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Quincke rotation driven flows
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Flows induced by Quincke rotation in particle suspensions are considered. Nonlinear
boundary problems for the suspension velocity and particle angular velocity fields in
rectangular capillaries are formulated and solved for both no-slip and free boundary
conditions. Linear stability analysis shows that the critical electric field strength necessary
for the development of macroscopic flow is smaller than the field strength at which
spontaneous Quincke rotation of a single particle occurs. This decrease is caused by
hydrodynamic synchronization of the particle rotations. In the case of free boundaries
interesting intermittent behavior is observed: as the parameters governing the problem
pass degenerate eigenmodes revealed by the stability analysis, the nature of the induced
flow changes qualitatively.
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I. INTRODUCTION

Spontaneous rotation of dielectric particles in weakly conducting fluids was discovered by
Quincke at the end of the 19th century [1]. The model of the Quincke effect in the frame of the leaky
dielectric approach was developed in Ref. [2]. This model accounts for the action of antisymmetric
stress and can therefore describe a wide variety of experimentally observed phenomena such as
the collective motion of rolling Quincke particles [3], vortex flow in Quincke suspensions [4], and
frictionless flow of the Quincke suspensions in capillaries under the action of an electric field [5].
The particle polarization equations initially derived for spherical particles were generalized to the
case of ellipsoidal particles [6], leading to a description of the anomalous orientation perpendicular
to the applied electric field [7,8]. It is interesting to note that including rotational inertia in the
polarization model of leaky particles [2] leads to an exact derivation of the Lorentz equations and
an experimental confirmation of deterministic chaos in the polarization model of leaky particles
[9]. A rich class of phenomena has been observed for leaky droplets in an electric field, starting
with the observation by Taylor that droplets deform into oblate shapes [10]. A substantial review of
the electrohydrodynamics of droplets relevant to the Quincke effect is given in Ref. [11]. Among
the different reviewed effects the equatorial streaming of the oblate droplets with the formation of
sheets and their capillary breaking [12], the Quincke rotation of the droplets and formation of tilted
configurations [13—15], and instabilities of particle belts leading to the formation of counter-rotating
vortices on the equator of the Pickering droplets [16,17] should be mentioned. Recently, the Quincke
effect in more complex situations was investigated. The Quincke particle with an attached flexible
tail shows the Hopf bifurcation and self-propulsion due to the induced bending waves on the tail
[18]. In Ref. [19] it is shown that a Quincke particle in the shape of a helix self-propels without
the necessity for a solid wall as in the case of the Quincke rollers [3]. An algorithm for numerical
simulation of the Quincke droplets based on the boundary integral equation technique is developed
in Ref. [20].
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FIG. 1. Sketch of rectangular capillary with a thickness /. Rotations of the particles in xy plane create the
flow in the +x direction [in the case of free boundaries (hatched)]. On hatched walls of the capillary nonslip
(Sec. IT A) or nonstress (Sec. II C) boundary conditions are applied.

Spontaneous rotation of the single Quincke particle occurs in a plane perpendicular to the applied
electric field, but its direction is undetermined. In Ref. [21] the probability distribution function of
particle rotation planes is introduced, and it is shown that due to the induced flow the particle rotation
planes are ordered if the particle concentration is sufficiently large. In Ref. [22] this model is applied
for smoothing the velocity profiles of the capillary flow of the Quincke suspension predicted by
simple models [23].

Here, motivated by the results of Ref. [21], we consider the flow induced by rotating Quincke
particles in some simple geometries. The density-matched suspension is considered, and electric
interactions between the particles and with walls of capillary are neglected. Since the densities of
particles and fluid are matched, particles do not sediment on the capillary walls, and their rolling
motion [3] is not important.

