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At finite Reynolds numbers, particles migrate across flow streamlines to their equilib-
rium positions in microchannels. Such a migration is attributed to an inertial lift force, and
it is well known that the equilibrium location of neutrally buoyant particles is determined
only by their size and the Reynolds number. Here we demonstrate that the decoration of a
bottom wall of the channel by superhydrophobic grooves provides additional possibilities
for manipulation of neutrally buoyant particles. It is shown that the effective anisotropic
hydrodynamic slip of such a bottom wall can be readily used to alter the equilibrium
positions of particles and to generate their motion transverse to the pressure gradient. These
results may guide the design of novel inertial microfluidic devices for efficient sorting of
neutrally buoyant microparticles by their size.
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I. INTRODUCTION

Inertial microfluidic systems have been shown to be very useful for focusing and separation
of microparticles of different size, density, and shape with increased control and sensitivity,
which is important for a wide range of applications in chemistry, biology, and medicine [1–3].
Compared to classical microfluidic devices, which usually rely on relatively small flow velocities
(low-Reynolds-number laminar flows), inertial microfluidics operates with higher rates when fluid
inertia becomes significant. At finite Reynolds numbers, particles experience an inertial lift force,
which induces their migration across streamlines of carrier flow to some equilibrium positions
in microchannels. Thanks to this force, the focusing of particles in inertial microfluidic devices
could be achieved without applying any transverse external fields, that offers unique advantages
in separation technologies. Since unlike field-flow fractionation methods, the inertial separation is
based on focusing of particles at distinct equilibrium positions, but not on a difference in retention
times [4,5] or in migration velocities [6], it can be used for a continuous fractionation of particle
dispersions at high throughput (see [7,8] for recent reviews). An especially challenging problem is,
naturally, the fractionation of spherical neutrally buoyant microparticles since it can only exploit the
difference in their size. Therefore, the possibilities of controlled manipulations of such particles by
using an inertial lift force remain quite limited.
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FIG. 1. Sketch of the system: side (a) and top (b) views, with a schematic of vertical and transverse
migration.

Inertial separation of neutrally buoyant particles implies that they should focus at different
locations, depending on their sizes. However, the dependence of the equilibrium positions on
particle radii is too weak to be used in microfluidic applications. An efficient strategy for a separation
of such particles on microscale is normally to balance the inertial lift force by another one, which
scales differently with the particle size. This includes such external forces as electric [9] or magnetic
[10]. The inertial lift can also be balanced by the Dean force due to a secondary rotational flow
caused by inertia of the fluid itself, which can be generated in curved channels [1,2], leading to a
migration of particles in vertical directions and altering their equilibrium positions. A promising
direction is also to induce an additional force by exploiting porous channel walls. With such walls
the drag to permeate flow could be used to control focusing positions of particles [11–13].

Microfabrication has opened the possibility to elaborate channels whose surfaces are patterned
in a very well controlled way, thus providing properties that they did not have when flat or slightly
disordered, and the best known example of such surfaces is probably superhydrophobic (SH)
ones [14]. The large effective slip length (the distance within the solid at which the flow profile
extrapolates to zero) of SH surfaces compared to simple, smooth channels can greatly lower the
viscous drag and reduce the tendency for clogging or adhesion of suspended particles [15–17].
The effective hydrodynamic slip of anisotropic SH surfaces is generally tensorial [18–20], due to
secondary flows transverse to the direction of the applied pressure gradient [21]. The transverse
viscous flow generated by anisotropic SH surfaces could be used to guide the controlled lateral
displacement of particles and their separation by size, but these effects remain largely unexplored.
Some concepts of fractionation in SH channels of low Re are known. However, their use requires a
sedimentation of particles [22,23], so that they cannot be used for neutrally buoyant microparticles.
In principle, SH channels can be designed to achieve inertial separations of neutrally buoyant
particles, but we are unaware of any prior work.

