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Magnetoelastic pattern formation in field-responsive fluids
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We study the development of interfacial magnetoelastic patterns when an initially
circular droplet of a field-activated fluid (ferrofluid, or a magnetorheological fluid),
surrounded by a nonmagnetic fluid, is subjected to a radial magnetic field in a Hele-Shaw
cell. Elasticity takes effect when the fluids are brought into contact and, due to a chemical
reaction, the interface separating them becomes a gel-like elastic layer. By modeling
the interface as an elastic membrane having a curvature-dependent bending rigidity,
a perturbative mode-coupling theory is employed to investigate the weakly nonlinear
dynamics of the system. In this context, we examine how the interface responds to the
influence of magnetic, elastic, and yield stress forces. Our findings support the relevance
of a curvature weakening effect, in the sense that magnetoelastic fingering structures tend
to arise and protrude in regions of lower bending rigidity. We contrast the magnetoelastic
patterns with the corresponding usual shapes of magnetic fluid interfaces without bending
rigidity, but with surface tension.

DOI: 10.1103/PhysRevFluids.5.014006

I. INTRODUCTION

Magnetic-field-responsive fluids, such as ferrofluids, and magnetorheological (MR) fluids are
soft matter materials that conveniently combine fluidity attributes of liquids and magnetic properties
of solids. Ferrofluids are colloidal suspensions of monodomain nanometer-size magnetic particles
suspended in a nonmagnetic solvent [1,2]. Most ferrofluids are Newtonian fluids and do not tend
to form particle chains when subjected to an applied magnetic field. On the other hand, MR fluids
are suspensions of much bigger (micrometer-size) magnetic particles in a nonmagnetic carrier fluid
[3–5]. In contrast to ferrofluids, MR fluids particles are multidomain and have the tendency to
produce long chains under the presence of an external magnetic field. This responsive behavior leads
to a rheological change of MR fluids from a liquid to a solidlike state. Consequently, and differently
from ferrofluids, MR fluids are notably non-Newtonian, presenting a distinguishing magnetic-field-
dependent yield stress [6–8].

The peculiar hydrodynamic and magnetic properties of ferrofluids and MR fluids make them
remarkable materials to study a variety of interfacial instabilities and pattern formation processes
[9,10]. This is particularly true for the case of spatially confined systems, where a magnetic fluid
droplet is surrounded by a nonmagnetic fluid and placed in the narrow, effectively two-dimensional
space between two parallel glass plates of a Hele-Shaw cell [11,12]. Depending on the nature of
the magnetic fluid and on the symmetry properties of the applied magnetic field, various pattern
morphologies can be produced. While multiply branched, labyrinth-type structures arise under the
action of a perpendicularly applied magnetic field [13–16], polygon-shaped and starfishlike patterns
emerge if a radial field is applied in the plane of the Hele-Shaw cell [17–19]. Moreover, if the
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applied field is an in-plane AC rotating magnetic field, unique spiral shapes are formed [20]. On
the other hand, if the positions of the fluids are swapped and an in-plane azimuthal magnetic field
produced by a current-carrying wire is applied, one observes yet another family of shapes ranging
from regular n-fold patterns having bulbous fingers to considerably intricate, ramified fingering
arrangements [21–23]. In all these systems [13–23] the shape of the resulting patterns is determined
by the interplay of magnetic, surface tension, and yield stress forces.

Interesting possibilities for these magnetic-field-activated fluid systems confined in Hele-Shaw
cells are offered if one considers the inclusion of an extra physical ingredient: the action of
elastic forces at the interface. Recent experiments using two nonmagnetic reacting fluids in a
Hele-Shaw cell show that when the fluids are put in contact, a chemical reaction occurs and the
fluid-fluid interface becomes a gel-like elastic layer [24]. In fact, there are several other experimental
Hele-Shaw systems involving nonmagnetic fluids which exhibit different phenomena and unusual
fingering patterns caused by chemical reactions [25–28], precipitation reactions and chemical
gardens [29–32], and gel-producing reactions [33,34].

The appealing experimental results reported in Ref. [24] inspired some theoretical studies about
the detected elastic fingering phenomena. Linear stability analysis [35], weakly nonlinear theory
[36], and sophisticated boundary integral numerical simulations [37] have examined the problem
theoretically. These theoretical investigations have demonstrated that the basic physics of the
reactive flow system experimentally examined in Ref. [24] can be properly described by a model
considering the interface as a thin elastic membrane. Consistency between theory and experiments
is obtained when the elastic membrane is modeled as having a curvature-dependent bending rigidity
whose value decreases as the local interfacial curvature increases [35–37].

Motivated by the experimental and theoretical findings reported in Refs. [24–37] regarding
pattern formation in reactive fluids and the presence of an elastic membrane separating fluids in
Hele-Shaw flows, in this work we investigate a magnetoelastic version of such a problem. We
consider that a magnetic fluid (a ferrofluid, or a MR fluid) droplet is surrounded by a nonmagnetic
fluid and subjected to an applied in-plane radial magnetic field. The elastic gel-like magnetic fluid
interface we model is originated by a chemical reaction as in the case already studied experimentally
[24] and theoretically [35–37] for nonmagnetic fluid flows in Hele-Shaw cells. Additionally, as
in Refs. [35–37], we assume that the fluid-fluid boundary is a thin elastic layer presenting a
curvature-dependent bending rigidity. This opens up the possibility of studying still unexplored
pattern-forming phenomena in such confined magnetoelastic fluid system, by taking into account
the influence of magnetic, elastic, and yield stress effects at the interface.

It should be stressed that the impact of elastic interface effects on the dynamics and pattern
formation of magnetic fluids in Hele-Shaw geometry is a considerably unexploited research area.
One exception is a recent work [38] which examined the formation of wrinkling and folding
patterns in a confined ferrofluid droplet having an elastic boundary subjected to a radial magnetic
field. However, the work carried out in Ref. [38] utilized a simplified theoretical description of
the problem; in particular, the elastic interface was assumed to have a constant bending rigidity.
In addition, the perturbative study performed in Ref. [38] was restricted to a simple linear
stability analysis. More complicated fully nonlinear aspects of the patterns have been obtained in a
nonperturbative manner through the evaluation of stationary exact solutions for the interface shape
by utilizing a vortex sheet approach.

