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Small-scale turbulence is the most promising place to establish proper turbulence
theory. An understanding of the relationships between the two descriptors of small-scale
turbulence, namely, enstrophy and dissipation, is one of the longstanding research topics.
Meanwhile, current knowledge on this point is controversial because past observations are
inconsistent with the existing theoretical arguments. We present a different approach to
investigate this problem by enhancing small-scale fluctuations with finite-size particles.
In this particle-augmented turbulent flow, several common observations about small-scale
turbulence are obtained with recent high-Reynolds-number studies, though the operating
conditions are quite different. Specifically, it is found that the discrepancy between the
intermittency of enstrophy and dissipation is reduced when small-scale motions become
intense. In addition, the spatial distributions of intense enstrophy and dissipation are
found to be correlated. Lastly, a quantitative relationship for enstrophy and dissipation
is observed in these intense events. The similarity of enstrophy and dissipation in all
of these aspects does not occur in low-Reynolds-number turbulence, and the current
common findings could imply potential universality for intense small-scale turbulence. The
conditional probability density functions of pressure Laplacian and velocity derivatives are
also analyzed to further understand why dissipation and enstrophy become similar when
small-scale motions become strong.

DOI: 10.1103/PhysRevFluids.5.014301

I. INTRODUCTION

Though the governing equations for the motion of incompressible viscous fluid have been
established for nearly 200 years, the underlying mathematics and physics (namely, the turbulence
phenomena) are still far from being comprehensively understood. A primary difficulty of this
problem is the existence of a broad range of scales in fully turbulent flow. A widely accepted
viewpoint about these scales is that the large-scale motions are flow specific, but the small scales
are more likely to show universal characteristics [1,2]. Therefore, small-scale turbulence has been a
optimal ground for developing a proper theory of turbulence. Apart from its theoretical significance,
small-scale turbulence also plays an important role in many practical processes, such as the mixing
of chemicals in reacting flow [3,4], quenching of flame in turbulent combustion [5], and preferential
concentration of inertial particles in particulate flow [6].

Continuous efforts have been made to explore and understand the properties of small-scale
turbulent motions [7–11]. A remarkable branch of this research is to discuss the spatial and statistical
relations [12–17] between local enstrophy � = 2Ri jRi j and the local dissipation rate ε = 2νSi jSi j

(the word “local” is omitted hereafter). Here, ν is the viscosity, and Si j = (∂ui/∂x j + ∂u j/∂xi )/2
and Ri j = (∂ui/∂x j − ∂u j/∂xi )/2 are, respectively, the strain rate tensor and rotation rate tensor.
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However, conflicting results have been reported about this topic. Experimental measurement [18]
and early numerical simulations [19,20] suggested that the same scaling exponents for dissipation
and enstrophy may not be possible, and dissipation is typically less intermittent than enstrophy.
Meanwhile, two analytical studies [21,22] pointed out that enstrophy and dissipation should have the
same scaling exponent at sufficiently high Reynolds number, from the perspectives of statistical field
theory [21] and vortex structures [22], respectively. They attributed the inconsistency of previous
observations to finite Reynolds number. But evidence supporting their standpoint was scarce at that
time.

However, the Reynolds number achieved in recent direct numerical simulations has grown
quickly owing to the improvement of computing power [11,16,23,24]. Though it is still far from
the typical Reynolds number in industrial and environmental applications, these high-fidelity simu-
lations of box turbulence have brought new insights into the research of small-scale turbulence. It is
reported that the extreme events of enstrophy and dissipation scale similarly as the Reynolds number
increases [16,23], seemingly supporting the previous theoretical arguments [21,22]. Furthermore,
it is found that intense dissipation and intense enstrophy tend to occur together in space at high
Reynolds number [16,23,24].

Regarding the current knowledge about small-scale turbulence based on the above studies, there
are two questions we would like to explore. First, in addition to the cases in Refs. [16,23], can we
find other evidence supporting the conclusion that enstrophy and dissipation could be similar in
certain conditions? Second, is a high Reynolds number the necessary and sufficient condition for
this characteristic of small-scale turbulence? The questions originate from our recent research about
turbulence modulation by finite-size particles [25]. In that work, it is found that the dissipation
rate becomes quite intense due to the disturbance by particles, which is in agreement with other
numerical [26] and experimental [27] studies. However, what is interesting is that several common
results concerning the statistics of dissipation and enstrophy are observed with the single-phase
high-Reynolds-number simulations.