In this paper, we study an inertial migration of neutrally buoyant spherical particles in a plane
channel with the bottom wall decorated by SH grooves, tilted relative to a pressure gradient (as
shown in Fig. 1). Our consideration is based on the theoretical analysis and lattice-Boltzmann
simulations. We show that the effective hydrodynamic slippage of the bottom SH surface affects
the migration velocity of particles and alters their equilibrium positions in the channel. We also
demonstrate that particles migrate in the transverse direction with a velocity that depends on their
size. Our results may guide the design of inertial microfluidic devices for efficient sorting of
neutrally buoyant microparticles by their size.

The structure of our paper is as follows. In Sec. II, we define our system and present some
theoretical estimates of particle migration in a channel with a SH wall. Section III discusses our
simulation method and justifies the choice of parameters. Results are discussed in Sec. IV and we
conclude in Sec. V.
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FIG. 2. (a) Sketch of a striped superhydrophobic surface with coordinate systems aligned along −∇p and
stripes; (b) a parabolic forward and a linear transverse shear flows in a SH channel.

II. MODEL AND THEORETICAL ESTIMATES

We first present the model and basic physical ideas underlying our work. We consider a viscous
fluid confined between a SH plate located at z = 0 and a no-slip hydrophilic plate located at z = H
and unbounded in the x and y directions as sketched in Fig. 2(a). The flow is driven by pressure
gradient ∇p applied at some angle α to the direction of the SH grooves. The x axis is defined along
−∇p, and the y axis is aligned across the channel. The SH surface is modeled as a flat interface
with alternating no-slip and perfect-slip stripes of a period L and a slipping area fraction φ. In
this idealization, we have neglected an additional mechanism for a dissipation connected with the
meniscus curvature [24–26] which may have an influence on a channel flow.

Our final aim is to calculate translation of particles of radius a in the x and y directions, and their
migration in the direction z. To evaluate these we have to know the properties of an undisturbed
by particles flow field. We, therefore, first summarize and give some interpretation of earlier results
on fluid velocities in the SH channel. The maximum velocity of the Poiseuille flow in a no-slip
(hydrophilic) channel of the same thickness would be U ′

m = |∇p|H2/(8μ), where μ is the dynamic
viscosity. In our analysis below we use dimensionless, scaled by this value, velocities, and the
channel Reynolds number is then defined as Re = ρU ′

mH/μ, where ρ is the density of a fluid (and
particles).

Since the Navier-Stokes equations in the SH channel can be solved only numerically, it is
instructive to analyze the velocity profiles U = (U x,U y), averaged over the texture period. When
Re � 1, the averaged velocity in the channel satisfies tensorial slip boundary conditions at the SH
wall, Us = −b · ∂U(0)/∂z, where Us = (Usx,Usy ) is the slip velocity at the SH surface, and b is
the effective slip length tensor. Its eigenvalues b‖ and b⊥ for the striped texture correspond to the
fastest (greatest forward slip) and slowest (least forward slip) directions, along and across the stripes,
respectively, and depend on φ and L/H [20]. Let us now assume that at finite Re, the tensorial slip
approach could serve as a rough approximation. If so, the averaged forward velocity profile would
be approximately parabolic [see Fig. 2(b)]

U x � 4(1 − z/H )z/H + Usx(1 − z/H ), (1)

and an averaged velocity of the transverse shear flow is given by

U y � Usy(1 − z/H ). (2)

Averaged forward and transverse slip velocities can be evaluated in terms of the effective slip tensor
[18]:

Usx � 4bx

H
, Usy � 4by

H
, (3)
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where the forward and transverse slip lengths are

bx � b‖ cos2 α + b⊥ sin2 α, (4)

by � sin(2α)

2
(b‖ − b⊥). (5)

The angles α = 0◦ and 90◦ correspond then to special (eigen)directions, where bx = b‖ and b⊥
along which a secondary transverse flow is not generated, by = 0. The maximum transverse flow is
generated at α = 45◦ [16].