II. CAPILLARY FLOW

A. Capillary flow at nonslip boundary conditions

Let us consider a rectangular capillary with the x axis along its long side, the y axis along its
short side, and the z axis perpendicular to the boundaries of the capillary (Fig. 1). The friction
with the walls is accounted for in the Brinkman approximation. Since the rotations of particles are
synchronized by the flow as shown in Ref. [21] the angular velocity has only a z component. The set
of equations describing the flow and the rotation of the particles in the stationary case includes the
equation of fluid motion in the inertialess Brinkman approximation accounting for volume torque
due to the particles rotating with the angular velocity €2 with respect to the fluid, where the angular
velocity is S = 1/ 2V x D. B takes into account the friction of the liquid with the side walls of
capillary and may be estimated according to the relation 8 = 12n/h* (h is the thickness of the
capillary),

—Vp+ A+ 1V x a(Q — Q) — B = 0, (1

the torque balance on the particles, which includes the torque due to the electric field, the friction
with the liquid, and the couple stress due to the diffusion of the angular momentum

-

PXE—a(Q—Q)+DAQ =0, 2)

and the polarization relaxation equation in the stationary case,

xP—=(P—-xE)=0. (3)

o]
Q| =
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Here « is the rotational drag coefficient, Qo = %% X v, T is the Maxwell polarization relaxation
time, and x = X0 — X~ 1S the polarizability of the spherical particle with the radius a, which
depends on the dielectric permeabilities and the conductivities of the particle and the surrounding
liquid according to xo = 47r£1a3(y2 — v/ (2 +291)s Xoo = deia(en — €1)/(e2 4 2¢1), where
indices 1 and 2 denote the electrophysical properties of the liquid and particles, respectively [2].
The polarizability of the Quincke particles x < O and their spontaneous rotation occurs in the
electric field E > E.( E, is the critical electric field strength at which the supercritical bifurcation
of the angular velocity of the single Quincke particle in the quiescent fluid arises and is given by
the relation [2] E? = —a/7 x). Due to the negative effective viscosity of the Quincke suspension
multilayer structure of the velocity profiles arises. To resolve the boundary layers between different
domains of the fluid motion the spin diffusion coefficient D is introduced similarly as is done,
for example, in Ref. [24] when considering the boundary layer of the edge flow in the system of
active spinners. An interesting feature of the model is that due to the cooperative rotation effect the
macroscopic flow arises even at E < E, [21]. Here we may remark on the following. In Ref. [25]
data of the effective viscosity measurements of the Quincke suspension in the Couette rheometer
are given for E > E., which show a decrease of the effective viscosity with the shear rate (no data
are given for E < E.). Since the calculation shows that a similar effect persists also for £ < E,,
then we may conclude that the experimental data in Ref. [25] indirectly confirm the decrease of
the critical field for the suspension in comparison with a single particle. This is illustrated by
finding the nontrivial solution v = (v(y), 0, 0), Q= (0, 0, 2) of the nonlinear boundary problem
[Egs. (1)-(3)] at0 < y < d:

d*v 2a dQ d?

— Ty =0, 4
o Txady 120 @
d*Q o Q E2+1dv 5)
e——F=Q—-——— =+ -—
dy? 1+ Q2E2  2dy
with boundary conditions
ds
Vly=0,1 =0, o =0. (6)
Yy y=0,1

Here the velocity of the flow is scaled by d/t, the angular velocity by 1/t, and y by the width
of the capillary d. The following notations are introduced: 1> = (n + a/4)/8, lé =D/a, =
13/d*, a=a/(4n),and b* = a/(1 + a).

Neutral solutions of the linear problem are found by linearizing Eq. (5). The critical values of
E?/E? for eigenmode n (v, ) ~ (sin (ny), cos (n7ry)) may be found analytically, yielding

E? 1+ vi2n’n? [, 1 )
_— = —_—n - — ).
E? d? 1+ I2n’n?/d?

The minimal value of the critical electric field min, (E,% /Ef) =1-bK1-w)? W=
lé/lsz, b= a/1 + a) corresponds to en’n? = b*w(l — w) and is less than 1 for w € (0, 1).