This article is organized as follows. In Sec. II, the methodology and simulation configurations
are introduced. In Sec. III A, the intermittency of enstrophy and dissipation are investigated. Their
spatial distributions are then discussed in Sec. III B. To explain the similarity between enstrophy
and dissipation, Sec. III C conducts analysis from the perspective of pressure Laplacian and velocity
derivatives. Finally, Sec. IV gives a summary.

II. NUMERICAL METHODS AND SIMULATION CONFIGURATIONS

We consider the incompressible viscous flow laden with finite-size particles. The dimensionless
form of the governing equations can be written as

∇ · u = 0, (1)

∂u
∂t

+ u · ∇u = −∇p + ν∇2u + f, (2)

where u denotes the velocity vector, p is the kinematic pressure, and ν is the kinematic viscosity.
The vector f is the volume force term representing the effects of particles on fluid. This force is
determined in the framework of the immersed boundary technique. We solve Eqs. (1) and (2) using
a sixth-order centered compact scheme [28] for the diffusion term, and the convective terms are
discretized by a fifth-order upwind compact scheme [29]. The Poisson equations for pressure are
solved by a fourth-order method [30]. The time integration of the equations is performed by the
fourth-order Runge-Kutta scheme [31].

The no-slip and no-penetration boundary conditions at the fluid-solid interfaces are implemented
by the direct-forcing immersed boundary method [32,33]. In this method, the surface of each particle
is represented by a number of uniformly distributed Lagrangian points. The intermediate fluid
velocity at the kth Lagrangian point xk , ûk is then computed through the interpolation, in which
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TABLE I. Parameters of the three particle-laden cases at the particle injection time. St means particle
stokes number, which is defined by St = d2

pη
2ρp/18ρ f , where ρp and ρ f are the particle density and fluid

density, respectively.

Case ρp/ρ f dp/ηin dp/λin St

P1 10.0 25.4 1.58 358.4
P2 100.0 25.4 1.58 3584.2
P3 1000.0 25.4 1.58 35842.2

the weights are determined by the Dirac δ function [34]. The direct forcing acting on the point xk

can be obtained as Fk (xk ) = (uL − ûk )/
t , where 
t is the time step and ûk is the desired velocity
at position xk . The desired velocity means the fluid velocity at the next time level which satisfies
the no-slip condition, which is given by uL = up + ωp × (xk − xc), where up is the translational
velocity of particle, ωp is the rotational velocity of the particle, and xc is the location of particle
center. By iterating this scheme multiple times in one time step, the accuracy of the immersed
boundary method can be further improved, as pointed out in Refs. [33,35]. The force term f thus
can be integrated as f = ∫

ζp
Fk · δ(x − xk )dxk , where ζp is the particle domain and δ is the Dirac δ

function. Accordingly, the hydrodynamic force F and torque T exerted on the particle are expressed
as

F = ρ f
dup

dt
Vp − ρ f

∫ N

1
Fk (xk )dxk, (3)

T = ρ f

ρp
I

dωp

dt
− ρ f

∫ N

1
(xk − xc)Fk (xk )dxk, (4)

where ρ f and ρp are, respectively, the density of the fluid and particle. N is the total number of
Lagrangian points on a particle, Vp is the volume of a particle, and I is the rotational inertia of the
particles.

The particle-particle collisions have also been considered here. The soft-sphere collision model
[36] is adopted to calculate the collision force and torque acting on the particles. The basic idea
of the soft-sphere model is to represent the pair of colliding particles as a combination of spring,
dashpot, and slider. Detailed implementations of the model are referred to Refs. [36,37]. It should
be pointed out that the soft-sphere model is able to handle multiple collisions for a particle at a
time. Once the hydrodynamic and collisional forces and torques are acquired, the particle velocity
and location can be updated by marching forward the governing equations of particle motions,
which are based on Newton’s law. All of these methods have been validated in our previous works
[33,35,37].

