’s decay laws [19]: 〈u2

‖〉 = 〈u2
⊥〉 ∝ t−6/5 and Lu

‖ = Lu
⊥ ∝ t2/5. These

power-law-like behaviors were observed in DNSs [15,16] and laboratory experiments [20].

B. Anisotropy freezing of the scalar field

Figure 2(a) shows the ratio Lθ
‖/Lθ

⊥ as a function of time t/T in all the runs. It can be seen that
Lθ

‖/Lθ
⊥ is nearly time independent for t/T � 50, i.e., in the fully developed states of the passive

scalar turbulence. This independence contrasts with the substantial growth of Lu
‖/Lu

⊥ in runs 2, 3,
and 4 shown in Fig. 1(a). This contrast implies that the anisotropy of the scalar field represented by
Lθ

‖/Lθ
⊥ is frozen, in spite of the growing anisotropy of the velocity field represented by Lu

‖/Lu
⊥. The

ratio Lθ
‖/Lθ

⊥ depends weakly on N . The scalar fields in runs 2, 3, and 4 become anisotropic, owing
to the anisotropy of the velocity field.

In Fig. 2(b), it can be seen that 〈θ2〉(Lθ
⊥)2Lθ

‖ is nearly time independent in the fully developed
states, irrespective of the decay rates of 〈θ2〉 shown in Fig. 2(c). The time independence of
〈θ2〉(Lθ

⊥)2Lθ
‖ and that of Lθ

‖/Lθ
⊥ are necessary conditions for the self-similarity of the large-scale

scalar evolution and the invariance of C in Eq. (1) [10]. The time independence of 〈θ2〉�3 was
suggested in laboratory experiments for fully developed passive scalar turbulence [21], where � is
an integral length scale of the scalar field. Figures 2(a), 2(c), and 2(d) show that in run 1, 〈θ2〉
decays approximately as t−6/5 while Lθ

⊥ and Lθ
‖ grow like t2/5 for t/T � 50. These power-law-

like behaviors well agree with the prediction by dimensional analysis [5,6,10]. The agreement
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suggests that the nonlinear term (u · ∇)θ plays significant roles in the decay of 〈θ2〉. Note that
〈|u(x, t )|2〉/〈|u(x, 0)|2〉 is comparable to 〈θ2(x, t )〉/〈θ2(x, 0)〉, as shown by Figs. 1(b), 1(c), and
2(c). Here, 〈|u(x, 0)|2〉 = 〈θ2(x, 0)〉 = 1. If a homogeneous passive scalar field is well governed by
the equation that ∂tθ = κ∇2θ together with its initial scalar spectrum satisfying Eq. (1) at k → 0,
then 〈θ2〉 ∝ t−3/2 for sufficiently large t [22].

C. Invariance of C and self-similarity

Figure 3 shows the spherically averaged scalar spectra E θ
ave(k), given by E θ (k)/(4πk2), at

different time instants in run 1 (N = 0) and run 3 (N = 0.25). It can be observed that at each N ,
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FIG. 3. Scalar spectra in (a) run 1 (N = 0) and (b) run 3 (N = 0.25): E θ
ave(k) vs k/kp.
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kLθ
⊥.

E θ
ave(k) remains nearly flat at sufficiently low k/kp range and is nearly independent of time. This

observation supports the invariance of C.
On the basis of Eqs. (2) and (A1), the self-similar evolution of the scalar field implies that

the normalized spectrum E θ
ave(k)/{〈θ2〉(Lθ

⊥)2Lθ
‖ } is a function only of kLθ

⊥ in the wave-number
range where k is smaller than or comparable to 1/Lθ

⊥ and in the fully developed states of the
turbulent passive scalar fields. Figure 4 shows the kLθ

⊥ dependence of the normalized spectra, where
〈θ2〉(Lθ

⊥)2Lθ
‖ is almost constant in the fully developed states. The normalized spectra at different

time instants for t/T � 60 well collapse in the small kLθ
⊥ range, kLθ

⊥ � 10, which verifies the
self-similarity assumption of the large-scale scalar evolution at least approximately. It can be seen
in Fig. 4(b) that in kLθ

⊥ � 10, the normalized spectra do not overlap, which implies that the self-
similarity does not hold in the diffusive range. The lack of the self-similarity in the range is attributed
to the multiscale properties of turbulence and the passive scalar fields. Small-scale statistics of the
scalar can behave independently of its large-scale statistics. In contrast, the small-scale anisotropy of
the scalar field can reflect that of the velocity field, as suggested by Ref. [23] for QS MHD turbulence
at moderate (not high) Reynolds number in which the Lorentz force can make small-scale velocity
fields substantially anisotropic. The invariance of C and the collapse of the normalized spectra are
likewise observed in the other runs (figures omitted for brevity). Large eddy simulation suggested
the invariance of C and the self-similarity for freely decaying isotropic passive scalar turbulence [6].