This paper expands the work carried out in Ref. [38] in several directions. First, as in
Refs. [35–37], we now use a more realistic and better established theoretical modeling for the elastic
interface and consider that it has a curvature-dependent bending rigidity. Moreover, in contrast to
what was done in Ref. [38], we go beyond the linear regime and perform a second-order weakly
nonlinear analysis of the system. This is a very important point since the inclusion of nonlinear
effects is simply essential to allow one to extract important information about the morphology
of the patterns [39]. It should also be mentioned that, contrary to what has been executed in
Ref. [38], which tried to assess nonlinear morphological information from stationary exact solutions
of the problem, here we get useful insight into the shape of the patterns via the establishment of
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FIG. 1. (a) Schematic illustrating the perspective view of the anti-Helmholtz magnetic-field arrangement
in a Hele-Shaw cell of gap thickness b. The electric currents I in the coils are equal and flow in opposite
directions, producing a magnetic field H [Eq. (1)] pointing radially outward in the plane of the cell (z = 0
plane). The inner fluid (fluid 1) is a magnetic fluid and the outer fluid (fluid 2) is nonmagnetic. Initially, the
magnetic fluid droplet has a circular shape of radius R (dashed curve), but may deform (solid curve) due to the
action of H. (b) Schematic depicting the top view of the system. The interface perturbation amplitude is denoted
by ζ = ζ (θ, t ) [Eq. (4)], where θ is the azimuthal angle. The interface is elastic and has a curvature-dependent
bending rigidity ν(κ ) [Eq. (2)]. The viscosity of the inner (outer) fluid is η1 (η2).

time-evolving nonlinear solutions. This is also a significant distinction, since, while the stability
of the stationary vortex sheet solutions obtained in Ref. [38] is still an open question [38,40], the
stability of the time-evolving weakly solutions we get in this work can been directly verified by the
saturation of the Fourier mode amplitudes. Furthermore, as opposed to Ref. [38], which is limited
to the study of ferrofluids, in this work we also consider the case in which the magnetic liquid is a
MR fluid.

II. PHYSICAL PROBLEM AND GOVERNING EQUATIONS

The geometry of the problem is schematically illustrated in Fig. 1: A magnetic fluid (ferrofluid,
or MR fluid) droplet of radius R and viscosity η1 is surrounded by a nonmagnetic fluid of viscosity
η2. Both fluids are incompressible and are confined in a Hele-Shaw cell of thickness b. We consider
the action of a radial magnetic field given by [17,41]

H = H0rêr, (1)

where r is the radial distance from the origin of the coordinate system (located at the center
of the droplet), H0 is a constant, and êr is a unit vector in the radial direction. The radial
magnetic field is produced by a pair of identical Helmholtz coils whose electric currents are
equal and flow in opposite directions [Fig. 1(a)]. This is commonly known as the anti-Helmholtz
configuration. For experimental realizations of such a radial magnetic-field arrangement see, for
instance, Refs. [42–46]. The Hele-Shaw cell is located at the mid-distance between the coils, in such
a way that the radial magnetic field is coplanar to it. A magnetic body force ∼∇H , where H = |H| is
the local magnetic-field intensity, acts on the magnetic fluid pointing in the outward radial direction.
As the applied radial magnetic field given by Eq. (1) has a natural nonzero gradient, we take it as the
main local field contribution to the magnetic body force. Therefore, in this paper we do not consider
the influence of the demagnetizing field [1,2]. As already discussed in Ref. [38], within the scope of
our radial magnetic-field problem, demagnetizing effects can be safely neglected.
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We follow Refs. [35–37] and consider that the interface separating the fluids is a thin elastic
membrane presenting a curvature-dependent bending rigidity given by

ν = ν(κ ) = ν0[Ce−λ2κ2 + 1 − C], (2)

where

κ = r2 + 2
(

∂r
∂θ

)2 − r ∂2r
∂θ2[

r2 + (
∂r
∂θ

)2]3/2 (3)

denotes the interface curvature in the plane of the Hele-Shaw cell, with θ representing the azimuthal
angle [Fig. 1(b)]. This model for ν(κ ) is based on the fact that as the interface curves, it is expected
that intermolecular bonds are broken, thus reducing the rigidity of the gel-like elastic layer. Thus,
ν(κ ) should decrease as κ is increased. In Eq. (2) ν0 is the maximum rigidity that expresses the
largest resistance to disturbances and 0 � C < 1 is the bending rigidity fraction, which measures the
fraction of intramolecular bonds broken through surface deformation. Moreover, λ > 0 represents
a characteristic radius beyond which ν(κ ) decreases substantially. Note that by setting C = 0 one
reaches the simpler constant bending rigidity limit used in Ref. [38] for which ν = ν0.

The interplay of magnetic, elastic, and yield stress forces may deform the interface separating the
fluids. The perturbed interface shape is described as R(θ, t ) = R + ζ (θ, t ), where R is the radius of
the initially circular interface at t = 0. Here

ζ (θ, t ) =
+∞∑

n=−∞
ζn(t ) exp(inθ ) (4)

is the net interface perturbation with Fourier amplitudes ζn(t ) and integer wave numbers n. Our
perturbative weakly nonlinear approach keeps terms up to the second order in ζ . Mass conservation
imposes that the zeroth mode is written in terms of the other modes as ζ0 = −(1/2R)

∑
n �=0 |ζn(t )|2

[39]. Our main goal in this section is to derive a mode-coupling differential equation that describes
the time evolution of the interfacial amplitudes ζn(t ) at the onset of nonlinear effects.

Under the spatially confined Hele-Shaw flow conditions of our problem, the effectively two-
dimensional dynamics of the magnetic fluid droplet can be described by a modified Darcy law for
the gap-averaged velocity [6–8,13,14,47]

v j = − b2

12η j

[
∇	 j + 3σy(H )

b
êr

]
, (5)

where j = 1 ( j = 2) labels the inner (outer) fluid. In Eq. (5) the gap-averaged generalized pressure
is defined as [15]

	 j = 1

b

∫ +b/2

−b/2
[Pj − �]dz, (6)

where Pj is the three-dimensional pressure,

� = μ0χH2

2
(7)

represents a magnetic pressure [1], and μ0 denotes the magnetic permeability of free space. In
Eq. (7) we used the linear relationship M = χH, with M = |M| the magnetization of the magnetic
fluid and χ its magnetic susceptibility. Note that for the nonmagnetic outer fluid χ = 0 and � = 0.

The second term in square brackets on the right-hand side of Eq. (5) expresses the contribution
of a magnetic-field-dependent yield stress which is given by [3–5,7,8]

σy(H ) = σy0 + αH2, (8)
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where σy0 stands for the yield stress in the absence of the magnetic field and α is a constant that
depends on the material properties of the magnetic fluid, being proportional to the particle volume
fraction [5]. Based on the symmetry of the applied magnetic field, we consider the prevalent yielding
occurring along the radial direction. Note that, by setting σy(H ) = 0 in Eq. (5), the yield stress term
vanishes and one recovers the usual Darcy law for Newtonian ferrofluids [13–17].

It should be noted that the derivation of the generalized Darcy law given by Eq. (5) (see
Refs. [7,18,47] and references therein) uses the Bingham model that presents a yield stress limit
which must be exceeded before significant deformation can occur. Since we are interested in
examining the interface destabilization process and the flow provoked by the applied magnetic
field, we consider the regime where magnetic and viscous forces prevail over the stabilizing role
of the yield stress. In this framing, flow is facilitated and nontrivial, i.e., noncircular, magnetoelastic
patterns arise. This is the reason why Eq. (5) does not seem to work in the limit of H = 0 with a
finite yield stress for which the interface is perfectly stable and circular. However, note that this does
not lead to any inconsistencies regarding the stability analysis of the problem: As expected, in the
limit NB → 0 in Eq. (13) the yield stress effect is clearly stabilizing.