The first few linear instability modes (n =1, ...,4) are shown in Fig. 2 for w = 0.1 and
1 — E?/E? = 0.81b%. The critical ¢ values of the modes are given by the relation e.(n)/b* =
w(l —w)/n’mw?. We see that for the higher modes the critical diffusion length of the angular
velocity is comparatively smaller at given electric field strength. This illustrates the regularizing
role of the internal angular momentum diffusion. The velocity and angular velocity profiles for
the second mode are shown in Fig. 3. The linear stability neutral modes we have obtained enable
us to efficiently find the solutions of the nonlinear boundary problem using the MATLAB routine
bvp4c. Figure 4 shows solutions for the velocity and angular velocity fields corresponding to the
development of the second mode of the linear instability for several values of the electric field
above the critical value 1 — E%/E? = (0.5, 0.6, 0.7)b*. The mechanism behind the induced flow
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FIG. 2. Neutral modes at nonslip boundary conditions. 1 — E?/E? = 0.810*, w =0.1. (a) (n=1),
b)y(n=2),(c) (n=3),(d) (n=4).

may be easily explained by considering the angular velocity distribution. As shown in Fig. 4(b) the
particles rotate counterclockwise for y < 0.25, y > 0.75 and clockwise for 0.25 <y < 0.75. The
force due to the nonuniform angular velocity field pushes the liquid in the negative x axis direction
for 0 < y < 0.5 and the positive x axis direction for 0.5 < y < 1 as shown in Fig. 4(a).

The Poiseuille-like mode [see Fig. 2(a)] has been experimentally observed in a density-matched
Quincke suspension as described in Ref. [25]. We should remark that in Ref. [25] it is noted that the
simple model with internal rotations does not work at small shear rates when the effective viscosity
in the field is even greater than at zero field. The clarification of this behavior is given in the authors’
previous work [26], where the picture of particle layers perpendicular to the vorticity of the flow is
shown. We believe that the formation of such layering is due to the dipolar interaction of rotating
particles, which is not taken into account by the model (1)—(3). We may remark that the formation
of the similar multilayer structure of the suspension of magnetic particles in a rotating field was
considered in Ref. [27].

B. Vortex flow

The mechanism we have described for inducing macroscopic flow by inhomogeneous particle
rotations causes vortex-like flow in axisymmetric conditions when the Quincke suspension is
between two disks with radius R at a distance 2d (Fig. 5). Looking for the neutral solution of

the velocity field as & = (0, v, (N <52, 0), Qo = {27 0, L L0, (r)]1452) Eq. (3) up to the
first-order terms in the velocity of flow yields the following expression for the azimuthal force

2 a
1F \Q 2 r (b)]
> 0 G 0f :
-1 \ g _2 L i
-2 ! L
0 0.5

y y

FIG. 3. Velocity (a) and angular velocity (b) profiles for second neutral mode; 1 — E*/E? = 0.81b7,
w =0.1.
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FIG. 4. Velocity (a) and angular velocity (b) profiles as solutions of nonlinear boundary problem. From
down to up, 1 — Ez/Ef =(0.5,0.6,0.7)0%, ¢ = b*w(l —w)/4n? a=1, w=0.1.

- = = 2 /g2 X .
acting on the liquid: %[V x (P x E)], = %%Z—Z As a result we obtain an equation for the

mean velocity (averaged across the thickness of thetlayer) (V) ((vy) = 2v,/3),

2
(—dd<:2¢’> + }—d;”:’) - —“r’“;)) + Blug) = 0. )
where
B = _i< — gﬁ) 9)
d? 41— EZ/EC2 '

We see that contrary to the usual case g may be positive at E2/E? > 1/(1 + «/4n). This is the
negative viscosity effect of the Quincke suspension [6].