We perform direct numerical simulations of particle-laden isotropic turbulent flows at moderate
Reynolds number. The dimensionless length of the box is 2π , and the computational domain is
discretized into a uniform mesh with 10243 grid points. The initial Taylor-scale Reynolds number
is Reλ = 110 and no turbulence forcing scheme is applied, namely, the flow is decaying. A total
of 640 particles are randomly released in the fluid domain when the initial turbulent flow has
developed sufficiently, which can be determined by whether the skewness of the velocity derivative
reaches about 0.5. The diameter of particles, dp, is 40 times the grid width, and 25.4 times the
Kolmogorov length scale η at the particle injection time. The corresponding solid fraction is 2%. The
dimensionless length of the Kolmogorov scale and Taylor scale at the injection time is, respectively,
ηin = 9.66 × 10−2 and λin = 1.55 × 10−1. The Taylor-scale Reynolds number at particle release
time is 66.5. To examine whether the discrepancy between enstrophy and dissipation decreases with
the intensity of small-scale turbulence, three particle-laden simulations (cases P1–P3) are conducted
with different particle-to-fluid density ratios, as shown in Table I. The initial states for the three cases
are identical, but their mean particle slip velocities will soon differ from each other due to different
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FIG. 1. PDFs of normalized dissipation rate and normalized enstrophy. Solid lines correspond to the
normalized dissipation rate; dashed lines correspond to normalized enstrophy. (a)–(d) Cases SP, P1, P2, and
P3, respectively.

particle inertias, and thus they can affect the small scales to different degrees. The corresponding
single-phase flow is denoted as case SP to facilitate comparison.

III. RESULTS

In this section, the statistical and spatial relationships between enstrophy and dissipation are
examined for both single-phase and particle-laden cases based on our simulations. Observations
are compared with those single-phase but higher-Reynolds-number studies. The potential reason
for those common features about small-scale turbulence, which occurred in flows with and without
particles, is explored.

A. Intermittency of enstrophy and dissipation

The spatial intermittency of small-scale turbulence means that flow variables show extremely
high local values relative to the spatial average. Following the definitions in Ref. [38], we call events
with fluctuations over O(10) times the mean as “extreme events.” The intermittency for random
variables could be intuitively characterized by their probability density functions (PDFs). Figure 1
shows the PDFs of normalized dissipation rate ε ′ = ε/〈ε〉 and normalized enstrophy � ′ = �/〈�〉 at
t = 2.8τ0, where τ0 is the initial large-eddy turnover time, and the operator 〈·〉 means spatial average
over the fluid domain (excluding the regions occupied by particles). It should be pointed out that
〈ε〉 is equivalent to 〈�〉 because 〈ε〉 = ν〈�〉 in homogeneous turbulence [39]. As can be seen from
Fig. 1(a), it is evident that dissipation is less intermittent than enstrophy in single-phase turbulence at
such Reynolds number, agreeing with the previous observations in single-phase turbulence [19,20].
For particle-laden flows at similar Reynolds number in Figs. 1(b)–1(d), both the intermittency of
dissipation rate and that of enstrophy have been greatly augmented as a result of disturbance by
particles. The higher the particle inertia is, the more intermittent the flow tends to be. In addition,
the gaps between PDFs of enstrophy and dissipation are obviously narrowed.

Since the turbulence is decaying in the present simulations, it is necessary to examine whether the
above observation stays the same when the Reynolds number changes. Figure 2 shows the temporal
evolution of mean dissipation and mean enstrophy. At the particle injection time (t = 0.8τ0), the
mean dissipation and mean enstrophy increase sharply, but after that the curves are rather smooth.
In addition, the injection of particles does not lead to any derivations from the relation 〈ε〉 = ν〈�〉.
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FIG. 2. Temporal evolution of the spatial mean values of dissipation rate (lines) and enstrophy (scatters).

