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We study the dynamics of a pair of initially spherical drops rising side by side in a
surrounding, denser, fluid. Our primary focus is on liquid-liquid systems, and a range
of viscosity and density ratios is explored by three-dimensional numerical simulations.
Interesting dynamics are reported, which cannot be extrapolated from previously known
dynamics of gas-liquid systems. Similar to two air bubbles though, we find that two liquid
drops move away from each other as they rise, in cases where a single drop would rise
vertically. A pair of light drops always remains in two-dimensional motion, and higher
drop viscosity increases the tendency of wobbling. This is in contrast with the dynamics of
a single drop that follows a highly three-dimensional trajectory at very low drop viscosity,
but is restricted to two-dimensional motion at higher drop viscosity. On the other hand,
a pair of heavier drops displays three-dimensional behavior at low drop viscosity and
two-dimensional behavior at high viscosity. We find that a pair of drops is far less sensitive
to viscosity contrast than a single drop is, in our parameter range. In contrast to gas-liquid
systems, where the shape change of the bubble was tied to nonlinear dynamics of the
trajectory, we find in liquid-liquid systems that interesting drop trajectories can occur
without corresponding large shape changes. It is found that the separation distance between
the drops exhibits a nonmonotonic trend with an increase in the density ratio. The physical
reason for this nonmonotonic trend is simple and explained by inspecting the velocity
components.
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I. INTRODUCTION

The complex interaction of air bubbles in a liquid has been extensively studied in the past due to
its relevance in many industrial applications (see, for instance, Refs. [1–3]). The size distribution of
bubbles and the associated hydrodynamic behavior greatly influence the heat and mass transfer and
the rate of chemical reaction in bubble column reactors, bioreactors, microfluidics, etc. [4,5]. The
dynamics observed in such applications is very complex and computationally difficult to handle.
Experiments also provide useful but only average flow features. Thus, in order to improve the
fundamental understanding of these complex flows, model problems, e.g., the rising dynamics of a
single bubble [6] and that of two initially spherical bubbles rising side by side [7–11] or in a line
along the vertical axis [12–17], have been considered by several researchers. However, the former
configuration (dynamics of a single bubble) has been studied in greater detail than the latter (two
bubbles rising side by side or in a line along the vertical axis). Moreover, investigation of the effect
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of viscosity and density contrasts on the rise dynamics of two initially spherical bubbles is lacking.
A brief review of the literature on the fluid dynamics of a single bubble and two bubbles rising side
by side is provided below.

Three dimensionless numbers are generally used to describe the rise dynamics of bubbles
and drops, namely, the Galilei number Ga (≡ρAg1/2R3/2/μA), the Eötvös number Eo [≡(ρA −
ρB)gR2/σ ], and the Morton number Mo, which can also be defined as Eo3/Ga4, in addition to the
viscosity ratio μr (≡μB/μA) and the density ratio ρr (≡ρB/ρA). Here R is the initial radius of the
bubble or drop, σ is the interfacial tension, and ρA, μA and ρB, μB are densities and viscosities of the
continuous and dispersed phases, respectively. Some researchers also used the Reynolds number Re
(defined using the terminal velocity as the velocity scale Vs: Re = VsρAR/μA) instead of Ga (defined
using a velocity scale equal to

√
gR). For an air bubble rising in water, μr = 0.017 and ρr = 10−3.

Bhaga and Weber [18] conducted systematic experiments on an air bubble rising in aqueous
sugar solutions of different concentrations and obtained a region map in Re-Eop space that classifies
the bubble behaviors in terms of bubble shape and its path. Here their Eötvös number Eop was
defined based on the density of the continuous phase, as Eop = ρAgR2/σ = Eo/(1 − ρr ). Note that
for the air-liquid system, as ρr is small (10−3), Eo ≈ Eop. However, Haberman and Morton [19]
were probably the first to conduct experiments on rising bubbles in viscous liquids. Recently, by
conducting three-dimensional numerical simulations, Tripathi et al. [20] presented a phase diagram
in Ga-Eop space for bubble shapes and its trajectories. Tripathi and co-workers [20,21] identified five
different regimes, namely, axisymmetric, skirted, zigzagging or spiraling, peripheral breakup, and
central breakup. Their phase plot can also include unsteady bubbles, for which there is no terminal
velocity. This phase diagram was validated experimentally by Sharaf et al. [21] for an air-liquid
system. The hydrodynamics of a single bubble in quiescent liquid has been studied computationally
in Refs. [22–24]. The bubble dynamics of interest to the present study lie in (i) the axisymmetric
regime at low Eop and low Ga, where a bubble maintains its azimuthal symmetry, and (ii) the
zigzagging or spiraling regime observed at low Eop and high Ga, where a bubble rises in a zigzag or
a spiral path, commonly known as path instability [25–27]. Here we remark that the above review
of the studies on a single bubble or drop rising in a viscous liquid is rather a small subset of a large
volume of work conducted on this subject.