IV. CONCLUSION

We studied the large-scale structure of passive scalar fields without any scalar source in two kinds
of incompressible homogeneous turbulence, i.e., the freely decaying HD turbulence and the decay-
ing QS MHD turbulence. The initial scalar spectrum E θ (k) at k → 0 is given by Eq. (1). We carried
out the DNSs of the passive scalar turbulence in which Lθ

j /Lu
j ∼ 1 at the initial time and the Schmidt

number is unity. Through the DNSs, we found that the large-scale anisotropy of the scalar field is
frozen for the fully developed passive scalar turbulence, regardless of the growth of the counterpart
of the velocity field. In other words, Lθ

‖/Lθ
⊥, the measure of the scalar field anisotropy, is almost inde-

pendent of time for the fully developed turbulence, even though Lu
‖/Lu

⊥, the measure of the velocity
field anisotropy, grows with time. This independence is in contrast to the decay of the scalar variance
〈θ2〉 which depends on the velocity field via the advection (u · ∇)θ . Moreover, the DNSs showed
that C in Eq. (1) is almost time independent and that the fully developed passive scalar turbulence
well satisfies the self-similarity at the large scales where k is smaller than or comparable to 1/Lθ

j .
These DNS results are consistent with the theory [10]. Therefore, the anisotropy freezing of the

scalar field is due to the invariance and the self-similarity. The self-similarity relates the invariance,
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which arises from a property of the leading order term of �̂(k, t ) at k → 0, to the scalar evolution at
the large scales, and the invariance partly restricts the evolution. It would be interesting to examine
whether such a type of invariance and large-scale self-similarity hold in other kinds of turbulence.

Strictly speaking, the DNS results show small departure from the theoretical prediction [10]. The
small discrepancy from the prediction may be due to the influences of the Reynolds number, the
Péclet number, the box size, small-scale resolution, and the number of the realizations in taking
the ensemble average of the DNS results. DNS study about the influences might be interesting, but
would require very high computational cost. Such DNS study is therefore beyond the scope of this
work.
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APPENDIX: SELF-SIMILARITY OF THE PASSIVE SCALAR FIELD

We shortly summarize the self-similarity assumption about the evolution of the passive scalar
field. For the details, see Ref. [10]. We assume that k2�̂(k, t ) evolves in accordance with the self-
similar form

k2�̂(k, t ) = d (t ) f θ (ζθ ) (A1)

in the wave-number range where k is smaller than or comparable to 1/Lθ
j , and in a certain

appropriate time range when the scalar field is turbulent and fully developed. Here, ζθ is the
self-similar variable defined as ζθ = (k1�

θ
1, k2�

θ
2, k3�

θ
3 ), f θ (ζθ ) is a dimensionless function, and �θ

j (t )
is a length scale of the passive scalar in the jth Cartesian direction. It was shown in Ref. [10] that
�θ

i (t )/�θ
j (t ) and d (t )�θ

i (t )�θ
j (t ) are time independent, based on the invariance of the leading zeroth

order term in k of �̂(k, t ) at k → 0. Furthermore, we assume that the right-hand side of Eq. (A1)
has dominant contribution to integrals such as

∫
R3 �̂(k, t )dk. After a little algebra, it was found that

〈θ2〉Lθ
1 Lθ

2 Lθ
3 � constant and that Lθ

j (t ) � γ θ
j �θ

j (t ) [10], where γ θ
j is constant. The time independence

of �θ
i /�

θ
j therefore implies Eq. (2).

The passive scalar field can be anisotropic, even if the leading zeroth order term in k of �̂(k) at
k → 0 is isotropic. The anisotropy of the velocity field causes the anisotropy of the scalar field. Let
the scalar field be isotropic at an initial time t = t0 so that Lθ

1 (t0) = Lθ
2 (t0) = Lθ

3 (t0). Since the self-
similarity assumption may not hold in an initial transient or premature stage, Lθ

i (t )/Lθ
j (t ) (i �= j)

may evolve with t during the transient time period. Therefore, Lθ
i (t )/Lθ

j (t ) (i �= j) does not need to
be unity in the fully developed states of the passive scalar turbulence. The anisotropy of the scalar
field means that �̂(k) is anisotropic in the range where kLθ

j ∼ 1, even if the zeroth order term in k
is isotropic.
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