That is to say, the mean values are not intermittent in time, though the local values are strongly
intermittent in space. In Fig. 3, the PDFs of the normalized dissipation rate and enstrophy at several
time snapshots are displayed for the single-phase case (SP) and the particle-laden case (P3) (the
other two particle-laden cases are not shown here because the results are similar). The statistics in
this work start from t = 2.8τ0 (two eddy turnover times after the injection) to get rid of the influence
of initialization. From Fig. 3, it can be seen that the shapes of PDFs remain very similar as time
goes by and the main conclusions keep the same: enstrophy is more intermittent than dissipation for
single-phase turbulence at such low Reynolds number, but they are both greatly augmented in the
particle-laden case and the gap between them is decreased.

In conclusion, the current results present the same behavior as the previous numerical [16,23,24]
and theoretical [21,22] studies at high Reynolds number. Specifically, enstrophy becomes as
intermittent as dissipation when the small-scale motions become intense.

Another problem concerning intermittency is whether high-order moments of dissipation and
enstrophy converge. As the order of the moment increases, the contributions of intense values
become more significant, though these events are rare in comparison to those with moderate

FIG. 3. PDFs of normalized dissipation and enstrophy for (a)–(d) the single-phase case (SP) and (e)–(h)
the particle-laden case (P3) at different times. (a),(e) 2.8τ0; (b),(f) 3.5τ0; (c),(g) 4.2τ0; (d),(h) 4.9τ0.
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FIG. 4. Scatterplot of fourth-order moments of normalized dissipation and enstrophy. Each point stands for
the spatial averages of enstrophy and dissipation at a time snapshot. Colors of the symbols indicate the time.
Inset: The temporal development of Taylor-scale Reynolds number Reλ.

values. If similar scaling of extreme values for dissipation and enstrophy is true, it is expected
that the ratio of 〈(� ′)p〉 to 〈(ε ′)p〉 decreases with Reynolds number and approaches unity when p
is sufficiently large. The simulations in Ref. [23] suggest that 〈(� ′)4〉/〈(ε ′)4〉 generally decreases
with Taylor-scale Reynolds number of the turbulence. Figure 4 shows the fourth-order moments
of ε ′ and � ′ at different snapshots of the present simulations. Obviously, particles have greatly
amplified both the moments of enstrophy and dissipation, with the maximum magnification up to
O(105) times within the snapshots. In general, heavy particles increase the moments more than light
particles. It is reported in Ref. [23] that the ratio is closer to one for higher values of the moments,
and there is a change in behavior at normalized moments around O(105). In this work, O(105) can
also be roughly used as a pivot to separate the group of points.

Different from their observations, the similarity of dissipation and enstrophy does not occur at
higher Reynolds number in this work. On the contrary, the two quantities are more close to each
other in simulations with smaller Reynolds number. Table II displays the length scales and Reynolds
number at the end of the simulations. It is found that the Reynolds number of the particle-laden
case is smaller than that of the single-phase case. The reason could be due to smaller turbulence
length scales. The particles generate small-scale turbulence, thus the turbulence length scales are
smaller than those without particles, as shown in Table II. What the two kinds of flows (single-phase

TABLE II. Taylor-scale Reynolds number Reλ, Taylor length scale λ (dimensionless) and Kolmogorov
length scale η (dimensionless) at t = 4.9τ0.

Case Reλ λ η η/ηin

SP 36.3 2.51 × 10−1 2.12 × 10−2 2.19
P1 30.5 2.17 × 10−1 2.00 × 10−2 2.07
P2 21.7 1.41 × 10−1 1.53 × 10−2 1.59
P3 21.3 1.29 × 10−1 1.43 × 10−2 1.48
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FIG. 5. Contour plots of local dissipation and enstrophy (both dimensionless). (a)–(d) The 2D slice views
of dissipation; (e)–(h) views of enstrophy. Contours for cases SP, P1, P2, and P3 are displayed on different
columns, respectively.

high-Reynolds number flow and particle-laden flow at low Reynolds number) have in common is
that the small-scale motions are rather intense. It seems that not the high Reynolds number, but the
intensity of the small scales is the key factor for this particular feature of similarity.