We next present the literature associated with a pair of bubbles or drops rising side by side.
The interactions and trajectories of a pair of spherical air bubbles rising side by side in liquid have
been investigated analytically by several researchers in the Stokes [28] and the potential flow [7,29]
limits. A summary of some previous studies on two bubbles rising side by side is provided in Table I,
roughly in increasing order of Reynolds number. Broadly, spherical bubbles, which in Stokes flow
would rise with constant separation, repel each other at low Reynolds numbers and attract each
other at high Reynolds numbers. Legendre et al. [7] investigated flow past two spherical bubbles
by conducting three-dimensional simulations for a wide range of Reynolds number. They found
that when the boundary layer thickness is small as compared to the separation distance between
the bubbles, an irrotational mechanism is in operation and the bubbles are attracted to each other.
On the other hand, in the viscous regime (for low Ga), the boundary layers around the bubbles
interact with each other, resulting in a repulsive force that separates the bubbles. Here, due to the
interface boundary condition, downward flow (with respect to the bubble reference frame) past a
bubble creates vorticity close to bubble, whose sense is such that upward velocity is induced. When
there are two bubbles, at low to moderate Reynolds number, there is a significant asymmetry in the
vorticity isocontours on the two sides of a given bubble. The isocontours of vorticity come closer
together within the gap, which locally increases the upward induced velocity, i.e., decreases the net
downward velocity. The difference in velocity on the two sides of the bubble is such that a net lift
in the direction away from the other bubble, namely, a repulsive force, is generated.

Recently, Zhang et al. [30] studied numerically two bubbles rising side by side for Reynolds
numbers ranging from 10 to 700 and demonstrated the influence of vortex interaction on the
repelling and attractive motions of the bubbles. Their results are in agreement with those of Legendre
et al. [7]. Sanada et al. [8] investigated experimentally the dynamics of a pair of bubbles rising side
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TABLE I. Behavior of two air bubbles rising side by side in liquids as reported in the literature. Note that
in Ref. [11] the corresponding Re values are about the same as those of Ga.

Initial separation
Reference Flow regime distance q0 Nature of interaction

Legendre et al. [7] Re = 0.01–250 2.25–20 viscous regime (low Re): repulsion
potential flow regime (high Re): attraction
transitional Re depends on the value of q0

Zhang et al. [30] 10–700 2.6–8 Re � 50: repulsion
higher Re: attraction

Sanada et al. [8] Re = 16 2–5 repulsion
Re = 163–291 attraction

Tripathi et al. [11] Ga = 20, 40 3 repulsion

Duineveld [31] Re > 100 4–10.6 coalesce (We < 0.18)
bounce (We > 0.18)

Kok [29,32] potential flow 4–6 attraction for bubbles rising side by side (θ = 90◦)

by side for moderate and large values of Re. They also found repulsion at small Reynolds number
and attraction at higher Reynolds numbers. In the attracting case, they also identified coalescence
and bouncing behaviors for different values of the Weber number (We ≡ ρAV 2

s R/σ ). Tripathi et al.
[11] also investigated the dynamics of a pair of air bubbles rising in water via three-dimensional
numerical simulations in the inertia-dominated regime. Their work was restricted to the repulsive
range of Reynolds numbers. They found that interaction between the wakes of the bubbles can cause
oscillatory motion or path instability.

Duineveld [31] conducted experiments on a single bubble and a pair of bubbles rising in the same
liquid at high Reynolds numbers. Most of these experiments were in the attracting range of Reynolds
numbers, and whether the bubbles coalesced or bounced away depended on the Weber number. We
note that our study is focused on moderate values of the Weber number. Kok [29] investigated
theoretically the trajectories of bubbles in the potential flow limit and found that bubbles initially
placed side by side experience an attraction to each other. This early theoretical finding provides the
mechanism for the attraction seen at high Reynolds numbers, where the viscous boundary layers
around each bubble are thin. We mention in passing that Kok [29] also showed that the sign of
the force between the bubbles in potential flow depends on the initial orientation of their line of
separation to the vertical.

The literature on bubbles rising in non-Newtonian fluids is vast. While the physics there could be
different, we briefly mention a few findings in bubbles rising side by side. Vélez-Cordero et al.
[33] and Islam et al. [34] studied the motion of bubbles in shear-thinning fluids for Re < 10
and approximately 20–100, respectively. They found repulsive interaction, except when the initial
separation and the Reynolds number were large. Thus, the behavior is qualitatively the same as
that in Newtonian fluids [7]. Zenit and Feng [35] in their review noted that bubbles rising side
by side in a shear-thinning fluid exhibit drafting-kissing-tumbling behavior, as observed earlier by
Vélez-Cordero et al. [33].