The nontrivial solutions of Eq. (8) assuming a no-slip boundary condition at r = R are (v,) ~
Ji(yar/R), where J; is the Bessel function and y, is nth root of the Bessel function. The critical
electric field for the growth of nth vortex mode satisfies the relation

E? _ o
E?  4n+a+4ny2d?/3R*

(10)

The lowest critical value of E?/E? corresponds to n = 1, and the corresponding mode is shown in
Fig. 6.

C. Capillary flow with free interfaces

An important aspect of the flow induced by the internal rotations is the edge effect at the free
interfaces [4,28-30]. To illustrate this, let us consider a simple model that does not take into account

zlE

B

2d KN 1N
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FIG. 5. The vortex flow of the Quincke suspension is created by nonhomogeneous rotations of the particles
in the cross section of the capillary as shown on the right side.
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FIG. 6. Velocity profile of vortex flow.

the couple stress in Egs. (1)—(3). The flow is defined by the velocity field v = (v(y), 0, 0) and the
angular velocity 2 = (0, 0, ©2). At the free boundary the condition of zero stress is in effect
Q%9 Q=0 11
o = _— —_ —_ = N
n dy "2 0
which yields v = 2aQy/(4n 4+ «), where the angular velocity 2 can be determined from the
equation as follows from Egs. (2) and (3):

Q  E? 4n
—_—— —TQ =0, (12)
1+ () E? a+4n
which has a nontrivial solution at E? > E2, where
El, = E2/(1+a/4y). (13)

Thus, the critical field strength required for the flow pattern to develop is below the field strength
at which spontaneous rotations of individual particles arise due to the cooperative hydrodynamic
interaction between the particles.

The nonlinear boundary problem for the layer with free boundaries at zero stress and couple
stress on the free boundaries in the same notations as used before reads

d*v n 2a dQ d?
- — — Vv =

dy*  l+4ady 12

a’Q o Q E?* ldv

0, (14)

Q- - 4+ - 15
* a2 T+ 2B 2dy (15)
with boundary conditions
d 2 a2
<_v+ a Q> —o, Bl o (16)
dy 1+a y=c1 dy |y_s

The problem (14)—(16) has a number of interesting properties. To illustrate this, we regard the
boundary problem for the neutral perturbations of the linear stability problem as an eigenvalue
problem for the critical electric field strength required for the induced flow. The resulting neutral
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FIG. 7. Neutral curves of layer with free boundaries (w = 0.1): y = ¢/b?, x = (E?/E? — 1)/b*.

curves are shown in Fig. 7 for particular value w € (0; 1) (Zzi; = 0.01). For large values of the
parameter ¢ the critical value of the electric field strength co;responds to that given by relation
(13) and is the sole neutral mode for E*/E? < 1. If w < 1 as the parameter ¢ is decreased the
higher modes of the velocity profile corresponding to —1 < (EZ/EC? —1)/b* < 0 appear when
the neutral curves cross E2/E? = 1. The first mode corresponding to the Poiseuille-like velocity
profile (as shown by the solution of the corresponding eigenvalue problem) appears at &/b* =
4[1 — z/tan (z)]/ (22)%, where z is determined by the relation w? = z/tan (z). The corresponding
relations may also be derived for higher modes. For small values of the parameter ¢ there are many
modes at w € (0, 1) corresponding to (E*/E? — 1)/b? < 0 as may be seen in Fig. 7.

The intersections of curves shown in Fig. 7 correspond to the degeneracy of eigenmodes.
The first two modes seen on the left side of Fig. 7 correspond to linear (Couette-like) and
parabolic (Poiseuille-like) velocity profiles. The corresponding velocity profiles slightly above the
degeneracy point are shown in Figs. 8(a) and 8(b) [¢/b* = 0.0279, (EZ/EC2 — 1)/b* = —0.905].
At the degeneracy point the modes are similar to edge solutions at y = —1 or y =1 (Fig. 9).
Passing the degeneracy point the neutral modes interchange and the dominant mode until the next
degeneracy point (see Fig. 8) is the Poiseuille-like mode. The first intersection (k = 1) of neutral
curves corresponding to the Couette-like and Poiseuille-like modes may be found by rather complex
analytical calculations, which give