Since the field-dependent yield stress term [second term in square brackets of Eq. (5)] can be
expressed as a gradient of some scalar function, the velocity field is irrotational in the bulk and we
can state our problem in terms of velocity potentials φ j , where v j = −∇φ j . Thus, from Eq. (5) and
the incompressibility condition ∇ · v j = 0 it can be verified that the potentials φ j obey Laplace’s
equation. These velocity potentials can be written as

φ j (r, θ ) =
∑
n �=0

φ jn(t )
( r

R

)(−1)( j+1)|n|
exp(inθ ). (9)

Nonetheless, we still need to include the contributions coming from the elastic nature of the
interface. In order to do that, as in Refs. [35–37] we consider a generalized Young-Laplace pressure
boundary condition, which expresses the pressure jump across the perturbed interface as

(p1 − p2)|r=R = 1
2ν ′′′κ2κ2

s + ν ′′(3κκ2
s + 1

2κ2κss
) + ν ′( 1

2κ4 + 3κ2
s + 2κκss

)
+ ν

(
1
2κ3 + κss

) − 1
2μ0(M · n)2. (10)

As far as the mathematical origin of Eq. (10) is concerned, it can be obtained by minimizing a
Helfrich-like energy functional (a measure of the energy of the elastic interface separating the two
fluids) with a curvature-dependent bending rigidity. For a more detailed account of the derivation of
Eq. (10) the interested reader is referred to Refs. [35,36].

In Eq. (10) the primes indicate derivatives with respect to the curvature κ , while the subscripts of
κ indicate derivatives with respect to the arc length s. Note that Eq. (10) differs significantly from
the traditional Young-Laplace condition applied to immiscible nonreactive fluids in Hele-Shaw cells
[11,12] that is much simpler and involves only the product of κ by the surface tension σ . Similar to
what is done in Refs. [35–37], we consider that elastic effects dominate the condition at the interface
in such a way that surface tension effects are not considered in Eq. (10). It is also worthwhile to
note that Eq. (10) is much more complex than its constant bending rigidity counterpart studied in
Ref. [38], where all derivative terms with respect κ simply drop out [see Eq. (5) in Ref. [38]].

Observe that in the pressure boundary condition [Eq. (10)] there is still a term that is connected
to the magnetic nature of the deforming droplet. It is precisely the last term on the right-hand side of
Eq. (10), which is commonly known as the magnetic normal traction [1,2], where n represents the
unit normal vector at the interface. This term incorporates the influence of the discontinuous normal
component of the magnetization at the interface.

The problem is then fully specified with the consideration of another relevant boundary condition,
known as the kinematic boundary condition. Fundamentally, it states that the normal components
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of each fluid’s velocity are continuous at the interface [1,11,12,48]

∂R
∂t

=
[

1

r2

∂R
∂θ

∂φ j

∂θ
− ∂φ j

∂r

]∣∣∣∣
r=R

. (11)

This condition holds for either fluid-fluid, fluid-elastic, or fluid-solid interfaces and implies that the
fluid cannot penetrate the other medium. Equation (11) is also widely utilized in problems involving
the interaction between fluids and deformable bodies [49]. In our case, the problem effectively
involves three immiscible phases (the two liquids and the elastic interface). Nevertheless, since the
elastic phase has negligible thickness (and thus cannot be compressed in the normal direction), the
normal component of the fluid velocity must be continuous across the interface.

Finally, we have all necessary elements to derive the mode-coupling differential equation that
describes the time evolution of the interfacial amplitudes ζn(t ). We do that by following usual steps
of previous weakly nonlinear studies in Hele-Shaw flows [39,50]. First, boundary conditions (10)
and (11) are used to express φ j [Eq. (9)] in terms of ζk [Eq. (4)] consistently up to second order.
Then, by substituting these relations and the pressure condition (10) into the modified Darcy law
(5), always keeping terms up to second order in ζ , and Fourier transforming, after some algebra, we
find the dimensionless equation of motion for the perturbation amplitudes

ζ̇n = �(n)ζn +
∑
m �=0

[F (n, m)ζmζn−m + G(n, m)ζ̇mζn−m], (12)

where the overdot represents a total time derivative and

�(n) = |n|{2NBχ (1 + χ ) − S0 − 3S + 1
2 (n2 − 1)[A1(C, λ)(n2 + 1) + A2(C, λ)]

}
(13)

denotes the linear growth rate. The parameter

NB = μ0H2
0 R5

2ν0
(14)

is a magnetoelastic number and measures the ratio of magnetic to elastic forces. On the other hand,

S0 = 3σy0R4

ν0b
(15)

and

S = αH2
0 R6

ν0b
(16)

are the parameters related to the yield stress contributions at zero and nonzero radial magnetic field,
respectively. We still have that

A1(C, λ) = Ce−λ2
(−4λ4 + 10λ2 − 2) − 2(1 − C) (17)

and

A2(C, λ) = Ce−λ2
(8λ4 − 22λ2 + 5) + 5(1 − C), (18)

which are linear terms connected to the elastic nature of the interface.
The second-order mode-coupling terms are given by

F (n, m) = |n|[NBχ [1 + χ (1 + m(n − m))] − 3S − {Ce−λ2
[B1(n, m) + λ2B2(n, m)

+ λ4B3(n, m) + 2λ6B4(n, m)] + (1 − C)B1(n, m)}] (19)

and

G(n, m) = A|n|[sgn(nm) − 1] − 1. (20)
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In the expression for the coupling function F (n, m) in Eq. (19) the terms are originated from the
applied radial magnetic field, field-dependent yield stress, and curvature-dependent bending rigidity
contributions, respectively. The term proportional to χ2 comes from the magnetic normal traction
in the pressure jump condition [Eq. (10)]. The expressions for the functions B1(n, m), B2(n, m),
B3(n, m), and B4(n, m) appearing in Eq. (19) are given in the Appendix, being related to the second-
order contributions from the elastic interface.

On the other hand, the nonlinear coupling function G(n, m) in Eq. (20) arises from the coupling
of the perturbed flow ζ̇ with the interface shape perturbation ζ . It has a purely kinetic origin, having
no dependence on magnetic, yield stress, or elastic effects. However, it does depend on the viscosity
contrast (a dimensionless viscosity difference parameter) A = (η1 − η2)/(η1 + η2), and the sgn
function equals ±1 according to the sign of its argument. Notice that in Eqs. (12)–(20) lengths
and velocities are rescaled by R and ν0b2/12(η1 + η2)R4, respectively. From this point onward we
use the dimensionless version of all the equations. We note that the theoretical results presented
in this work utilize dimensionless quantities which are consistent with physical parameters used in
Refs. [1,8,24,28,35–38,44,45].