All these studies on single bubble and pairs of bubbles are associated with gas-liquid systems.
Although there exist a few studies on a single drop of liquid rising in another liquid (which are
reviewed below), to the best of our knowledge, there are no published studies of the dynamics of
a pair of liquid drops rising side-by-side in another immiscible liquid for finite inertia, in spite
of the fact that one encounters such liquid-liquid systems in many industrial applications. Many
researchers have however investigated solid spheres falling in liquids. For example, allowing two
solid spheres to fall side by side with a small initial gap in a sedimentation channel, Joseph et al. [36]
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FIG. 1. (a) Density (ρr) and viscosity (μr) ratios of about 1650 pairs of fluids. Blue open and red closed
symbols represent liquid-liquid and liquid-gas systems, respectively. The list of the viscosity and density ratios
of these pairs of fluids is provided in the Supplemental Material [37]. (b) Some of the fluid pairs considered in
the present study.

showed that the spheres separated in a Newtonian surrounding liquid, but attracted each other in a
viscoelastic fluid. They remarked that the shear-thinning nature and memory may be responsible for
the aggregation of the spheres. We will see below that the behavior of liquids rising in other liquids
departs both from that of bubbles and also that of solid spheres, since the viscosity and density
ratios, and well as shape change, affect the dynamics.

The viscosity and density ratios of nearly 1650 pairs of fluids used in industries and households
are presented in Fig. 1. In the present study, we only consider situations with ρr < 1, i.e., rising
drops. It should be noted that the inclusion of temperature or concentration of some species often
changes the viscosity drastically. Such effects, along with the consideration of non-Newtonian
behavior of other fluids, will give different dimensions to Fig. 1.

Ohta et al. [38] investigated the rise dynamics of a single drop in a liquid-liquid system.
They studied the effect of viscosity and density ratios on drop shape by performing axisymmetric
numerical simulations. They found that the viscosity ratio has a significant effect on the rise
dynamics for low values of Mo. In another study, Ohta et al. [39] investigated a single liquid
drop in an immiscible viscous liquid by conducting experiments and three-dimensional numerical
simulations using a coupled level-set and volume-of-fluid approach. They found that increasing the
viscosity ratio leads to wobbling motion in the case of low Mo and low Eop. For high values of Eop

the drop undergoes breakup. Liu et al. [40] studied a single liquid drop rising in another liquid by
conducting an axisymmetric numerical simulation based on a front-tracking approach. They also
found that for low Mo, the drop undergoes a sudden change in its topology leading to breakup.
Premlata et al. [41] investigated numerically the dynamics of an air bubble rising in an unconfined
quiescent viscosity-stratified medium and found that in contrast to the constant-viscosity system, in
this case, the bubble undergoes a large deformation by forming an elongated skirt that physically
separates the wake region from the rest of the surrounding fluid.

As the above literature review shows, the dynamics of a single bubble or drop has been
investigated for air-liquid and liquid-liquid systems; however, the dynamics of pair of bubbles rising
side by side has been investigated for only air-liquid systems. In the present work we investigate the
effect of viscosity and density ratios on the rise dynamics of a pair of drops inside quiescent liquid
by conducting three-dimensional numerical simulations. From our previous study [11] we learned
about the behavior of a light and low-viscosity pair of drops, but when we increase the density of
the drop interesting things start happening. The behavior becomes more three dimensional, which
is opposite to what a single drop does. Increasing viscosity makes the drop more spherical but the
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FIG. 2. Schematic diagram showing the initial configuration of two initially spherical drops (fluid B) rising
in a surrounding medium (fluid A). A cubic computational domain of size H × H × H is used and the drops
are placed at (q0/2, 0, z0) and (−q0/2, 0, z0). In the present study, H = 120R and z0 = 7R. The acceleration
due to gravity g acts in the −z direction.

horizontal separation between the drops still increases. This behavior is similar to that observed in
the case of a pair of solids [42,43]. Therefore, it is necessary to study the whole parameter space, and
much needs to be understood in the case of a pair of liquid drops rising in other liquids. The present
work is an attempt in this direction. The effect of the initial separation distance between the drops
has also been studied by Tripathi et al. [11]. They found that when the initial separation distance
between the drops is small, their trajectories are merely mirror images of each other. The symmetry
in the trajectories of the drops is broken with the increase in their initial separation distance; in this
case, one of the drops oscillates gently into the third dimension, whereas the other displays large
forays in the spanwise direction. Of course, for very large initial separation distance, the drops can
be expected to behave like two independent single drops. In the present study too we observe similar
behavior for different viscosity and density ratios. Thus we only present the results for a fixed value
of the initial separation distance between the drops.