It is now convenient to define a second coordinate system with the ξ axis directed along the
stripes, and η across them [see Fig. 2(a)]. The reason is an undisturbed flow field, which depends
only on η and z, is periodic in the η direction. Besides, as we report in Sec. III, our simulation cell
is also periodic in the ξ direction, so that all simulation variables will be averaged over these two
coordinates. In this coordinate system, the averaged velocity field is given by

U ξ = U x cos α − U y sin α, (6)

U η = U x sin α + U y cos α. (7)

At a finite channel Reynolds number, Re � 1, the averaged velocity profile can generally differ from
the parabolic one due to the presence of inertial terms in the Navier-Stokes equations. However, as
we will see below in Sec. III, in reality, the deviations from the creeping-flow limit, Eqs. (1)–(5),
are negligibly small even when Re � 20.

We now turn to the motion of (force and torque free) neutrally buoyant particles. In an unbounded
linear shear flow, such particles would move with the velocity V, which is equal to the fluid velocity
U at the particle’s position z. In the case of an unbounded parabolic flow, they would slightly lag the
fluid due to Faxen corrections. However, the particle velocity in the channel can differ significantly
from that of a fluid due to hydrodynamic interactions with the walls. It has recently been suggested
that in a symmetric no-slip hydrophilic channel this difference can be characterized by the correction
functions hξ and hη [27]:

V ξ = hξ (z/a)U ξ (z), V η = hη(z/a)U η(z). (8)

These two functions 0 � hξ,η � 1 should obviously become different for our SH channel due to the
wall slippage and anisotropy, as well as an asymmetry of the channel itself. Note that, as shown
before [28–30], near a homogeneous slippery wall a particle has a smaller lag, U − V, compared to
the no-slip case, so that functions hξ,η become close to unity. This lag should be even smaller for
highly slippery SH wall.

An inertial lift force at finite Re is directed normal to the channel walls, and scales as [31]

Fl = ρ(4a2U ′
m/H )2cl , (9)

where cl (z/H, a/H, Re) is the lift coefficient. The lift in a symmetric no-slip channel is an
antisymmetric function of z/H − 1/2 due to the flow symmetry. This function has three zeros,
which correspond to equilibrium positions of particles. Two of them are stable, being symmetric
and located at the vicinity of the walls. The third zero has a locus at the midplane of the channel,
where the shear rate dU/dz vanishes, and corresponds to an unstable equilibrium. In a SH channel
the secondary transverse flow is usually much weaker than the forward flow, so that |U x| � |U y|.
We, therefore, could expect that the lift force will be generated mainly by the gradient of the forward
velocity, similarly to a hydrophilic channel, but the locations zeq of three equilibrium positions
should be, of course, altered due to a bottom wall slip. Since the difference U − V is expected to
become smaller in the presence of the SH wall, a weaker lift force could be expected as compared
with reported for a hydrophilic channel [27].
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Finally, we expect that the transverse fluid velocity induces a lateral translation of particles. Since
their equilibrium positions depend on radii, the particles of different sizes are expected to move with
different transverse velocities V

eq
y , allowing for their spatial separation in the y direction.

III. SIMULATION METHOD

Fluid flow and particle motion in the channel are simulated using the lattice Boltzmann method
[32,33]. We use a three-dimensional (3D), 19 velocity, single relaxation time implementation of the
lattice Boltzmann method with a Batnagar-Gross-Krook (BGK) collision operator. The relaxation
time τ is equal to 1 throughout this paper, so that the kinematic viscosity in simulation units is ν = 1

6 .
The fluid density in the initial state ρ0 is set to 1 and remains approximately constant throughout
the simulations. Spherical particles with radius a are implemented as moving no-slip boundaries
originally proposed by Ladd [34]. Our implementation has been used before [33,35–38] including
a recent related article on a particle experiencing an inertial lift force in a no-slip channel [27].

The simulation domain has dimensions Nξ = Nη = 128 and Nz = 81 lattice cells, which corre-
spond to a channel of height H = 80. Periodic boundary conditions are applied on the sides. A
mid-grid bounce back no-slip boundary condition is implemented at the top wall and an onsite slip
boundary condition is applied to the bottom wall to describe the striped texture [20,39,40]. The
stripes are parallel to the ξ axis and have widths φL (perfect slip) and (1 − φ)L (no slip) with
L = 32 (L/H = 0.4) and φ varying from 0 (no slip) to 0.875. Since it is impossible to implement
the pressure gradient explicitly in a periodic setup, we model it by applying a volumetric body force
to the fluid. An equivalent force is applied to particles to ensure neutral buoyancy. The body force
enters the lattice Boltzmann algorithm by shifting the equilibrium velocity in the collision operator
(Shan-Chen forcing). It is applied at an angle α = 45◦ to the stripes to maximize a transverse shear,
and its magnitude is set to g = 10−5 in simulation units. In a channel with no-slip walls, this force
creates a Poiseuille flow with Re � 23.

