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Direct numerical simulations of cross-flow over a circular cylinder are performed
for Re = 100, 220, 300, 800, and 1575, spanning laminar-to-turbulent transition and
progressively capturing the initial two-dimensional global instability, three-dimensional
mode A∗ and mode B instabilities, a distinct B+ instability, and Kelvin-Helmholtz
instability, respectively. For Re � 800, vortex topology and snapshot proper orthogonal
decomposition (sPOD) analyses of the three-dimensional flow fields reveal significant
alterations in the dynamics of secondary vortices preceding shear layer transition, denoted
B+ instability. The defining instantaneous characteristic of B+ instability is hairpin vortex
formations straddling mode B structures. An iterative scheme for three-dimensional vortex
tracking is employed and the probability density functions of secondary vortex statistics
show a marked broadening for Re � 800, associated with the increased variability in
the wake vortex dynamics. The significant broadening of the modal energy spectrum of
the sPOD serves as a marker for the topological change to B+ instability, reflecting the
increased complexity of the dynamics. Integral effects on the primary shedding instability
due to the increase in secondary vortex formation are deduced through a decomposition of
the vorticity transport in the wake. An increase in streamwise and transverse reorientation
of spanwise vorticity is identified for increasing Re, leading to a decrease of up to 20%
in the advected spanwise vorticity of the primary vortices. Therefore, the reorientation
of spanwise vorticity may be identified as a subsidiary mechanism for the attenuation of
fluctuating structural loads in the basic cylinder wake.
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I. INTRODUCTION

Flow past a circular cylinder is fundamental to the study of bluff body aerodynamics. Features of
the incompressible wake development are dependant exclusively on Reynolds number (Re) for an
infinite, smooth cylinder in undisturbed cross-flow, and von Kármán vortex shedding is present
over a wide range of Re encompassing various practical applications [1]. The unsteady wake
vortex dynamics influence the mean and fluctuating structural loads on the cylinder. Critically,
wake-induced pressure and velocity fluctuations at the cylinder surface may lead to the emergence of
significant structural vibrations [2–4] and acoustic noise [5]. The cylinder wake is receptive to both
passive [4,6,7] and active control methods [8–10], motivating the need for a detailed quantitative
understanding of the wake structure through laminar and turbulent flow regimes.

A brief overview of unsteady aspects of cylinder wake development can be obtained by consid-
ering the changes in wake dynamics with Re. For Re � 50 [1], a global instability leads to periodic,
alternate shedding of two-dimensional wake vortices near a constant frequency ( fS). The periodic
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wake becomes three-dimensionally unstable for Re � 190 [11] with initiation of the mode A elliptic
instability in the primary vortex cores. The mode A instability induces the formation of vortex loops
between subsequently shed spanwise vortices at a spanwise wavelength of λz/D ≈ 3–4 [12,13].
The mode A structures remain stable for only a relatively small number of shedding cycles after
inception, before large scale vortex dislocations develop [14–16] and the wake state is termed
mode A∗. For 220 � Re � 270, the mode B hyperbolic instability develops in the saddle point
region between the primary rollers and is characterized by smaller scale streamwise vortex pairs
of spanwise wavelength λz/D ≈ 1 [12,17,18]. The wake topology intermittently switches between
mode A∗ and B in this Re range, with the probability of the mode B state increasing at higher
Re [18]. For Re > 300, secondary wake vortices form randomly and appear at smaller spatial scales
[19–21]. The emergence of chaotic dynamics in this Re range has been attributed to period-doubling
associated with subharmonic growth of the mode A instability [19,22], period-doubling related to
the formation of hairpin vortex structures every other shedding period [21], or a Ruelle-Takens-
Newhouse route to chaos due to competition of �3 permissible unstable mode A wavelengths
within the domain [23]. For 1.0 × 103 � Re � 2.0 × 105, the convective Kelvin-Helmholtz (KH)
instability in the separated shear layer leads to KH-vortex roll-up at a distinct frequency ( fKH),
before the formation of wake vortices [24]. The wavelength of the KH-vortices varies significantly
with Re, and the ratio fKH/ fS increases proportional to Re0.67 [25]. Following formation, the
KH-vortices deform substantially [26], amalgamating into the von Kármán rollers, or tilting and
straining rapidly in regions between them [27].