The rest of the paper is organized as follows. The details of the problem formulation are provided
in Sec. II. The results are discussed in Sec. III. A summary is given in Sec. IV.

II. FORMULATION

The dynamics of two initially spherical drops (dispersed phase, designated by fluid B) of radii
R rising side by side in a quiescent surrounding medium (continuous phase, designated by fluid A)
under the action of gravity g is investigated via direct numerical simulations of three-dimensional
incompressible Navier-Stokes and continuity equations. A schematic diagram of the initial flow
configuration is shown in Fig. 2. The fluids are assumed to be Newtonian and incompressible.
The viscosity and density of fluid A and fluid B are (μA, ρA) and (μB, ρB), respectively, such that
ρB < ρA (drops). A Cartesian coordinate system (x, y, z) is used with the gravity g acting in the −z
direction. The initial coordinates of drop 1 and drop 2, as designated in Fig. 2, are (−q0/2, 0, z0)
and (q0/2, 0, z0), respectively, wherein q0 = 3R0 and z0 = 7R0 are the initial separation distances
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between the drops and the initial height from the bottom of the computational domain. A big
computational domain of size 120R × 120R × 120R is considered so that the boundary effects on
the dynamics can be neglected.

The dynamics of the drops is governed by the mass and momentum conservation, which are
given by

∇ · u = 0, (1)

ρ

[
∂u
∂t

+ u · ∇u
]

= −∇p + ∇ · [μ(∇u + ∇uT )] + δ(x − xf )σκn − ρgj, (2)

where u = (u, v,w) denotes the velocity field; u, v, and w represent the velocity components in the
x, y, and z directions, respectively; p is the pressure field; t denotes time; j denotes the unit vector
along the vertical direction; δ(x − xf ) is the delta distribution function (denoted by δ hereafter)
whose value is zero everywhere except at the interface x = xf ; and κ = ∇ · n is the interfacial
curvature, wherein n is the unit normal pointing towards the surrounding medium at the interface.
In addition, the interface separating the drops and the surrounding medium is tracked by solving
an advection equation for the volume fraction of the continuous phase c. Thus, c = 0 and 1 for the
drops (fluid B) and surrounding fluid (fluid A), respectively,

∂c

∂t
+ u · ∇c = 0. (3)

The density ρ and the viscosity μ are assumed to depend on c as

ρ = (1 − c)ρB + cρA, (4)

μ = (1 − c)μB + cμA. (5)

The scaling

(x, y, z) = R(x̃, ỹ, z̃), t = t̃
√

R/g,

u = ũ
√

gR, p = ρAgRp̃,

μ = μAμ̃, ρ = ρAρ̃, δ = δ̃/R

(6)

is used to nondimensionalize Eqs. (1)–(5), where the tildes designate dimensionless quantities. The
tildes are dropped hereafter and all the variables presented below are in dimensionless form. The
governing dimensionless equations are given by

∇ · u = 0, (7)

∂u
∂t

+ u · ∇u = −∇p + 1

Ga
∇ · [μ(∇u + ∇uT )] + (1 − ρr )δ

∇ · n
Eo

n − ρj, (8)

where the dimensionless density and dynamic viscosity are given by

ρ = (1 − c)ρr + c, (9)

μ = (1 − c)μr + c. (10)

A volume-of-fluid-method–based Navier-Stokes flow solver Basilisk [44,45] that incorporates
a height-function-based balanced-force continuum-surface-force formulation is used. A dynamic
adaptive grid refinement is incorporated, which provides a large number of grid points or cells on the
vortical and interfacial regions. A grid convergence test is presented in the Appendix for typical sets
of parameters. To minimize the wall effect a sufficiently big computational domain is considered.
The free-slip and no-penetration conditions are imposed on all the boundaries of the computational
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domain. The numerical scheme is second-order accurate in space and time. The present numerical
method is similar to the one used by Tripathi et al. [20], which has been validated extensively in our
previous studies [46–49]. The details of the numerical method have not been presented here in order
to avoid the repetition. The results obtained from the present numerical simulations are presented
next.