Equation (12) is the second-order mode-coupling equation for our magnetoelastic instability
problem in a Hele-Shaw cell under the presence of a radial magnetic field. This result contrasts
with most findings obtained by previous theoretical studies of elastic fingering formation which
focused on Hele-Shaw flows involving only nonmagnetic fluids [35–37].

Since the linear growth rate [Eq. (13)] is time independent, one can readily see from Eq. (12)
that at the linear level the perturbation amplitudes ζn(t ) grow or decay exponentially with time,
i.e., ζn(t ) = ζn(0) exp[�(n)t]. The linear growth rate �(n) informs about the linear stability of
the system: The interface is linearly unstable (stable) to the nth mode perturbation if �(n) > 0
[�(n) < 0]. By inspecting Eq. (13) it is clear that the radial magnetic-field term proportional
to NB is destabilizing, while both yield stress terms tend to stabilize the interface in the linear
regime. However, as already extensively discussed in Refs. [35–37], for a given shape-deforming
mode n � 2 (note that for modes n = 0 and n = 1 the magnetic liquid droplet remains circular),
the behavior of the curvature-dependent bending rigidity term in �(n) is a bit more subtle. In
the limit of constant rigidity (C = 0) the quantity [A1(C, λ)(n2 + 1) + A2(C, λ)] is negative and
the bending rigidity forces tend to stabilize the interface. Roughly speaking, one can say that in this
case the parameter ν0 acts like an effective surface tension, similarly to what one has in the usual
radial magnetic-field Hele-Shaw problem in the absence of elastic effects [17–19]. Nevertheless,
if 0 < C < 1, the quantity [A1(C, λ)(n2 + 1) + A2(C, λ)] can be positive and the effect of the
curvature-dependent bending rigidity may lead to interface destabilization. However, as these elastic
linear stability aspects of the problem have already been thoroughly scrutinized [35–37], in this
work we concentrate our attention on nonlinear pattern-forming phenomena. More precisely, we
investigate how the consideration of the second-order nonlinear terms given by Eqs. (19) and (20)
might provide access to important morphological aspects of the magnetoelastic patterns during the
weakly nonlinear regime.

III. WEAKLY NONLINEAR MAGNETOELASTIC PATTERNS

In this section we use Eqs. (12)–(20) to obtain perturbative solutions for the shape of confined,
elastic interface magnetic fluid droplets subjected to a radial magnetic field. As in the case of
Ref. [19], in this work we have that the most important morphological features of the magnetoelastic
patterns can be captured by considering the coupling of a small number of participating Fourier
modes. In this framework, we analyze the shapes of the resulting patterns and examine how the
amplitudes of the participating modes evolve with time. Time evolution of the Fourier mode am-
plitudes offers a useful way to verify whether such mode amplitudes continue to grow unrestrained
(as predicted by the the linear theory) or tend to saturate as time progresses. Eventual saturation of
the mode amplitudes would suggest that the weakly nonlinear patterns converge to a stationary
configuration. The establishment of static profiles for the elastic interface certainly reinforces
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the physical relevance of the perturbative weakly nonlinear solutions, indicating their dynamic
stability.

The main purpose of our weakly nonlinear study is to investigate the influence of the curvature-
dependent bending rigidity [Eq. (2)] on the shape of the emerging magnetoelastic fingering
structures. Another important aspect to be examined is to check how the magnetoelastic patterns
differ from their nonelastic counterparts [17–19]. In Refs. [17–19] elastic effects were not present
and the fluid-fluid interface was regulated by surface tension forces. The comparison of the shapes
assumed by elastic interface magnetic fluid patterns with the usual shapes of conventional magnetic
fluid patterned structures, i.e., with no bending rigidity, but with surface tension, would highlight
the effect of replacing surface tension by bending rigidity in the interfacial instabilities. All these
important aspects will be investigated in Sec. III A for ferrofluids and in Sec. III B for MR fluids.

To generate the shapes of the elastic interface magnetic fluid fingering structures, we consider
the nonlinear coupling of a finite number N of Fourier modes and rewrite Eq. (12) in terms of the
real-valued cosine amplitudes an = ζn + ζ−n. The magnetoelastic patterns and the time evolution
of the cosine mode amplitudes are obtained by numerically solving the corresponding coupled
nonlinear differential equations. Once this is done, the shape of the elastic interface is found by
utilizing Eq. (4). Most of the magnetoelastic patterns presented in Secs. III A and III B are obtained
by considering the interplay of only four (N = 4) participating Fourier modes: the fundamental
mode n and its harmonics 2n, 3n, and 4n. Amazingly enough, the inclusion of just these modes
is sufficient to reproduce accurately the shape of the resulting magnetoelastic structure. Thus,
including more modes will not change the ultimate shape of the elastic interface magnetic fluid
patterns (this point will be discussed further in Secs. III A and III B).

Throughout this work, we assume that the fundamental mode n is given by the closest integer to
the fastest growing mode nmax, i.e., the mode of maximum linear growth rate �(n), obtained by the
condition [d�(n)/dn]|n=nmax = 0. We point out that although �(nmax) > 0 drives a positive linear
growth of the fundamental mode n, the other participating harmonic modes (2n, 3n, and 4n) present
a negative growth rate and therefore are linearly stable. Consequently, any growth of such modes
is genuinely caused by the weakly nonlinear coupling. Additionally, to ensure that the interfacial
behaviors we detect in this work are spontaneously induced by the weakly nonlinear dynamics and
not by artificially imposing large initial amplitudes for the harmonic modes, we always set the initial
(t = 0) harmonic mode amplitudes to zero. This is done to avoid artificial growth of modes 2n, 3n,
and 4n imposed solely by the initial conditions.

As mentioned above, in this work we consider situations dominated by a single linearly unstable
mode (the fundamental mode n). However, it should be stressed that our truncated weakly nonlinear
expansion works equally well in cases where more than one linearly unstable mode competes
at the early nonlinear level. Actually, this issue has been analyzed some time ago in Ref. [39],
where it was shown that in both scenarios the qualitative results regarding the main morphological
features of the produced patterns, e.g., fingertip broadening and fingertip sharpening features, are
the same. As shown in Ref. [39], while the consideration of a single linearly unstable mode leads
to patterns that are quite symmetric in shape, the inclusion of sophistication involving more than
one linearly unstable mode, random phases, etc., results in patterns that are not as symmetric with
some fingers competing and advancing over others. Nevertheless, in both cases, i.e., by using one
or more linearly unstable modes, the most relevant morphological aspects of the resulting patterns
are equally revealed by the second-order mode-coupling approach.