<E2 _ 1>/b2 SR a7)
E? B w + /4 + w?
1@ ) 0.5 F )]
0.5t - o i
> 0O+t g >
05 | ] 0.5 | ]
-1 L 4 -1
-1-05 0 05 1 -1-05 0 05 1
y y

FIG. 8. Velocity profiles of two first modes. w = 0.1, &/b* = 0.0279, (E*/E? — 1)/b* = —0.905.
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FIG. 9. Neutral modes at point of degeneracy. E2/E? — 1)/b* = —0.9049, ¢/b* = 0.0279 as calculated
according the relations (17) and (18) for w = 0.1.

and (k is number of intersection)

L Y 3Vt w—Sw). (18)

b* 2m2k?

The situation is even more interesting at w > 1. In this case for (E?/E> — 1)/b* € (-1, 0) only
one or two modes exist. The first corresponds to the Couette-like velocity profile and exists for all
values ¢. The second mode corresponding to the Poiseuille-like velocity profile appears at the critical
parameter & value given by the relation £/b*> = 4[z/ tanh (z) — 1]/(2z)?, where z is determined by
the relation w? = z/ tanh (z). There we see the intersection of the neutral curves of these two modes.
The velocity profile corresponding to the intersection point at w = 2.1: ¢/b* = 0.026, (E*/E? —
1)/b* = —0.157, is shown in Fig. 10. A pronounced edge mode character may be seen. Edge flows
have been seen experimentally in different systems. For instance, in a suspension of hematite cubes
in a horizontal rotating magnetic field, edgelike particle motion is observed in Ref. [29]. Similar
phenomena are seen in Ref. [30] in the suspension of Janus magnetic particles in the rotating field
where their rotation is driven by the anisotropy of magnetic susceptibility.

The solutions of the nonlinear boundary problem (14)—(16) for several values of the viscous
penetration length using the MATLAB subroutine bvp4c are shown in Fig. 11. The characteristic
edgelike motion driven by the internal rotations near the free interfaces may be observed. For smaller
values of /, it competes with the flow caused by the nonuniform particle rotations.

0.5
0 L
-0.5 |
-1t
15 ¢
2t
25
-3
35 |
-4

-1 -0.5 0 0.5 1
y

FIG. 10. Velocity profile of the normalized neutral mode at the degeneracy point corresponding to w =
2.1, g/b* = 0.025, (E?/E? — 1)/b* = —0.157. Pronounced edgelike flow is present.
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FIG. 11. Solutions of the nonlinear boundary problem Egs. (14)—(16) for the velocity and angular velocity
profiles for several values of the viscous penetration length /,. Flatter profiles correspond to a larger viscous
penetration length. E*/E*> = 0.8, ¢ = 0.01, a = 1, d*/I> = (1, 1.5, 2). d*/I? increases from down to up.

III. CONCLUSIONS

Properties of flows in rectangular capillaries caused by the inhomogeneous rotations of Quincke
particles are analyzed at no-slip and free boundary conditions. By linearizing the nonlinear
boundary problems the conditions for the development of the suspension flow without applying
any external forces are obtained. It is found that the critical electric field for the development of the
macroscopic flow is less than the critical electric field at which a spontaneous rotation of a single
Quincke particles arises. This illustrates the synchronization of particle rotations by the flow. In the
axisymmetric geometry, the critical electric field strength for the development of the vortex flow is
found. In the case of the flow with the free boundaries the typical feature is the development of the
edge flows.

ACKNOWLEDGMENT

The authors are thankful to R. Livanovics for discussion.

[1] G. Quincke, Ueber Rotationen im constanten elektrischen Felde, Ann. Phys. Chem. 59, 417 (1896).