The quantitative description of the secondary vortex dynamics associated with the three-
dimensional instabilities for Re � 190 has largely been limited to planar statistics from experimental
and numerical data. With increasing Re, the maximum streamwise vorticity in the wake increases
and eventually exceeds the peak spanwise vorticity due to rapid stretching of streamwise vortices
in the high strain region between the primary vortices [17,27–31]. As structures advect downstream
following formation, maximum vorticity decays due to vorticity diffusion and cross-annihilation,
with the decay rate increasing with Re [29]. Similarly, the circulation of the spanwise vortices
attained at formation, varying within 0.8 < �z/πUoD < 1.2 depending on Re [29,32,33], decays
with streamwise distance [29] due to the entrainment of opposite sign vorticity bearing fluid
across the wake centerline. The streamwise circulation of the mode A vortices (�x/πUoD = 0.3)
is greater than the mode B vortices (�x/πUoD = 0.16); however, the streamwise circulation
of mode B vortices increases with Re for 160 � Re � 500 [31]. For Re = 2 × 103 and Re =
1 × 104, measurements of the transverse circulation of the secondary structures yield smaller
estimates (�y/πUoD = 0.095 − 0.14) compared to the streamwise circulation (�x/πUoD = 0.2 −
0.26) [28,29], and a statistical analysis of centroid positions indicates a most likely vortex inclination
of 43–48◦ from the horizontal. A number of studies indicate a relationship between the circulation of
the primary and secondary vortices, attributing a decrease in spanwise vortex circulation to enhanced
turbulent entrainment of opposing vorticity across the wake [32,34] or direct transfer from spanwise
oriented vorticity to the secondary vortices [35].

The dynamics of the flow can be elucidated using the proper orthogonal decomposition (POD),
which expresses the fluctuating velocity field in an energy optimal spatial basis on which the primary
dynamics lie on an attractor described by the most energetic modes [36]. For the cylinder wake,
the two most energetic POD modes along with corresponding temporal coefficients form a pair
that captures the main dynamics of von Kármán vortex shedding across a wide range of Re in the
subcritical regime [7,34,37–41]. The third most energetic mode is often a solitary mode containing
lower frequency modulations of the base flow, and is termed the shift mode [42,43]. Higher-order
modes include higher harmonics of the first mode pair, occurring in pairs resembling the structure
of the global instability modes [44].

Floquet and global stability analyses have been successful in predicting the most unstable
wavelengths and critical Re to excite global shedding, mode A, and mode B instabilities [1,11].
However, a quantitative description of the secondary vortex developments and their integral effects
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FIG. 1. Hybrid structured O-type and H-type computational grid for Re = 1575. Lx, Ly, Lz denote the
streamwise, transverse, and spanwise domain extents, respectively.

on the primary von Kármán vortices, which are primarily responsible for fluctuating wake pressures
and structural loads, remains unclear. In particular, a comprehensive description of the secondary
vortex dynamics beyond mode B (Re > 300) accompanying turbulent transition of the wake
merits a more detailed investigation [23]. Measurements of the quantitative properties of primary
and secondary vortices encounter limitations associated with planar analysis and/or finite spatial
resolution [45]. Therefore, in the current study, high resolution, three-dimensional direct numerical
simulations (DNS) are performed and detailed measures of secondary vortex statistics are obtained
and analyzed through the application of a novel iterative, three-dimensional vortex identification
scheme.

II. NUMERICAL METHODOLOGY

A. Direct numerical simulations

Numerical solutions to the three-dimensional, incompressible Navier-Stokes equations are
computed for uniform cross-flow over a circular cylinder for Re = 100, 220, 300, 800, and 1575.
The equations are solved directly using the finite volume code ANSYS CFX 14.0. A second-order,
blended spatial discretization scheme and a second-order, implicit, backward Euler time marching
scheme are employed with pressure-velocity coupling handled by Rhie-Chow interpolation. The
computational domain and grid for the Re = 1575 solution is depicted in Fig. 1. The grid
topology is structured with an O-type block surrounding the cylinder and an H-type block in
the remaining regions, which is a hybrid mesh configuration commonly used in simulations of
bluff body flows [6,46,47]. The boundary conditions are prescribed as follows: uniform velocity
(u = [Uo, 0, 0]) at the inlet, zero average static pressure condition at the outlet, no-slip condition
(u = [0, 0, 0]) at the cylinder surface, and a free-slip condition (un = 0, ∂ut/∂n = 0) at the
remaining domain boundaries. The coordinate system used for data presentation has the origin
located at the mid-span of the cylinder (Fig. 1) and the x, y, and z directions denote the streamwise,
transverse, and spanwise directions, respectively.