Including the general behavior of both ferrofluids and MR fluids, our magnetoelastic problem is
governed by a considerably large number of dimensionless parameters: A, χ , NB, S0, S, C, and λ.
For the sake of clarity and understanding the most important physical effects in our problem, and
without affecting the validity and relevance of our theoretical analysis, we tried to reduce a bit the
number of parameters that describe the situations we investigate in this work. First, to allow some
connection with the most common circumstances of existing experiments with confined magnetic
fluids (see, for instance, Refs. [1,2,13–15,20]), we focus on the situation in which the inner magnetic
fluid is much more viscous than the outer nonmagnetic fluid. Therefore, we assume that η1 � η2
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FIG. 2. Representative weakly nonlinear, elastic interface ferrofluid patterns considering the coupling of
four Fourier modes n, 2n, 3n, and 4n for (a)–(c) n = 4, NB = 30, and χ = 4 and (d)–(f) n = 5, NB = 740, and
χ = 1. In addition, (a) and (d) C = 0, (b) and (e) C = 0.58, and (c) and (f) for each n, the patterns for C = 0
and C = 0.58 are overlaid. The patterns are plotted for time t = 0.005.

so that the viscosity contrast A can be kept fixed and equal to one (A = 1). However, it should be
stressed that the experiments performed in Refs. [1,2,13–15,20] do not consider the presence of an
elastic interface. In any case, we checked that the results presented in the rest of this article remain
qualitatively unchanged if other values of A are used. In addition, as long as elastic effects are
concerned, we consider a small and fixed value of the characteristic radius λ (λ = 0.01) and tune
elastic effects by varying the bending rigidity fraction parameter C, where 0 � C < 1. This is done
in order to keep the linear growth rate �(n) bound and the fastest growing mode nmax unchanged
while we change C.

Therefore, keeping in mind the observations given in the previous two paragraphs, in terms
of relevant dimensionless parameters, we have the following scenario: If the magnetic fluid is
a ferrofluid (Sec. III A), we have that S0 = S = 0, and in this case we deal with only three
dimensionless controlling parameters, namely χ , NB, and C. Conversely, if the magnetic fluid is
a MR fluid (Sec. III B), we do have to work with five parameters (χ , NB, S0, S, and C).

A. Elastic interface ferrofluid

We begin our investigation by examining Fig. 2, which depicts a typical set of weakly nonlinear,
elastic interface ferrofluid patterns. Figure 2 is plotted for time t = 0.005, considering the coupling
of four Fourier modes n, 2n, 3n, and 4n. The reason for considering this specific time will be given
later in this section. Since the main goal of our theory is to study the effect of the bending rigidity
fraction C on the morphology of the magnetoelastic fingering patterns, the results presented in
Fig. 2 focus on illustrating the most characteristic aspects of the ferrofluid droplet shapes when
C = 0 and C �= 0. Therefore, in Figs. 2(a) and 2(d) we set C = 0 and in Figs. 2(b) and 2(e) we take
C = 0.58. In addition, in Figs. 2(c) and 2(f), for each of the fundamental modes n considered, the
patterns for C = 0 and C = 0.58 are overlaid. This is done to facilitate comparison of the emerging
shapes for these two values of C. It should be noted that, even though 0 � C < 1, in the realm of our
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FIG. 3. Time evolution of the perturbation amplitudes an(t ), a2n(t ), a3n(t ), and a4n(t ) for the patterns
depicted in (a) Figs. 2(a)–2(c) for n = 4 and (b) Figs. 2(d)–2(f) for n = 5. The dashed (solid) curves take
the value C = 0 (C = 0.58). It is clear that for both values of C the mode amplitudes tend to stationary values.

second-order perturbative approach, we have found that C = 0.58 is the maximum allowed value for
the bending rigidity fraction which results in dynamically stable elastic interface ferrofluid patterns.
In Figs. 2(a)–2(c) we have n = 4, NB = 30, and χ = 4. On the other hand, in Figs. 2(d)–2(f) we
have that n = 5, NB = 740, and χ = 1. In Fig. 2 and in all remaining figures of this work, the initial
amplitude for the fundamental mode n is taken as an(t = 0) = 10−6, while the initial amplitudes for
all the other (harmonic) modes are set to zero.

By inspecting the patterns in Figs. 2(a)–2(c) we observe the formation of fourfold fingered,
magnetoelastic structures. It is quite evident that the pattern produced in Fig. 2(a) for C = 0 is
distinct from the one depicted in Fig. 2(b) for C = 0.58. While the fingers are rounded at their tips
for C = 0, they are sharper when C = 0.58. This difference in the shape of the fingers for different
values of C is even more apparent when the patterns’ interfaces are superimposed, as illustrated in
Fig. 2(c). It is clear that the fingers generated for C = 0.58 not only are sharper, but also a bit longer
than the ones produced when C = 0. The same type of behavior is observed in the fivefold structures
depicted in Figs. 2(d)–2(f). In fact, we have verified the very same trend for other cases we have
analyzed, using different sets of parameters (NB, χ , and C) and other values of the fundamental
mode n. Thus, the morphological features revealed in Fig. 2 are fairly representative of the general
behavior presented by elastic interface ferrofluid patterns in the weakly nonlinear regime.

The interfacial shape changes induced by C for our magnetoelastic problem as portrayed in Fig. 2
are consistent with the curvature weakening effect detected in the development of elastic fingering
in confined nonmagnetic fluids [35,37]. A possible physical explanation for such a behavior is given
as follows. The shape dependence of the bending rigidity ν(κ ) involves dynamical changes given by
Eq. (2), which expresses the reduction of the elastic bending resistance for increasingly larger values
of the local interface curvature κ . Therefore, the emergence of magnetic-field-activated interfacial
elastic protuberances should be facilitated in regions of lower rigidity, i.e., regions of larger local
curvature. This justifies the fact that the elastic ferrofluid fingers shown in Fig. 2 should be sharper
at their tips for larger values of C.

We proceed by analyzing Fig. 3, which illustrates the time evolution of the second-order cosine
amplitudes an(t ) for each of the participating Fourier modes n, 2n, 3n, and 4n used to generate
the magnetoelastic patterns displayed in Fig. 2. The solid curves represent the time evolution of
the amplitudes for C = 0.58 and the dashed curves represent the case in which C = 0. Figure 3(a)

014006-10



MAGNETOELASTIC PATTERN FORMATION IN …

0 0.1 0.2 0.3 0.4 0.5 0.58

5

6

7

8 NB � 30
NB � 35
NB � 40

C

Κ

FIG. 4. Variation of the fingertip curvature κ in terms of C, for three values of the magnetoelastic number
NB: 30, 35, and 40. The remaining physical parameters are identical to the ones utilized in the fourfold patterns
shown in Figs. 2(a)–2(c).

plots an(t ) versus time t for the fourfold patterns exhibited in Figs. 2(a)–2(c); Fig. 3(b) represents the
equivalent behavior for the amplitudes associated with the fivefold patterns shown in Figs. 2(d)–2(f).
A conspicuous feature of most of the curves depicted in Figs. 3(a) and 3(b) is the fact that, regardless
of the value of C, after a sharp initial increase in intensity, the mode amplitudes eventually saturate
their growth, ultimately assuming stationary values. This mode saturation behavior controls the
exponential growth predicted by the purely linear theory, indicating that our second-order weakly
nonlinear solutions are dynamically stable. At this point, we can justify why we have chosen the
time t = 0.005 to plot the patterns in Fig. 2: It is simply because at this time, all the patterns shown
have already reached a stationary configuration. This remark is equally valid for the MR fluid cases
depicted in Fig. 6.