[2] A. O. Tsebers, Internal rotations in the hydrodynamics of conducting dielectric suspensions, Fluid Dyn.
15, 245 (1980).

[3] A.Bricard, J.-B. Coussin, N. Desreumax, O. Dauchot, and D. Bartolo, Emergence of macroscopic directed
motion in population of motile colloids, Nature (London) 503, 95 (2013).

[4] A. Bricard, J.-B. Coussin, D. Das, Ch. Savoie, V. Chikkodi, K. Shitara, O. Chepizhko, F. Peruani, D.
Saintillan, and D. Bartolo, Emergent vortices in populations of colloidal rollers, Nat. Commun. 6, 7470
(2018).

[5] A. Cebers, E. Lemaire, and L. Lobry, Flow modification induced by Quincke rotation in a capillary, Int.
Journ. Mod. Phys. 16, 2603 (2002).

[6] A.O. Tsebers, Electrohydrodynamic instabilities in weakly conducting suspension of ellipsoidal particles,
Magnetohydrodynamics 16, 175 (1980).

[7]1 A. Cebers, E. Lemaire, and L. Lobry, Electrohydrodynamic instabilities and orientation of dielectric
ellipsoids in low-conducting fluids, Phys. Rev. E 63, 016301 (2001).

[8] Q. Brosseau, G. Hickey, and P. M. Vlahovska, Electrohydrodynamic Quincke rotation of an ellipsoid,
Phys. Rev. Fluids 2, 014101 (2017).

[9] E. Lemaire and L. Lobry, Chaotic behavior in electro-rotation, Physica A 314, 663 (2002).

[10] G. I Taylor, The circulation produced in a drop by an electric field, Proc. Roy. Soc. A 291, 159 (1966).

[11] P. M. Vlahovska, Electrohydrodynamics of drops and vesicles, Ann. Rev. Fluid Mech. 51, 305 (2019).

[12] Q. Brosseau and P. M. Vlahovska, Streaming from the Equator of a Drop in an External Electric Field,
Phys. Rev. Lett. 119, 034501 (2017).

013701-9


https://doi.org/10.1002/andp.18962951102
https://doi.org/10.1002/andp.18962951102
https://doi.org/10.1002/andp.18962951102
https://doi.org/10.1002/andp.18962951102
https://doi.org/10.1007/BF01342613
https://doi.org/10.1007/BF01342613
https://doi.org/10.1007/BF01342613
https://doi.org/10.1007/BF01342613
https://doi.org/10.1038/nature12673
https://doi.org/10.1038/nature12673
https://doi.org/10.1038/nature12673
https://doi.org/10.1038/nature12673
https://doi.org/10.1038/ncomms8470
https://doi.org/10.1038/ncomms8470
https://doi.org/10.1038/ncomms8470
https://doi.org/10.1038/ncomms8470
https://doi.org/10.1142/S0217979202012724
https://doi.org/10.1142/S0217979202012724
https://doi.org/10.1142/S0217979202012724
https://doi.org/10.1142/S0217979202012724
https://doi.org/10.1103/PhysRevE.63.016301
https://doi.org/10.1103/PhysRevE.63.016301
https://doi.org/10.1103/PhysRevE.63.016301
https://doi.org/10.1103/PhysRevE.63.016301
https://doi.org/10.1103/PhysRevFluids.2.014101
https://doi.org/10.1103/PhysRevFluids.2.014101
https://doi.org/10.1103/PhysRevFluids.2.014101
https://doi.org/10.1103/PhysRevFluids.2.014101
https://doi.org/10.1016/S0378-4371(02)01168-8
https://doi.org/10.1016/S0378-4371(02)01168-8
https://doi.org/10.1016/S0378-4371(02)01168-8
https://doi.org/10.1016/S0378-4371(02)01168-8
https://doi.org/10.1098/rspa.1966.0086
https://doi.org/10.1098/rspa.1966.0086
https://doi.org/10.1098/rspa.1966.0086
https://doi.org/10.1098/rspa.1966.0086
https://doi.org/10.1146/annurev-fluid-122316-050120
https://doi.org/10.1146/annurev-fluid-122316-050120
https://doi.org/10.1146/annurev-fluid-122316-050120
https://doi.org/10.1146/annurev-fluid-122316-050120
https://doi.org/10.1103/PhysRevLett.119.034501
https://doi.org/10.1103/PhysRevLett.119.034501
https://doi.org/10.1103/PhysRevLett.119.034501
https://doi.org/10.1103/PhysRevLett.119.034501