Particles are released from different initial positions with a velocity equal to the average flow
velocity at the corresponding height. Simulations run until the particle reaches its equilibrium
position in z. Typically, this takes about 300 000 time steps. The equilibrium velocities V

eq
x and

V
eq
y are obtained by averaging over an interval of 
t = 1000 time steps.

IV. RESULTS AND DISCUSSION

In this section, we present our simulation results. More specifically, we discuss simulation data
obtained for vertical and lateral displacement of particles, and also present some data on a fluid
velocity field and slippage at the SH wall.

It is by no means obvious that at Re � 20 the approximate equations (1)–(5) will be accurate
enough. We, therefore, first simulate the flow in a particle-free channel to characterize the
unperturbed velocity field and to check the validity of formulas. A typical velocity field for a channel
with a SH bottom wall is shown in Fig. 3. The fluid has a finite velocity at the slippery parts of the
texture. The inhomogeneous boundary conditions result in flow ondulations near the bottom wall,
but at distances comparable to L the flow becomes homogeneous in the η direction. We obtain the
averaged velocity profiles in the directions along and across stripes, U ξ (z) and U η(z), by integrating
the velocity field over the texture period in η. The eigenvalues of effective slip lengths are then
calculated as

b‖,⊥ = U ξ,η(z)

dU ξ,η/dz

∣
∣
∣
∣
z=0

. (10)

Figure 4(a) shows the effective slip lengths b‖,⊥ at the SH wall as a function of φ. Also included
are theoretical curves obtained using the Fourier method [41] and valid for Re � 1. We can see
that the fits of our finite Re simulation data are very good. These data and theoretical calculations
are used to calculate the forward and transverse slip velocities from Eqs. (3)–(5). The results are
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FIG. 3. (a) Cross section of the velocity field (Uη, Uz) computed at φ = 0.5. Color map shows the velocity
component Uξ . (b) A zoom in of the marked by a square region.

shown in Fig. 4(b), and we again observe that theoretical and simulation data nearly coincide. We
can, therefore, conclude that calculations based on a low Re theory provide a good description of
the slip lengths and averaged slip velocities obtained in simulations.

Figure 5 plots the averaged velocity profiles in the directions x and y. The simulations are made
using φ = 0.5 and 0.875. We can see that the forward velocity profiles are always parabolic, and that
the shear rate of the secondary transverse flow is uniform throughout the channel. For similar values
of Re, but for a flow between two misaligned striped SH walls, it has earlier been found that the
creeping-flow equations are violated, and the transverse flow is suppressed by the fluid inertia [42].
We have compared our simulation results with theoretical calculations from Eqs. (1) and (2) and see
that in our case of a channel with one SH wall, the fluid inertia does not alter the U x and U y profiles.
Theoretical curves for a hydrophilic channel (φ = 0) are also shown in Fig. 5. In the hydrophilic
channel the flow is symmetric and the transverse shear is not generated. It can be seen that with the
increase in fraction of the slipping area φ, the absolute values of forward and transverse velocities
grow, and the U x profile becomes asymmetric with the displacement of its maximum toward a SH
wall.