B. Spatial distributions of intense enstrophy and dissipation

Another recently observed characteristic of intense small-scale turbulence is that high dissipation
and high enstrophy occur simultaneously in space, which was reported by the high-Reynolds-
number simulations [23,24] and experiments [40]. Figure 5 shows the contours of local dissipation
and enstrophy for different cases at the same time and cut plane. For case SP, the distribution of
strong dissipation does not apparently coincide with that of strong enstrophy, as shown in Figs. 5(a)
and 5(e). However, in the particle-laden cases, maps of intense enstrophy and dissipation induced
by finite-size particles are overall matched. The current finding might be an evidence supporting
this potential feature of intense small-scale turbulence.

To further quantitatively investigate whether the distributions of intense dissipation and intense
enstrophy converge in space, we plot the joint PDFs of ε ′ and � ′, as displayed in Fig. 6. The
contours in the first quadrants represent flow regions with both high enstrophy and high dissipation,
and so forth. In Fig. 6(a), these two quantities do not show much correlation in the first quadrant.
Meanwhile, in the high-Reynolds-number simulations by Yeung et al. [23], they observed a
small protuberance along the diagonal line in the first quadrant at Reλ = 1000, suggesting the
trend that intense dissipation and intense enstrophy occur together. For the particle-laden cases
in Figs. 6(b)–6(d), the shapes of PDFs in the second, third, and fourth quadrants look similar to
that of the single-phase flow. However, they are quite different in the first quadrants. It can be seen
distinctly from the figure that intense dissipation is strongly correlated with intense enstrophy. This
is another common observation with single-phase high-Reynolds-number studies. The correlation
is even more obvious than that in Ref. [23], though the Taylor-scale Reynolds number is one order
smaller in the present simulations. They look more like thorns rather than small protuberances
at the top right corner of the contours. More importantly, the trend of these sharp corners in the
direction of increasing dissipation and enstrophy is exactly in accord with the auxiliary diagonal
lines (gray dashed lines with slope of one) in all the particle-laden cases. It is suggested that
not only are intense enstrophy and intense dissipation associated with each other in space, but
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FIG. 6. Joint PDFs of normalized dissipation rate and normalized enstrophy. (a) Case SP, (b) case P1,
(c) case P2, and (d) case P3. The slope of the gray dashed lines in the first quadrants is 1.

also there exists a quantitative relationship between their instantaneous local values. As can be
inferred from Figs. 6(b)–6(d), this quantitative relationship is that ε ′/� ′ tends to be 1 for intense
small-scale turbulence. Analogue to Fig. 3, Fig. 7 displays the joint PDFs of normalized dissipation
and normalized enstrophy for the single-phase case (SP) and the particle-laden case (P3) at different
times. It can be seen that the joint PDFs look much the same as time changes, indicating that the
statistics are not intermittent in time.

FIG. 7. Joint PDFs of normalized dissipation and normalized enstrophy for (a)–(d) the single-phase case
(SP) and (e)–(h) the particle-laden case (P3) at different times. (a),(e) 2.8τ0; (b),(f) 3.5τ0; (c),(g) 4.2τ0;
(d),(h) 4.9τ0.

014301-8



SIMILARITY OF DISSIPATION AND ENSTROPHY IN …

FIG. 8. Comparison of PDFs conditioned on intense events (ε ′ � 10 and � ′ � 10) and on full domain
(unconditional) for case P3. (a) PDFs of ∇2 p; (b) PDFs of ∇2 p/Ri jRi j . Insets: The corresponding PDFs for the
single-phase case (SP).

C. Reasons for the similarity between enstrophy and dissipation

As mentioned above, 〈ε〉 is equivalent to 〈�〉 in homogeneous turbulence, and Fig. 2 has proved
that particles do not cause biases from the equality. Therefore, one can simplify the ratio of ε ′ to
� ′ as Ri jRi j/Si jSi j . In the turbulence literature, the difference of the square of rotation rate tensor
Ri j and that of strain rate tensor Si j is usually used to identify the vortex structures, which is known
as the Q criterion [41] and Q = (Ri jRi j − Si jSi j )/2. Substituting the expressions of strain rate and
rotation rate into the square terms, we can write the difference of Ri jRi j and Si jSi j in forms of
velocity derivatives as

Ri jRi j − Si jSi j = − ∂ui

∂x j

∂u j

∂xi
. (5)

Utilizing the continuity equation and momentum equation for incompressible flow, Eq. (5) can be
associated with the pressure Laplacian by

∇2 p = − ∂ui

∂x j

∂u j

∂xi
. (6)

These two equations offer us the opportunity to gain a greater understanding of the intense events
of enstrophy and dissipation from the perspectives of pressure Laplacian and velocity derivatives.