M. BELOVS AND A. CEBERS

[13] M. Ouriemi and P. M. Vlahovska, Electrohydrodynamic deformation and rotation of a particle-coated
drop, Langmuir 31, 6298 (2015).

[14] P.-F. Salipante and P. M. Vlahovska, Electrohydrodynamic rotations of a viscous droplet, Phys. Rev. E 88,
043003 (2013).

[15] P. F. Salipante and P. M. Vlahovska, Electrohydrodynamics of drops in strong uniform dc electric fields,
Phys. Fluids 22, 112110 (2010).

[16] P. Dommersnes, Z. Rozynek, K. Mikkelsen, R. Castberg, K. Kjerstad, K. Nersvil, and J. O. Fossum,
Active structuring of colloidal armour on liquid drops, Nat. Commun. 4, 2066 (2013).

[17] M. Ouriemi and P. M. Vlahovska, Electrohydrodynamics of particle-covered drops, J. Fluid Mech. 751,
106 (2014).

[18] L. Zhu and H. A. Stone, Propulsion driven by self-oscillation via an electrohydrodynamic instability,
Phys. Rev. Fluids 4, 061701(R) (2019).

[19] D. Das and E. Lauga, Active Particles Powered by Quincke Rotation in a Bulk Fluid, Phys. Rev. Lett. 122,
194503 (2019).

[20] D. Das and D. Saintillan, Electrohydrodynamics of viscous drops in strong electric fields: Numerical
simulation, J. Fluid Mech. 829, 127 (2017).

[21] M. Belovs and A. Cebers, Relaxation of polar order in suspensions with Quincke effect, Phys. Rev. E 89,
052310 (2014).

[22] A. Cebers, Poiseuille flow of a Quincke suspension, Phys. Rev. E 90, 032305 (2014).

[23] H.-F. Huang, M. Zahn, and E. Lemaire, Continuum modeling of micro-particle electrorotation in Couette
and Poiseuille flows—The zero spin viscosity limit, J. Electrostatics 68, 345 (2010).

[24] B. C. Van Zuiden, J. Paulose, W. T. M. Irvine, D. Bartolo, and V. Vitelli, Spatiotemporal order and
emergent edge currents in active spinner materials, Proc. Natl. Acad. Sci. USA 113, 12919 (2016).

[25] F. Peters, L. Lobry, and E. Lemaire, Pressure-driven flow of a micropolar fluid: Measurement of the
velocity profile, J. Rheol. 54, 311 (2010).

[26] N. Pannaci, E. Lemaire, and L. Lobry, Rheology and structure of a suspension of particles subjected to
Quincke rotation, Rheol. Acta 46, 899 (2007).

[27] G. Bossis and A. Cebers, Effects of the magnetodipolar interactions in the alternating magnetic fields,
J. Magn. Magn. Mater. 201, 218 (1999).

[28] A. O. Tsebers, Interfacial stresses in the hydrodynamics of liquids with internal rotation,
Magnetohydrodynamics 11, 63 (1975).

[29] V. Soni, E. Bililign, S. Magkiriaden, S. Sacanna, D. Bartolo, M. J. Shelley, and W. T. M. Itvine, The odd
free-surface flows of a colloidal chiral fluid, Nat. Phys. 15, 1188 (2019).

[30] J. Yan, S. C. Bae, and S. Granick, Rotating crystals of magnetic Janus colloids, Soft Matter 11, 147 (2015).