To accommodate the length and time scale changes with Re, the computational grid and domain
are adapted appropriately (Table I). Simulations are performed on a two-dimensional grid for Re =
100, and three-dimensional grids for Re = 220–1575. For Re = 800 and 1575, the grid densities
(Table I) are selected based on the sizing recommendations of Moin and Manesh (1998) [48], which
specify that the smallest resolved length scale is on the order of the Kolomogorov scale [O(η)], such
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TABLE I. Computational domain and grid parameters for each Re.

ReD Nodes R�θ/η × �r/η × �z/η �t/τ Lx/D Ly/D Lz/D

100 1.2 × 105 0.53 × 0.08 × 0 0.12 24 35 0
220 5.0 × 106 0.89 × 0.49 × 3.60 0.18 24 35 18
300 1.7 × 106 1.21 × 0.66 × 4.88 0.19 24 35 6
800 1.1 × 107 1.20 × 0.69 × 3.82 0.21 24 35 6
1575 2.9 × 107 1.59 × 0.71 × 2.85 0.17 24 35 3.14

that the majority of energy containing eddies are resolved. The grid density employed in the current
study compares well with previous studies employing second-order, finite volume DNS codes at
comparable Re [16,49,50]. Specifically, Wissink and Rodi (2008) [49] achieve grid convergence for
a circular cylinder in cross-flow at Re = 3300 for a mesh with near wall spacing R�θ/η = 1.27,
�r/η = 0.48, and �z/η = 3.87, where R�θ , �r, and �z are linear circumferential, radial, and
spanwise spacings, respectively. These values compare well with the final grid parameters listed in
Table I for each Re, when the estimate η = D(1/Re)0.75 is used for the Kolmogorov length scale.
Based on the results of previous numerical studies, a spanwise domain extent of Lz/D = 6 is chosen
for Re = 300 and 800, an extent of Lz/D = 18 is chosen for Re = 220 to accommodate the larger
wavelength mode A instability [51], and an extent of Lz/D = 3.14 is chosen for Re = 1575 [49].
Solutions are stepped forward in time at a temporal resolution (Table I) that ensured a maximum
Courant number (u�t/�x) of less than one. Solution variables are sampled when a streamwise
velocity signal at x/D = 5, y/D = 0.75, and z/D = 0 reached a quasisteady state, and data are
collected for a minimum of 16 vortex shedding cycles. Figure 2 presents transverse wake profiles
of mean velocity and normal Reynolds stress statistics for Re = 1575. The sectional fluctuating
lift and drag coefficients are calculated from the total forcing on the cylinder, adjusted to account
for the spanwise correlation of the fluctuating lift [RLL(s)] or drag [RDD(s)] [52]. The shedding
frequency ( fs) is estimated by a spectral analysis of the streamwise wake velocity fluctuations
sampled at x/D = 5 and y/D = 0.75, with a resolution of ±0.0020 − 0.0096 f D/Uo, depending
on Re. A detailed grid independence study was performed for Re = 100 and 300, ensuring further
increases in the domain extents (Lx, Ly, Lz) and grid density (R�θ,�r,�z) resulted in changes in fS

and CD of less than 1% and C′
L less than 3%. Moreover, Secs. III A 1 and III A 2 include comparisons

of the results against collated experimental data and characterize their correspondence.

FIG. 2. Transverse profiles of wake statistics for Re = 1575: (a) mean streamwise velocity, (b) mean
transverse velocity, (c) normal streamwise Reynolds stress, (d) normal transverse Reynolds stress.
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FIG. 3. Schematic of the iterative, three-dimensional vortex detection code. The code converges on the
individual vortex orientation (ω j), centroid (x j), diameter (d j), and circulation (� j).