As demonstrated above (see Figs. 4 and 5), the slip velocity at the bottom wall Usx and Usy

increases with φ and the transverse velocity U y is largest at the bottom SH wall and decreases
linearly to zero at the top wall. Therefore, it is natural to expect that focusing at different zeq neutrally
buoyant particles, will translate in the transverse direction with different velocities. We now launch
particles at some arbitrary z and with an initial velocity equal to the averaged liquid velocity at
this height, and monitor particle trajectories. This allows one to determine the particle migration
velocity V z as a function of z. Since V z and Fl vanish at the same z, the zeros of V z correspond to the
focusing positions of particles. Figure 6(a) shows trajectories of a particle of a/H = 0.1 launched

FIG. 4. (a) Longitudinal (circles) and transverse (diamonds) effective slip lengths obtained in simulations.
Solid and dashed curves show results of theoretical calculations. (b) Corresponding slip velocities.
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FIG. 5. Averaged velocity profiles along (a) x and (b) y axes. Symbols show simulation results obtained
using φ = 0.5 (open circles) and φ = 0.875 (filled circles). Theoretical predictions are shown by solid curves.
Dashed curves plot theoretical expectations for a hydrophilic channel of φ = 0.

in the vicinity of the bottom hydrophilic and SH walls. In the case of hydrophilic no-slip wall, the
particle reaches its equilibrium position after translating to a distance, roughly equal to 100 channel
width. At larger distances, its z position remains nearly constant, and Vz becomes negligibly small.
When we deal with a SH bottom wall, both the particle cross-stream coordinate and the velocity
oscillate about some mean values. Note that the amplitude of the velocity oscillations [shown in
Fig. 6(b)] is large compared with the migration velocity for the no-slip case. This indicates that
these oscillations are not due to the lift force, and are induced by the variation of the z component
of the fluid velocity (see Fig. 3). The oscillations in the particle position are, however, relatively
small. The average particle trajectory is qualitatively similar to that observed in the hydrophilic
channel, but the equilibrium position is much closer to the SH wall. This is likely due to a weaker
hydrodynamic interaction with a slippery wall [37].

To obtain the dependence of the migration velocity V z(z) on z we launch particles of radius
a/H = 0.1 from different initial positions and, after computation of trajectories and averaging out
the oscillations, obtain the results presented in Fig. 7. We recall that V z vanishes at equilibrium
positions zeq. In the no-slip channel [Fig. 7(a)], the migration velocity curve is similar to reported
earlier for smaller particles [27]. The flow in the channel is symmetric, leading to focusing of
particles at two symmetric equilibrium positions. There is also an unstable equilibrium position
located at the channel midplane. In the SH channel [Fig. 7(b)] the fluid forward flow is asymmetric
and faster, with the maximum of U x shifted toward the slippery wall. This modifies the profile of
U x(z) compared with a hydrophilic channel. There are still two stable and one unstable equilibrium

FIG. 6. (a) Trajectories and (b) normal velocities of the particle of a/H = 0.1 in the hydrophilic channel
(black curves) and the channel with a SH wall of φ = 0.875 (gray curves).
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FIG. 7. Migration velocity of a particle of radius a/H = 0.1 as a function of a cross-stream particle position
(solid curves) in (a) the hydrophilic no-slip channel and (b) the channel with the bottom SH wall of φ = 0.875.
Dashed curves plot forward velocity profiles.

positions, but it is well seen that they are shifted toward the slippery wall. We remark that zeq of an
unstable position roughly coincides with the coordinate of maximum of U x.

It is known that focusing positions of particles in a hydrophilic channel depend, although slightly,
on their size [27]. We now investigate the effect of particle radii on two stable zeq in the presence
of a SH wall, by varying a/H from 0.05 to 0.15 and by using SH textures of φ = 0.5, 0.75, and
0.875. The simulation results are shown in Fig. 8 together with data for a hydrophilic channel. It is
seen in Fig. 8(a) that the lower zeq increases with the particle size, but decreases with φ, i.e., with
the amplitude of the wall slip, as predicted in Sec. II. The distance of the second stable focusing
position from the upper wall also increases with the particle size [see Fig. 8(b)]. An unexpected
result, however, is that these upper equilibrium positions are also significantly affected by the slip
at the bottom wall. One can see deviations from the no-slip case even with a rather small slipping
fraction, φ = 0.5, when bx/H is relatively small, below 0.05. Another startling conclusion from this
plot is that the dependence of the upper zeq on φ is nonmonotonous, and the equilibrium distance to
the upper wall takes its minimum at φ = 0.5.