III. RESULTS AND DISCUSSION

The main objective of the present work is to investigate the effect of viscosity and density ratios
on the dynamics of two drops rising side by side. We begin the presentation of our results by
summarizing the rising dynamics of two air bubbles in a liquid, at extremely small density and
viscosity ratios, as considered by Tripathi et al. [11], in Figs. 3(a) and 3(b) for Ga = 20 and Ga =
40, respectively. The rest of the parameters are Eo = 3.996, q0 = 3, ρr = 10−3, and μr = 10−2. In
Figs. 3(a) and 3(b) we present the temporal evolution of the separation distance between the bubbles
q ≡ [(xCG2 − xCG1)2 + (yCG2 − yCG1)2 + (zCG2 − zCG1)2]1/2 (top row); the variations of the aspect
ratio Ar of bubble 1 and also that of a single bubble versus z, as well as the shapes of bubbles (x-z
view) at different time instances and the corresponding z locations (second row); the top view of
the trajectories of the two bubbles and the corresponding trajectory of the single bubble (third row);
and the contours of the z component of the vorticity (ωz = ±0.02) for the single- and two-bubble
cases at t = 40 (bottom row). Here (xCG1, yCG1, zCG1) and (xCG2, yCG2, zCG2) are the positions of
the center of gravity of the bubbles at any time t . It can be seen that in this range of parameters,
a single bubble initially flattens out as it rises and shows path oscillations at a moderate Galilei
number (see the second and third rows). Shape oscillations are accompanied by path oscillations.
Two bubbles rising side by side show the same behavior, besides increasing their mutual separation
as they rise (top row). It should be noted that the two bubbles interact significantly with each other.
This can be seen by the fact that the vortex shedding is perfectly out of phase (bottom row in Fig. 3).
In the third row of Fig. 3 (see the directions of arrows), it can also be observed that the paths of the
left and right bubbles are symmetrical for Ga = 20, but they are asymmetrical for Ga = 40. Further
investigation is required to understand this phenomenon.

We now ask what happens when we increase the density ratio significantly, namely, the drops and
surrounding liquid have densities of the same order of magnitude as each other. For this, the value of
the density ratio ρr is varied from 0.05 to 0.95. We also increase the viscosity ratio, considering the
cases when (i) the drop is one-tenth as viscous as the surrounding fluid (μr = 0.1) and (ii) the drop
is ten times more viscous than the surrounding fluid (μr = 10). In Figs. 1(a) and 1(b) the viscosity
and density ratios associated with the real fluid pairs are presented. For example, (μr, ρr ) =
(0.1, 0.5), (0.1,0.95), and (10, 0.95) correspond to air-diethylether, diphenylether-isoeugenol, and
n-amylpthalate-diphenylether, respectively. The separation distance between the drops and shapes
for different density ratios are shown in Figs. 4(a) and 4(c) and Figs. 4(b) and 4(d) for μr = 0.1
and 10, respectively. The rest of the parameters are Ga = 20, Eo = 3.996, and q0 = 3. As seen in
the case of light bubbles (Fig. 3), drops with ρr varying from 0.05 to 0.95 also separate from each
other increasingly as they rise. In other words, the horizontal forces are large enough to move heavy
drops as well. Interestingly, we see that the separation for the less viscous drops [Fig. 4(a)] varies
nonmonotonically with the density ratio. This can be explained by the interplay of horizontal forces
and gravitational forces, by means of Fig. 5 below. Moreover, the more viscous drops [Fig. 4(b)]
seem to display greater horizontal motion if they are heavier (with increasing ρr). We will return
to this as well. The aspect ratio behaves along expected lines. If gravity were to be the primary
driver of shape change, we would expect the shape to be more sensitive to the density ratio than
to the viscosity ratio. We then expect a drop closer to the surrounding fluid in density to retain a
more spherical shape than one which is significantly lighter. We see in Figs. 4(c) and 4(d) that these
expectations are borne out. Drops of density 0.95 times that of the surroundings remain practically
spherical as they rise. For a 100-fold change in viscosity, there is hardly any change in shape, as
can be seen by comparing the density ratios 0.95 and 0.5 in Figs. 4(c) and 4(d). A nonmonotonicity
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FIG. 3. Summary of earlier work [11], restricted to very light bubbles of very low viscosity. The top row
shows the evolution of the separation distance q. The second row shows the aspect ratio Ar of bubble 1 and
also that of a single bubble versus z, as well as the shapes of bubble 1 (on the left) (x-z view) and the shapes
of a single bubble (on the right) at different time instances and the corresponding z locations. The third row
shows the top view of the trajectories of the two bubbles and the corresponding trajectory of the single bubble.
The bottom row shows the contours of the z component of the vorticity (ωz = ±0.02) for the single- and
two-bubble cases at t = 40. The parameters are Eo = 3.996, q0 = 3, ρr = 10−3, μr = 10−2, and (a) Ga = 20
and (b) Ga = 40.

013601-8



EFFECT OF VISCOSITY AND DENSITY RATIOS ON TWO …

3 3.5 4 4.5 5 5.5 6
q

10

20

30

40

50

z
0.05
0.1
0.5
0.8
0.95

ρ
r

3 3.5 4 4.5 5 5.5 6
q

10

20

30

40

50

z

0.05
0.5
0.8
0.95

ρ
r

(a) (b)

(c) (d)

FIG. 4. Variations of (a) and (b) the separation distance between the drops q and (c) and (d) the aspect
ratio Ar of drop 1 with z for different values of the density ratio ρr . The parameters are Ga = 20, Eo = 3.996,
q0 = 3, and (a) and (c) μr = 0.1 and (b) and (d) μr = 10.

with density ratio is noticed at high drop viscosity [Fig. 4(d)] in the aspect ratio as well, which is
discussed below. Though a drop’s viscosity does not change its shape, the trajectories do differ. We
thus conclude that the separation between the pair of drops is not driven by shape change, though it
is modified by it.