013701-10


https://doi.org/10.1021/acs.langmuir.5b00774
https://doi.org/10.1021/acs.langmuir.5b00774
https://doi.org/10.1021/acs.langmuir.5b00774
https://doi.org/10.1021/acs.langmuir.5b00774
https://doi.org/10.1103/PhysRevE.88.043003
https://doi.org/10.1103/PhysRevE.88.043003
https://doi.org/10.1103/PhysRevE.88.043003
https://doi.org/10.1103/PhysRevE.88.043003
https://doi.org/10.1063/1.3507919
https://doi.org/10.1063/1.3507919
https://doi.org/10.1063/1.3507919
https://doi.org/10.1063/1.3507919
https://doi.org/10.1038/ncomms3066
https://doi.org/10.1038/ncomms3066
https://doi.org/10.1038/ncomms3066
https://doi.org/10.1038/ncomms3066
https://doi.org/10.1017/jfm.2014.289
https://doi.org/10.1017/jfm.2014.289
https://doi.org/10.1017/jfm.2014.289
https://doi.org/10.1017/jfm.2014.289
https://doi.org/10.1103/PhysRevFluids.4.061701
https://doi.org/10.1103/PhysRevFluids.4.061701
https://doi.org/10.1103/PhysRevFluids.4.061701
https://doi.org/10.1103/PhysRevFluids.4.061701
https://doi.org/10.1103/PhysRevLett.122.194503
https://doi.org/10.1103/PhysRevLett.122.194503
https://doi.org/10.1103/PhysRevLett.122.194503
https://doi.org/10.1103/PhysRevLett.122.194503
https://doi.org/10.1017/jfm.2017.560
https://doi.org/10.1017/jfm.2017.560
https://doi.org/10.1017/jfm.2017.560
https://doi.org/10.1017/jfm.2017.560
https://doi.org/10.1103/PhysRevE.89.052310
https://doi.org/10.1103/PhysRevE.89.052310
https://doi.org/10.1103/PhysRevE.89.052310
https://doi.org/10.1103/PhysRevE.89.052310
https://doi.org/10.1103/PhysRevE.90.032305
https://doi.org/10.1103/PhysRevE.90.032305
https://doi.org/10.1103/PhysRevE.90.032305
https://doi.org/10.1103/PhysRevE.90.032305
https://doi.org/10.1016/j.elstat.2010.05.001
https://doi.org/10.1016/j.elstat.2010.05.001
https://doi.org/10.1016/j.elstat.2010.05.001
https://doi.org/10.1016/j.elstat.2010.05.001
https://doi.org/10.1073/pnas.1609572113
https://doi.org/10.1073/pnas.1609572113
https://doi.org/10.1073/pnas.1609572113
https://doi.org/10.1073/pnas.1609572113
https://doi.org/10.1122/1.3302803
https://doi.org/10.1122/1.3302803
https://doi.org/10.1122/1.3302803
https://doi.org/10.1122/1.3302803
https://doi.org/10.1007/s00397-007-0182-y
https://doi.org/10.1007/s00397-007-0182-y
https://doi.org/10.1007/s00397-007-0182-y
https://doi.org/10.1007/s00397-007-0182-y
https://doi.org/10.1016/S0304-8853(99)00053-0
https://doi.org/10.1016/S0304-8853(99)00053-0
https://doi.org/10.1016/S0304-8853(99)00053-0
https://doi.org/10.1016/S0304-8853(99)00053-0
https://doi.org/10.1038/s41567-019-0603-8
https://doi.org/10.1038/s41567-019-0603-8
https://doi.org/10.1038/s41567-019-0603-8
https://doi.org/10.1038/s41567-019-0603-8
https://doi.org/10.1039/C4SM01962H
https://doi.org/10.1039/C4SM01962H
https://doi.org/10.1039/C4SM01962H
https://doi.org/10.1039/C4SM01962H