At equilibrium, particles translate at a plane z = zeq with a mean velocity (V
eq
x , V

eq
y ). This

velocity can be obtained from simulation data. Then, the correction functions hξ,η in Eq. (8),
which characterize the difference between the average particle and fluid velocities, can be found.
The results for lower equilibrium positions are presented in Fig. 9(a). The simulation data show
the correction functions grow with zeq/a, and for SH channels are well above the correction h

FIG. 8. (a) Lower and (b) upper equilibrium positions vs particle radius. Open circles show results for a
no-slip channel, φ = 0. Filled symbols from top to bottom plot simulation results obtained using φ = 0.5, 0.75,
and 0.875.
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FIG. 9. (a) Correction functions hξ (filled diamonds) and hη (filled circles) for particles at the lower
equilibrium positions computed for φ = 0.5 (gray) and 0.875 (black). Open symbols show results obtained
using φ = 0; (b) lateral V

eq
y particle velocities at the lower equilibrium positions computed for φ = 0.875.

for a hydrophilic channel. The deviations from h increase with φ. We also see that hξ is larger
than hη, especially for the largest φ = 0.875 used in simulations. Figure 9(b) shows the transverse
component of the equilibrium velocity as a function of the particle size computed for a SH channel
of φ = 0.875. We have initially assumed that this should increase with the particle size. It is seen,
however, that V

eq
y (a/H ) saturates when a/H � 0.1.

Finally, we investigate the lateral displacements of particles, which are controlled by the ratio of
their forward and transverse velocities V

eq
y /V

eq
x . The dependence of this ratio on a/H is shown in

Fig. 10(a). We see that it increases when a/H � 0.1, but saturates for larger particles, indicating
that particles of a/H � 0.1 cannot be laterally separated. We now launch the particles at zeq, and
measure their lateral displacement at the outlet of the channel of length l = 200H . The simulation
results are shown in Fig. 10(b), where the size of symbols reflects the particle radius. This plot
indicates that small particles are well separated by distances of the order of the channel height,
which is well above the distance between them in the z direction (cf. Fig. 8), and several times
greater than the particle size itself. Separation can, of course, be further improved by increasing the
channel length.

V. CONCLUSION

We have investigated the inertial migration of neutrally buoyant particles in a plane channel
with a bottom SH striped wall tilted relative to a pressure gradient. It has been shown that the flow
near SH stripes is inhomogeneous and periodic, and leading to regular oscillations of the particle

FIG. 10. (a) The ratio of forward and transverse equilibrium velocities as a function of particle size;
(b) lateral positions of particles at the outlet of the SH channel. Simulations are made for particles of radius
from a/H = 0.05 to 0.1 with a step 0.0125 (from left to right).
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normal velocity and position. We have found that the SH slip significantly affects the lift force and
alters all three focusing positions of neutrally buoyant particles in the channel. The lower (stable)
focusing position has been shown to be significantly shifted toward the SH wall due to weaker
hydrodynamic interactions. We have also demonstrated that the second stable focusing position
(near upper hydrophilic wall) is also affected by the SH wall slip, and that the shift in its location is
discernible even at a relatively small slipping fraction at the bottom wall, when its effective slip is
moderate.

Our results show that a transverse shear flow generated by inclined SH stripes leads to a particle
translation in the direction transverse to the mean (forward) flow, and that the lateral speed of small
particles (a/H � 0.1) increases with their size. The lateral distance between particles of different
radii grows with channel length, suggesting that this can be used for their separation. It follows from
our study that to separate particles by a distance of a few diameters, the channel length-to-height
ratio should be around 200. For example, to separate laterally the neutrally buoyant particles of
radii 3 and 4 μm in a channel of height 40 μm, the channel length should be about 8 mm. However,
we can conclude that it would be impossible to employ our strategy for a fractionation of larger
particles.

Our work can be extended to a lateral separation of heavy particles, and one can expect that
in this case the proposed concept may be even more efficient. Heavy particles may be separated
not only by size, but also a density. Such particles should focus closer to the bottom wall, where the
transverse shear rate is maximal, and where the difference between forward velocities of the particle
and of the undisturbed flow, which strongly depends on the particle size, increases drastically. All
these could potentially lead to an efficient lateral separation.
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