Figures 5(a)–5(f) are aimed at explaining the trends seen in Fig. 4. The velocity component of
the centroid of drop 1 in the x direction (uCG) is shown for the low- (μr = 0.1) and high-viscosity
(μr = 10) drops in Figs. 5(a) and 5(b), respectively, for different density ratios. The rest of the
parameters are also the same as those used to generate Fig. 4. For both viscosity ratios considered, as
the density of the drop becomes closer to that of the surrounding fluid, the separation rate decreases.
The corresponding variations of the vertical velocity of the centroids (wCG) of drop 1 with time
are shown in Figs. 5(c) and 5(d). It can be seen that wCG decreases monotonically with increasing
drops density, until at the density ratio of 0.95 it is rather small. The important thing to notice is that
there is no nonmonotonicity in the velocity components as density is varied. The trend is as would
be physically expected. First, the lighter drops have a higher horizontal velocity than the heavier
drops. Also, with an increase in density, the buoyancy is reduced and the vertical velocity decreases.
Notice that the density difference in the case of ρr = 0.95 is a quarter of that for ρr = 0.8. This is
reflected in the Reynolds number, which is proportional to wCG. Due to various other intervening
physics, the Reynolds numbers do not differ exactly by a factor of 4, but they are in a ratio close to
this number. Thus, although all the drops in this figure have the same Galilei number, their inertia
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FIG. 5. Variations of velocity of the centroid of drop 1 in (a) and (b) the x direction (uCG) and (c) and (d) the
z direction (wCG) and variation of (e) and (f) uCG/wCG of drop 1 with time for different values of the density
ratio ρr The parameters are Ga = 20, Eo = 3.996, q0 = 3, and (a), (c), and (e) μr = 0.1 and (b), (d), and (f)
μr = 10.

is actually very different. Since the velocity of the drop is proportional to the density difference
between the two liquids, the inertia at ρr = 0.95 is far lower than that at ρr = 0.8. The viscosity of
the drop again is seen to be of less consequence as compared to density, though one would expect
that the drag on a higher-viscosity drop would be higher because of higher internal shear and thus a
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FIG. 6. Variations of the separation distance q with z for different values of the density ratio ρr . The
parameters are Ga = 40, Eo = 3.996, q0 = 3, and (a) μr = 0.1 and (b) μr = 10.

more viscous drop should move up slower than a less viscous one. This effect is small but evident
upon comparing wCG in Figs. 5(c) and 5(d).

Now the separation between the drops at a given height (shown in Fig. 4) depends on the time
taken to reach that height and the integral horizontal motion up to that time. Thus a heavier drop
reaches a given height z at a much later time than a lighter drop, and the net horizontal separation
distance between the drops is that attained over a much longer time and so can be larger. As to the
nonmonotonicity, it happens as a consequence of the different rates at which uCG and wCG decrease
with time as the density of the drops increases. This is made evident in Figs. 5(e) and 5(f), which
show, respectively, for low and high drop viscosity, the ratio uCG/wCG, which is an indication of
the angle of separation of the drops. Clearly, at ρr = 0.95, there is a crossover. It should be noted
that the buoyancy at ρr = 0.95 is only a fourth of that at ρr = 0.8, resulting in a drastic reduction in
the vertical velocity. The horizontal velocity is also reduced, but the ratio of the two is dramatically
changed. Note that the horizontal velocities are much lower than the vertical. The out-of-plane
velocity (not shown) is negligible in these cases, so the motion is two dimensional. Also, close
inspection of Figs. 5(a), 5(b), 5(e), and 5(f) reveals that as the separation distance between the drops
becomes large at later times, they stop influencing each other and behave like single drops. It can be
seen that at late times, uCG and uCG/wCG approach zero, indicating that the lateral migration of the
drops has been reduced.