Since the pressure Laplacian are closely related to dissipation and enstrophy by Ri jRi j − Si jSi j =
∇2 p, we are very interested in the behavior of the pressure Laplacian when enstrophy and dissipation
become similar. It should be pointed out that “become similar” means Si jSi j/Ri jRi j = 1 when
small-scale motions are intense. It is known that when small-scale motions get intense, both Ri jRi j

and Si jSi j become large, so how about ∇2 p? One possible situation may be ∇2 p = 0 so that
Si jSi j/Ri jRi j = 1 is ensured. Another situation is that the absolute value of ∇2 p also becomes
large, but ∇2 p/Ri jRi j = 0, so Si jSi j/Ri jRi j = 1 is still satisfied according to 1 − Si jSi j/Ri jRi j =
∇2 p/Ri jRi j .

To answer this question, we consider the PDFs of ∇2 p conditioned on ε ′ � 10 and � ′ � 10
following the definition in Ref. [38]. Figure 8(a) compares the conditional PDFs and unconditional
PDFs (namely, PDFs on full domain) of ∇2 p for case P3 and case SP (inset). It can be found that
the unconditional PDFs have sharp shapes, which suggests that there is a high possibility for ∇2 p
being zero, but low chance for |∇2 p| being large. Besides, the unconditional PDFs are symmetric,
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so the chances for ∇2 p being positive and negative are in balance. The distribution patterns for
conditional PDFs are far different. First, the conditional PDFs have significantly larger variance and
they look much shorter than the unconditional PDFs. Although the maximum probability still occurs
at around ∇2 p = 0, the chance for high |∇2 p| has increased and the curves have gentler slopes.
Second, the conditional PDFs are no longer symmetric and positively skewed. The most important
conclusion obtained from Fig. 8(a) is that the conjecture that ∇2 p = 0 for intense events is not true.
The possibility of pressure Laplacian being large and positive is increased when conditioned on
high enstrophy and high dissipation zones.

Then the only potential situation should be that though ∇2 p has a higher value as the intensity of
small scales increases, ∇2 p/Ri jRi j or ∇2 p/Si jSi j becomes negligible in such condition. This infer-
ence is obtained according to 1 − Si jSi j/Ri jRi j = ∇2 p/Ri jRi j or Ri jRi j/Si jSi j − 1 = ∇2 p/Si jSi j .
Without loss of generality, we examine the conditional PDFs of ∇2 p/Ri jRi j , which are shown
in Fig. 8(b). As expected, the peaks of the PDFs of ∇2 p/Ri jRi j are shifted towards zero when
conditioned on extreme events, and the conditional PDFs have much smaller variance compared to
the unconditional PDFs. In addition, unconditional PDFs are nonsymmetric with very long tails on
the negative side, and they have higher amplitude on the positive side. By contrast, the conditional
PDFs are more likely to be symmetric, and the tails on the negative side have been greatly shortened,
indicating a low chance for ∇2 p/Ri jRi j being both large and negative in extreme events. The
physical interpretation of small ∇2 p/Ri jRi j for intense small-scale turbulence could then be that
as the velocity fluctuations grow, the magnitude of the corresponding pressure fluctuation does not
seem to increase equally.