It is known [39] that the fundamental mode n is responsible for setting the overall shape of the
patterns, i.e., the number of fingers, whose sizes are affected by the magnitude of the fundamental
mode amplitude. Moreover, it is also well established [39] that the harmonic modes influence the
shape of the fingers produced (for instance, determine whether the fingers are sharp or wide at their
tips). In particular, the fact that the amplitude of the first harmonic mode 2n for C = 0.58 is greater
than the corresponding amplitude for C = 0 indicates a tendency toward fingertip sharpening for
larger C. These weakly nonlinear findings extracted from Fig. 3 support what is visually observed in
Fig. 2: Higher values of C are associated with the formation of pattern-forming structures presenting
longer and sharper fingers.

In Figs. 2 and 3 we have analyzed the behavior of the elastic interface ferrofluid patterns only
for two representative values of the bending rigidity fraction C, namely, for C = 0 and C = 0.58.
In Fig. 4 we extract complementary information about the system, by examining how the curvature
of a fingertip κ varies for a range of values of C (0 � C � 0.58). In addition, in order to investigate
how the magnetoelastic number NB influences the fingertip curvature, the plot of κ in terms of C is
performed for three increasingly larger values of NB: 30, 35, and 40. The data presented in Fig. 4
use the physical parameters utilized to obtain the fourfold structures depicted in Figs. 2(a)–2(c).
The most noticeable aspect of Fig. 4 is the fact that, for a given NB, the curvature κ increases with
C. However, also interesting is the combined role of C and NB to determine the sharpness of the
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FIG. 5. Comparison of the typical ferrofluid, stationary patterned shapes when at the boundary separating
the fluids there is (a) and (b) an elastic bending rigidity or (c) and (d) an interfacial surface tension. These
patterns are generated by using (a) and (c) four (N = 4) and (b) and (d) 40 (N = 40) participating modes.

fingertip: Initially, for smaller values of C, one can see that sharper fingers are obtained for larger
values of NB. However, this behavior is modified as the value of C is augmented: After C reaches a
certain magnitude (in Fig. 4, for C � 0.44) the situation rendering more acute fingers is precisely the
one for smaller NB. This means that, even though both C and NB contribute to favor the formation of
sharper fingers, if the magnitude of C is high enough, the role of the bending rigidity fraction takes
over and determines the behavior of the fingertip. Analogous results are obtained for the fivefold
patterns shown in Figs. 2(d)–2(f).

We close this section by addressing two important issues. First, we investigate the influence
of the number of participating Fourier modes N in determining the shape of the interface at the
onset of nonlinear effects. In addition, we examine how the shapes of the characteristic elastic
interface ferrofluid patterns investigated in this work compare with the typical shapes obtained when
a nonelastic interface ferrofluid droplet, i.e., with no bending rigidity but with surface tension, is
subjected to an applied radial magnetic field, as studied in Refs. [17,19]. This is done in Fig. 5,
which illustrates typical eightfold (n = 8) elastic interface ferrofluid, stationary patterns for C = 0,
χ = 0.45, and NB = 15400 [Figs. 5(a) and 5(b)]. This specific value of C has been used since when
C = 0 one gets an elastic interface with constant bending rigidity ν0 [Eq. (2)], which is the closest
analog of the usual surface tension situation.

The only difference between the way the patterns in Fig. 5 have been produced is that four
participating Fourier modes (N = 4) are used in Fig. 5(a) (n, 2n, 3n, and 4n), while 40 participating
modes (N = 40) are utilized in Fig. 5(b) (n, 2n, 3n, . . . , 40n). In contrast, Figs. 5(c) and 5(d) depict
characteristic eightfold patterns generated when elastic effects are absent, i.e., there is no bending
rigidity at the interface, but there exists a surface tension σ at the fluid-fluid interface [17,19]. These
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surface-tension-regulated patterns have been obtained by using χ = 0.45 and Nσ
B = 150, where Nσ

B
represents a magnetic Bond number that measures the ratio of magnetic to capillary forces [17,19].
Once again, the single difference in the way these patterns are generated is that N = 4 in Fig. 5(c)
and N = 40 in Fig. 5(d). It should be noted that the appreciably different numerical values used for
NB and Nσ

B result from the fact that in the surface tension case, although lengths are rescaled by R
as in our current magnetoelastic problem, velocities are instead rescaled by σb2[12(η1 + η2)R2].

First, let us discuss the role played by the number of participating modes N used to produce the
patterns in Fig. 5. By contrasting the elastic interface ferrofluid patterns [Figs. 5(a) and 5(b)] we can
immediately see that they are simply indistinguishable, despite the fact that just four participating
modes are present in Fig. 5(a), while 40 modes are used to get Fig. 5(b). This indicates that, in
the elastic case, the four-mode scheme already captures all the essential morphological features
of the stationary patterns. We have verified that this happens because in the case of an elastic
interface ferrofluid the magnitude of the perturbation amplitudes drops very quickly as the number
of participating modes is increased. As a consequence, adding more participating modes does not
make much difference.

Nevertheless, the scenario is a bit different in the cases shown [Figs. 5(c) and 5(d)] in which
bending rigidity is not present and surface tension takes over. It is evident that the interface pattern
shown in Fig. 5(c) is different from the one displayed in Fig. 5(d). Although both structures have
eight protrusions, in Fig. 5(c) the fingertips (vertices) are rounded and separated by undulating
edges, while in Fig. 5(d) one observes the formation of cusped tips connected by smooth concave-
shaped edges. Therefore, even though Fig. 5(c) correctly captures the overall shape of the surface
tension pattern, a more accurate description of the interface can only be obtained as a greater number
of participating Fourier modes are included. Consequently, as opposed to what happens in the elastic
interface ferrofluid case [Figs. 5(a) and 5(b)], in the surface tension situation [Figs. 5(c) and 5(d)]
the proper stationary pattern morphology is captured if 40 modes are used.

We go on by commenting on the effect of replacing surface tension by bending rigidity in the
ferrofluid instabilities. It turns out that the shapes of the elastic interface ferrofluid patterns are
significantly different from the ones obtained when elastic effects are not present, but interfacial
surface tension forces act. A comparison can be performed most efficiently by contrasting Figs. 5(b)
and 5(d): The very sharp cusped finger ends emerging in the surface tension starfishlike pattern
[Fig. 5(d)] are replaced by considerably smoother and more rounded fingertips in the elastic
interface ferrofluid structure [Fig. 5(b)].