The next question which arises is whether the above findings are universal for any Galilei number.
The variations of the separation distance between the drops q with z for different values of the
density ratio ρr for a higher Galilei number (Ga = 40) are shown in Figs. 6(a) and 6(b) for μr = 0.1
and μr = 10, respectively. The rest of the parameters remain the same as in Fig. 4. For Ga = 40,
a pair of much lighter and less-viscous drops (ρr = 0.05 and μr = 0.1) undergo significantly large
path oscillations. In fact, the dynamics of the drops is three dimensional in this case [Fig. 6(a)].
These oscillations are suppressed with an increase in the density ratio. At ρr = 0.95, a pair of
less-viscous drops move away from each other smoothly as they rise. The amplitude of oscillations
observed at low-density ratios is smaller for high-viscous drops [Fig. 6(b)]. Thus very light drops
behave in a manner similar to bubbles. Close inspection also reveals that the wavelength of these
oscillations increases with the increase in the viscosity ratio. A nonmonotonic trend in the variation
of the separation distance can be seen in Fig. 6(b) on either side of ρr = 0.8. This can be explained
by the arguments offered above in our discussion of Fig. 5.

Figures 7(a)–7(c) show the results for very light drops (ρr = 10−3) of viscosity less than that of
the surrounding fluid, to study the effect of changing the viscosity over four orders of magnitude.
For μr < 1, Fig. 7(a) shows that as the drops’ viscosity increases, their tendency to wobble increases
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FIG. 7. (a) Variations of the separation distance q versus z for different values of μr . The top view of the
trajectories of the two drops and the corresponding trajectory of the single drop are shown for (b) μr = 10−5

and (c) μr = 10−1. The rest of the parameters are Ga = 20, Eo = 3.996, q0 = 3, and ρr = 10−3.

as well. The trajectories of the two drops rising side by side, along with the trajectories of the single
drop in the x-y plane (top view) for μr = 10−5 and μr = 10−1, are shown in Figs. 7(b) and 7(c),
respectively. The gentle wobble in the x-z plane for the drops of relatively higher viscosity is seen
in Fig. 7(c) to correspond to a small-amplitude spiral in the x-y plane. However, for the entire range
of viscosity ratios, it can be seen that y remains small, so the dynamics of the drop is restricted to
two dimensions. This is seen to be totally unlike the dynamics of a single drop, which is highly
three dimensional, in fact spiraling at very low drop viscosity (μr = 10−5). At higher drop viscosity
(μr = 10−1), a single drop is restricted to two dimensions, but instead in the y-z plane, oscillating
back and forth in y as it rises in z. Thus, while the single-drop dynamics is very sensitive to drop
viscosity in this range of parameters, the two-drop dynamics is not. Figure 8 shows the variation of
the aspect ratio of drop 1 with height in this viscosity ratio range, and it can be seen that the aspect
ratio also is not sensitive to the viscosity ratio.

Figures 9 and 10 are the counterparts of Figs. 7 and 8 but for a heavier drop than before
(ρr = 0.5). A big range of viscosity ratios is considered. Now the single-drop dynamics is much
simpler than before. On the other hand, a heavier pair of drops displays three-dimensional behavior
at low viscosity (μr = 10−3) and two-dimensional behavior at high viscosity (μr = 103), where the
separation distance between the drops increases as they rise, just as for a pair of solids [42,43]. As
seen before, the high-viscosity drop is practically spherical (see Fig. 10). Since the shape is nearly
spherical, the mechanism described by Legendre et al. [7] for the viscous case, as summarized in
the Introduction, is applicable here as well. Thus the drops move away from each other as time
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FIG. 8. Variations of the aspect ratio Ar of drop 1 versus z for different values of μr . The other parameters
are the same as in Fig. 7.
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FIG. 9. (a) Variations of the separation distance q versus z for different values of μr . The top view of the
trajectories of the two drops and the corresponding trajectory of the single drop are shown for (b) μr = 10−3

and (c) μr = 103. The other parameters are Ga = 20, Eo = 3.996, q0 = 3, and ρr = 0.5.
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FIG. 10. Variations of the aspect ratio Ar of drop 1 versus z for different values of μr . The other parameters
are the same as in Fig. 9.

progresses. Thus one expects vortical effects to be strong within the drop for μr � 1 and around
the drop for μr � 1. The interaction of vorticity for μr � 1 drives the drops away from each other,
while for μr � 1 they remain closer to each other. Decreasing the viscosity ratio also increases the
ability of the drop to deform for a fixed set of other parameters, which can be seen in Fig. 10. In other
words, a more viscous drop requires more time to deform as compared to a less-viscous drop. We
notice, however, that the effect of changing viscosity by many orders of magnitude is surprisingly
small.

These findings show that knowing the manner in which single-drop dynamics differs from that
of a pair of drops in one parameter range tells us nothing about what happens in another range. Each
parameter changes the dynamics in ways that at this point only the simulations tell us. We cannot
easily make a priori predictions from physical considerations. Much needs to be understood and
explained, as well as checked experimentally.