Though we could explain why Ri jRi j gets close to Si jSi j from the aspect of pressure Laplacian,
it is still unclear why ∇2 p is much smaller in comparison to Ri jRi j . For this reason, we would
like to explore the internal cause from the viewpoint of velocity derivatives themselves. Expanding
∇2 p and Ri jRi j following the Einstein summation convention, one can get ∇2 p = −(A + 2B) and
Ri jRi j = C − B, where

A =
(

∂u1

∂x1

)2

+
(

∂u2

∂x2

)2

+
(

∂u3

∂x3

)2

, (7)

B = ∂u1

∂x2

∂u2

∂x1
+ ∂u1

∂x3

∂u3

∂x1
+ ∂u2

∂x3

∂u3

∂x2
, (8)

C = 1

2

[(
∂u1

∂x1

)2

+
(

∂u2

∂x1

)2

+
(

∂u1

∂x3

)2

+
(

∂u3

∂x1

)2

+
(

∂u2

∂x3

)2

+
(

∂u3

∂x2

)2
]
. (9)

The terms on the right-hand sides of Eqs. (7)–(9) can be roughly divided into two categories: the
square terms and the cross terms of two different velocity derivatives. There may be changes in the
behavior of the terms consisting of them, which leads to the changes in the behavior of enstrophy
and dissipation for intense small-scale turbulence. For the square terms, it is relatively clear that they
become larger when the intensity of small-scale turbulence increases, but we have no idea about the
cross terms.

Figure 9(a) shows the joint PDF of ∂u1/∂x2 and ∂u2/∂x1 for case P3. The contours are symmetric
to the two axes when the magnitudes of the derivatives are relatively low. Namely, the points in this
plane have an equal chance to fall in the four quadrants when they are not far from the origin.
However, situations are different for intense events. The points are more likely to fall in the second
and fourth quadrants when the magnitudes of the derivatives are large. This preferential distribution
makes the shape of the PDF asymmetric, and they spread out along the diagonal line with slope of
−1. It is obvious in Fig. 9(a) that the contour looks much blanker in the first and third quadrants
in comparison to the second and fourth quadrants. Mathematically speaking, it is implied that the
product of the two terms is more likely to be negative in intense events. Then a reasonable inference
is that each of the cross product terms in B tends to be negative when conditioned on high enstrophy
and high dissipation zones. Therefore, the term B should also tend to be negative in this condition.
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FIG. 9. PDFs of the velocity derivatives for case P3. (a) Joint PDF of ∂u1/∂x2 and ∂u2/∂x1. (b) Uncondi-
tional and conditional PDFs of term B.

Figure 9(b) shows the comparisons of unconditional and conditional PDFs of B. For unconditional
PDF, it takes some effort to see that it has a slightly longer tail in the negative side than in the
positive side. By contrast, it can be seen more clearly that the conditional PDF mainly lies in the
negative side, which demonstrates the above conclusion. In addition, the conditional PDFs have
long stretched tails in the negative side, indicating that the absolute value of B becomes larger when
conditioned on intense events.

But could this particular property of term B explain why ∇2 p/Ri jRi j tends to be small and thereby
why Si jSi j approaches Ri jRi j? The absolute values of A, B, and C should all increase when they are
conditioned on intense events. However, A and C always keep positive, but B preferentially becomes
negative in intense small-scale turbulence. As a result, ∇2 p = −(A + 2B) can be considered as
the summation of two opposite contributions which cancel each other out, while Ri jRi j = C − B
consists of two positive parts. This could be a rough explanation for why ∇2 p is much smaller than
Ri jRi j in intense events.

IV. CONCLUSIONS

In the present study, we propose an idea to explore the properties of small-scale turbulence in
particle-laden turbulent flow. It is found that the finite-size particles greatly increase the small-scale
turbulence. In this particle-enhanced turbulent flow, similar features (both statistical and spatial)
between enstrophy and dissipation are observed. These findings support the previous theoretical
inferences. In addition, a quantitative relation between intense dissipation and enstrophy is found.
The statistics of pressure Laplacian and velocity derivatives are conducted to look for clues about
why enstrophy and dissipation become similar. It turns out that the cross product of the velocity
derivatives is negative in intense small-scale turbulence which leads to the similarity of enstrophy
and dissipation.

It is interesting that there are common observations between this particle-enhanced turbulence
and the recent single-phase high-Reynolds-number turbulence. Though the Reynolds number is
quite different (more than one order of magnitude), the common characteristic is that the small-scale
motions are rather intense, which could be the key factor for these behaviors.
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