A physical justification for the origin of the very pointy tips presented on the surface tension
pattern depicted in Fig. 5(d) can be given as follows. Despite the action of the interfacial surface
tension at the fluid-fluid interface (which favors the formation of rounded tips), as the applied
magnetic field [Eq. (1)] increases with radial distance and because the magnetic traction term
proportional to (êr · n)2 in Eq. (10) is maximized as n is collinear to êr , once a finger protuberance
is formed, the growing starfishlike structures tend to become shaper and sharper at their corners.
Such cusped patterns do not appear in the elastic interface case [Fig. 5(b)] due to the greater rigidity
of the elastic layer separating the fluids.

B. Elastic interface MR fluid

In this section we turn our attention to the study of the elastic interface MR fluid patterns.
We initiate our discussion by examining Fig. 6, which presents illustrative examples of such
confined magnetic-field-induced elastic interface structures. As in the case of Sec. III A, these
weakly nonlinear patterns are produced by considering the interplay of four modes n, 2n, 3n,
and 4n. In Figs. 6(a) and 6(d) C = 0 and in Figs. 6(b) and 6(e) C = 0.99. Finally, in Figs. 6(c)
and 6(f), for each n, the patterns for C = 0 and C = 0.99 are superimposed. Notice that since
yield stress effects present in the MR fluid are rather stabilizing, we managed to assess and
explore high values of the bending rigidity fraction parameter C, i.e., C = 0.99. In Figs. 2(a)–2(c)
we have that n = 4, NB = 58, χ = 4, S0 = 0, and S = 350. Moreover, in Figs. 2(d)–2(f) we
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FIG. 6. Representative weakly nonlinear, elastic interface MR fluid patterns considering the coupling of
four Fourier modes n, 2n, 3n, and 4n for (a)–(c) n = 4, NB = 58, χ = 4, S0 = 0, and S = 350 and (d)–(f)
n = 5, NB = 1500, χ = 1, S0 = 0, and S = 1000. In addition, (a) and (d) C = 0, (b) and (e) C = 0.99, and
(c) and (f) for each n, the patterns for C = 0 and C = 0.99 are overlaid. As in the case of Fig. 2, here the
patterns are plotted for time t = 0.005.

have that n = 5, NB = 1500, χ = 1, S0 = 0, and S = 1000. All the shapes are displayed for
time t = 0.005.

By checking Fig. 6 one readily observes that the elastic interface MR patterns are dissimilar
from their ferrofluid counterparts illustrated in Fig. 2. While the elastic interface ferrofluid patterns
of Fig. 2 present starlike shapes and have prominent fingers, the MR fluid structures are more
polygonal-like, revealing the formation of relatively small stubby fingers. The stubby nature of
the elastic interface MR fluid patterns can be attributed to the stabilizing effects introduced by the
magnetic-field-dependent yield stress parameter S which tends to hold most of the MR fluid material
close to the center of the droplet. This field-regulated yield stress effect makes the elastic interface
MR fluid patterns look more “swollen” than the corresponding elastic ferrofluid shapes.

Further examination of Fig. 6 give us information about the changes occurring in the morphology
of the fingering structures when C is modified. One can quickly verify that when C = 0 [Figs. 6(a)
and 6(d)] polygonal-like shapes containing rounded fingers located at the vertices are obtained.
However, it is clear that another class of patterns arises when C = 0.99 [Figs. 6(b) and 6(e)]:
Even though the patterns are still polygonal in shape, their fingertips are notably sharper than the
ones generated when C = 0. Furthermore, by scrutinizing Figs. 6(c) and 6(f) one can see that the
lengths of the fingers for C = 0.99 are a bit longer than the fingers produced when C = 0. These
observations regarding the influence of C on the finger shapes and lengths of elastic interface MR
fluid patterns are similar to those found in the case of elastic interface ferrofluids (Fig. 2). Therefore,
we can say that the curvature weakening effect that took place in the elastic ferrofluid situation still
persists in the case of elastic MR fluids. Then, in Fig. 6, longer fingers having sharper tips are
supposed to emerge for larger values of the bending rigidity fraction parameter C. As in the case of
elastic ferrofluids, we have verified the very same tendency for other elastic interface MR fluid cases
we have analyzed, using different sets of parameters (NB, χ , C, S0, and S) and other values of the
fundamental mode n. If values of S0 �= 0 are used, the overall shape of the patterns is not changed,
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FIG. 7. Time evolution of the perturbation amplitudes an(t ), a2n(t ), a3n(t ), and a4n(t ) for the patterns
depicted in (a) Figs. 6(a)–6(c) for n = 4 and (b) Figs. 6(d)–6(f) for n = 5. The dashed (solid) curves take
the value C = 0 (C = 0.99). As in the case of elastic interface ferrofluids, here it is also evident that for both
values of C the mode amplitudes tend to stationary values.

and due to the stabilizing role of S0, the resulting fingers will just be a little shorter than the ones
obtained when S0 = 0. Therefore, the morphologies revealed in Fig. 6 are quite representative of
the general behavior presented by elastic interface MR fluid patterns in the weakly nonlinear stage.

For the sake of completeness and clearness in Fig. 7 we present the time evolution of the cosine
perturbation amplitudes an(t ) for modes n, 2n, 3n, and 4n for the MR fluid patterns shown in Fig. 6.
Figure 7(a) depicts the situations shown in Figs. 6(a) and 6(b), while Fig. 7(b) presents data related
to Figs. 6(d) and 6(e). It is reassuring to verify that all mode amplitudes eventually reach stationary
values also in the situations involving elastic interface MR fluids. This substantiates the practical
relevance of our second-order solutions for the elastic interface MR pattern-forming process, in the
sense that the behaviors observed in Fig. 6 are not related to spurious transient effects.

Figure 8 explores some additional information about the elastic interface MR fluid finger shape
behavior by analyzing the variation of the curvature of a fingertip κ for a large range of values of the
bending rigidity fraction C (0 � C � 0.99). Similar to what we have done in Fig. 4, here we also
examine how the magnetoelastic number NB impacts the fingertip curvature, and Fig. 8 is plotted
for three values of NB: 58, 64, and 70. The data illustrated in Fig. 8 utilize the physical parameters
associated with the fourfold MR fluid structures portrayed in Figs. 6(a)–6(c). As in the case of Fig. 4,
one promptly notices that although large values of C and NB favor the rising of sharper fingers, if the
magnitude of C is high enough, the role of the bending rigidity fraction is prevalent and determines
the behavior of the fingertip. Many of the same conclusions are reached if Fig. 8 is plotted for the
fivefold patterns illustrated in Figs. 6(d)–6(f).