IV. CONCLUSION

The rise dynamics of a side-by-side pair of drops was investigated via three-dimensional
numerical simulations, using a volume-of-fluid-method–based Navier-Stokes flow solver with a
dynamic adaptive grid refinement feature for the vortical and interfacial regions [44,45]. A big
computational domain was considered such that boundary effects are negligible. Although the
dynamics of gas bubbles rising in liquids and the behavior of a single drop in systems with high- and
low-density contrasts have been investigated extensively, investigations of two liquid drops rising
in a surrounding liquid, with the same order of magnitude of density, are lacking in spite of the fact
that one can encounter liquid-liquid systems in many industrial applications. This therefore dictated
the choice of the wide range of density and viscosity ratios we studied.

It is known that two air bubbles rising side by side in a liquid at low Ga tend to separate as
they rise, due to interactions between the two boundary layers. The present study has reported
interesting dynamics, opposite to that of a single air bubble, that occurs when we increase the density
of the bubble even in the case of low inertia. For Ga = 20, while a single air bubble rises in a
straight path, a pair of air bubbles displays three-dimensional motion and the separation between
the bubbles increases. Even when we increase the density of the drop (in liquid-liquid systems), the
horizontal forces are still large enough to move apart the heavy drops. When the viscosity of the
drops is less than that of the surrounding fluid, the separation distance between the drops exhibits
a nonmonotonic trend with the increase in the density ratio. This is a consequence of the different
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rates at which x and z velocity components of the drops decrease with time as the density of the
drops increases.

Increasing inertia (Ga) increases path oscillations significantly; these oscillations decrease as the
drop density approaches that of the surrounding fluid. It is also observed that the wavelength of
these oscillations increases with an increase in the viscosity ratio. The nonmonotonic trend in the
variation of the separation distance is also evident at high Ga, but at a higher density ratio.

In the case of light drops, the pair exists in two dimensions, and increasing drop viscosity
decreases their tendency to wobble while the trajectories are still planar. This is in contrast to the
dynamics of a single drop, whose trajectory is highly three dimensional at low drop viscosity, but
restricted to two-dimensional motion at higher drop viscosity. This result reveals that while the
single-drop dynamics is very sensitive to drop viscosity, the two-drop dynamics is not, at least for
the range of parameters considered in the present study. In contrast, a heavier pair of drops displays
three-dimensional behavior at low viscosity and two-dimensional behavior at high viscosity of the
drops. These drops also move apart. The separation behavior for high drop viscosity is similar to
that of a pair of solids, as described above. Increasing the viscosity of the drops makes them more
spherical. The observation that drops of the same shape can differ in their trajectories reveals that
the separation between a pair of drops is not driven by shape change, though it is modified by it.
This is in contrast to gas-liquid systems, where the nonlinear dynamics of bubbles trajectory is tied
to their deformation.

By varying the viscosity ratio by many orders of magnitude we have learned that changes in the
dynamics of a pair of drops is far more sensitive to changes in the density ratio between the drops
and their surroundings than to the viscosity ratio. We have also seen that the tendency for two drops
at low inertia to drift apart is universal across density and viscosity ratios and at different levels of
inertia.

ACKNOWLEDGMENTS

K.C.S. is grateful to the Department of Science & Technology, India for providing financial sup-
port through Grant No. MTR/2017/000029. We also thank the anonymous referees for comments
that were most helpful in improving this paper.

FIG. 11. Grid convergence test showing the bubble shapes at t = 9 for μr = 10−5 with the rest of the
parameters the same as those used to generate Fig. 7(b). The values of the separation distance q and the aspect
ratios of drops 1 and 2 (designated below the bubbles) obtained for (a) 	 = 0.058 and (b) 	 = 0.029 are given
in each panel.
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FIG. 12. Grid convergence test showing the drop shapes at t = 9 for μr = 103 with the rest of the
parameters the same as those used to generate Fig. 9(a). The values of the separation distance q and the aspect
ratios of drops 1 and 2 (designated below the drops) obtained for (a) 	 = 0.058 and (b) 	 = 0.029 are given
in each panel.

APPENDIX

We have conducted a grid convergence test for two extreme viscosity ratios. In Figs. 11(a) and
11(b) the shapes of two air bubbles at t = 9 rising in a liquid with μr = 10−5 obtained using the
smallest grid sizes 	 = 0.058 and 	 = 0.029, respectively, are presented. The rest of the parameters
are the same as those of Fig. 7. The separation distance between the bubbles (q) and the aspect ratios
of bubble 1 (Ar1) and bubble 2 (Ar2) at this time are also shown in each panel. Similarly, the shapes,
their separation distance q, and the aspect ratios of two liquid drops rising in another liquid with
μr = 103 are presented in Fig. 12. The rest of the parameters are the same as those of Fig. 9. It can
be seen that even for these extreme viscosity ratios, halving the smallest grid size gives a difference
only in the second decimal place. Thus 	 = 0.058 is used to generate the results presented in this
study.
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