As we did in Sec. III A, now we study the morphological differences between a typical elastic
interface MR fluid pattern and the corresponding and more commonly examined situation in which
the MR fluid fingering structures are formed under the absence of elastic effects so that at the
interface there is a surface tension [18,19]. We do this with the help of Fig. 9, where we also examine
the impact of the number of participating Fourier modes N on the shape of second-order stationary
state patterns.

Figures 9(a) and 9(b) reproduce typical fivefold elastic interface MR fluid, stationary patterns for
C = 0, χ = 0.45, NB = 15000, S0 = 0, and S = 5500. Additionally, Figs. 9(c) and 9(d) illustrate
the characteristic fivefold stationary patterns for the situation with no bending rigidity but with
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FIG. 8. Variation of the fingertip curvature κ in terms of C, for three values of the magnetoelastic number
NB: 58, 64, and 70. The remaining physical parameters are identical to the ones used in the fourfold MR fluid
patterns shown in Figs. 6(a)–6(c).

FIG. 9. Comparison of the typical MR fluid, stationary patterned shapes when at the boundary separating
the fluids there is (a) and (b) an elastic bending rigidity or (c) and (d) an interfacial surface tension. These
patterns are produced by using (a) and (c) four (N = 4) and (b) and (d) 40 (N = 40) participating modes.
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surface tension, for which χ = 0.45, Nσ
B = 195, S0 = 0, and S = 60. The shapes reproduced in

Figs. 9(a) and 9(c) are obtained by considering the coupling of four participating Fourier modes
(n, 2n, 3n, and 4n), while for the interfaces shown in Figs. 9(b) and 9(d) 40 participating modes
are utilized (n, 2n, 3n, . . . , 40n). First, one rapidly realizes that the elastic interface MR fluid
patterns represented in Figs. 9(a) and 9(b) are virtually identical, irrespective of the fact that the
number of participating modes N is very different. Similar to the case of elastic interface ferrofluids
discussed in Figs. 5(a) and 5(b), this indicates that the use of only four modes is already sufficient
to accurately reproduce the shape of such an elastic interface MR fluid pattern. Nevertheless, the
surface tension patterns appearing in Figs. 9(c) and 9(d) are not exactly the same. On one hand, the
surface tension pattern generated for N = 4 [Fig. 9(c)] presents rounded fingertips at the vertices
and small undulations along the edges of the polygonal structure. On the other hand, the surface
tension pattern obtained when N = 40 [Fig. 9(d)] has more pointy fingertips and fairly straight
edges. Thus, despite the general similarity in the shape of the surface tension patterns for N = 4
and N = 40, it is clear that the morphologies of the patterns are modified if more participating
modes are considered. Finally, by comparing the elastic interface MR fluid pattern [Fig. 5(b)] with
its related surface tension pattern [Fig. 5(d)], both considering the interplay of 40 participating
Fourier modes, the morphological distinction between them is apparent: The elastic interface MR
fluid pattern [Fig. 5(b)] has a more inflated body containing rounded fingers and the surface tension
MR fluid pattern [Fig. 5(d)] presents an even more characteristic polygonal shape having straighter
edges and acute fingers at their vertices. The results discussed in Fig. 9 as well as in Fig. 5 highlight
the effects of substituting surface by bending rigidity, reinforcing the significance of studying the
confined magnetoelastic structures presented in this work.

IV. CONCLUSION

This work has presented a theoretical study of instabilities of an elastic interface separating
a magnetic-field-responsive fluid (ferrofluid, or MR fluid) and a nonmagnetic fluid. These fluids
are confined in an effectively two-dimensional Hele-Shaw cell and subjected to an applied radial
magnetic field. As it occurs in the case of nonmagnetic reactive fluids [24,35,37], our magnetoelastic
setup considers that the elastic interface is the result of a chemical reaction that takes place when
magnetic and nonmagnetic fluids are put into contact. Additionally, the elastic interface is modeled
as having a curvature-dependent bending rigidity.

By employing a second-order mode-coupling approach, we derived a nonlinear differential
equation that describes the time evolution of the interfacial perturbation amplitudes. A key feature
of our second-order perturbative scheme is the fact that through the coupling of the appropriate
Fourier modes, one is able to extract relevant information about the morphology of the interface.
In this framework, and by using just a few participating Fourier modes (the fundamental n and its
harmonics 2n, 3n, and 4n), we have been able to study how the interplay of magnetic, elastic, and
yield stress effects impacts the shape of the emerging elastic interface magnetic fluid patterns at the
early nonlinear regime.

We have found that starlike patterns are produced in the elastic interface ferrofluid case, while
polygonal-like structures are generated in the elastic MR fluid situation. We have shown that
the shapes and lengths of the fingering structures are determined by the combined action of the
bending rigidity fraction parameter C and the magnetoelastic number NB. However, the longest
and sharpest fingers tend to arise for larger values of C. Moreover, we have checked that the
resulting weakly nonlinear magnetoelastic patterns assume stationary configurations already at
the lowest nonlinear (second-order) level. Finally, we also have verified that the magnetoelastic
pattern-forming structures obtained in this work are indeed different from their usual nonelastic
counterparts in which elastic effects are not present, but are replaced by interfacial surface tension.

We hope that our current weakly nonlinear, theoretical investigation will stimulate interest in the
further study of this class of still poorly exploited magnetoelastic problems in Hele-Shaw cells. A
possible extension of this work could try to tackle the fully nonlinear aspects of the problem through
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numerical simulations in the same spirit of Ref. [37]. In addition to possibly checking our weakly
nonlinear predictions, such advanced time stage simulations could reveal even more interesting
and complex pattern-forming phenomena. Of course, the development of laboratory experiments
involving reactive magnetic and nonmagnetic confined fluids subjected to a radial magnetic field
could also explore more thoroughly how the resulting elastic magnetic fluid patterns behave in
linear, weakly nonlinear, and fully nonlinear time regimes.
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APPENDIX: FUNCTIONS APPEARING IN THE MODE-COUPLING TERM F(n, m)

This Appendix presents the expressions for the functions B1(n, m), B2(n, m), B3(n, m), and
B4(n, m) which appear in Eq. (19),

B1(n, m) = −3 + 15
4 m(n − m) + 10(n − m)2 − 9

2 m2(n − m)2 − 6m(n − m)3 − 4(n − m)4, (A1)

B2(n, m) = 39
2 − 30m(n − m) − 71(n − m)2 + 81

2 m2(n − m)2 + 54m(n − m)3

+ 32(n − m)4 − 12m2(n − m)4 − 12m3(n − m)3, (A2)

B3(n, m) = −14 + 25m(n − m) + 54(n − m)2 − 36m2(n − m)2 − 48m(n − m)3

− 26(n − m)4 + 18m2(n − m)4 + 18m3(n − m)3, (A3)

and

B4(n, m) = 1 − 2m(n − m) − 4(n − m)2 + 3m2(n − m)2 + 4m(n − m)3

+ 2(n − m)4 − 2m2(n − m)4 − 2m3(n − m)3. (A4)
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