B. Three-dimensional vortex tracking algorithm

The quantitative analysis of vortex statistics in three dimensions is challenging due to the
need to resolve the bounds of the vortices along with their orientation and position in three-
dimensional space. Although high fidelity three-dimensional vortex tracking algorithms have been
introduced [53], no established tool exists for establishing vortex orientation; hence, to facilitate the
accurate measurement of statistics pertaining to the primary and secondary vortices, an iterative,
three-dimensional, vortex identification code is developed. The code operates as follows: for a
three-dimensional realization of a velocity field at a certain time, u(x, t ), an initial streamwise
normal plane is specified at x/D = 2.5 and vortices intersecting the plane are detected, where the
jth vortex is defined by its boundary, 
 j . The code then computes the three-dimensional orientation
(ω̄ j), centroid (x̄ j), diameter (d j), and circulation (� j) for the j vortices intersecting the plane, as
defined in Eqs. (1)–(4):

ω̄ =
∫



ωdA

‖ ∫



ωdA‖ , (1)

x̄ =
∫



x(ω · n̂)dA∫



(ω · n̂)dA
, (2)

d =
√

4

π

∫



dA, (3)

� =
∫




(ω · n̂)dA. (4)

The code operates by detecting vortices according to the schematic shown in Fig. 3. In the first
iteration (k = 1), a binary image is obtained by thresholding the input slice plane for Q > 0.01, and
continuous regions of the thresholded criterion are identified (e.g., yellow and purple regions of high
streamwise vorticity in Fig. 3). The regions which intersect the domain boundaries are discarded,
thereby avoiding calculating statistics based on partially resolved vortices. Each identified region
defines an independent vortex 
 j and the first iteration estimate for the vortex orientation [Eq. (1)]
and centroid [Eq. (2)] are calculated. In general, the vortex orientation will not be aligned with
the original sample plane, rendering any statistics calculated inaccurate [29]; hence, in the second
iteration (k = 2), each vortex region is resampled from a plane normal to the average of the
previous iteration vortex orientation and slice plane normal vector (n̂(k+1) = n̂(k)/2 + ω(k)/2), which
intersects the previous iteration vortex centroid (x(k)). From the resampled planes, continuous
regions of the thresholded criterion field are once again detected and the one whose centroid is
closest to that of the previous iteration is identified. The vortex orientation and centroid position are
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TABLE II. Sampling parameters and domain extents utilized for the sPOD.

ReD Sx/D Sy/D Sz/D �x/D N facq/ fS

100 [0.5,8.5] [−4, 4] – 0.05 1300 25.5
220 [0.5,8.5] [−4, 4] [−3, 3] 0.05 900 18.2
300 [0.5,8.5] [−4, 4] [−3, 3] 0.05 1000 18.4
800 [0.5,8.5] [−4, 4] [−3, 3] 0.05 600 25.8
1575 [0.5,8.5] [−4, 4] [−1.5, 1.5] 0.05 700 46.1

then updated based on Eqs. (1) and (2). Since the updated centroid may now lay off the original
input plane, the average between the previous iteration centroid and the centroid calculated on the
new sample plane is projected onto the original slice plane to carry forward instead. The vortex
detection code is considered converged when the centroid location residual (x(k+1) − x(k)) becomes
less than the grid resolution, �x. Once converged, the vortex boundaries are recomputed using
a range of vorticity thresholds, α = {0.01, 0.025, 0.05, 0.1, 0.25}, defining contours of constant
vorticity α‖ω‖max, and circulation is then measured by a linear extrapolation of the data at the
computed thresholds to α = 0. This final step mitigates erroneous estimates of circulation inherent
to a subjective selection of a given contour threshold, as well as under predictions of vortex
circulation when boundaries are defined based on a given continuous Q-criterion contour.

C. Snapshot proper orthogonal decomposition

The fluctuating velocity fields [u′(x, t )] are decomposed using the snapshot proper orthogonal de-
composition (sPOD), a data-based, energy optimal modal decomposition which provides a method
for deducing the dynamics of coherent structures in turbulent flows [36,54]. The decomposition
involves solving the eigenvalue problem in Eq. (5), where the dot product on the left-hand side
defines the two-time velocity correlation matrix:

[u′(x, ti ), u′(x, t j )]ψi(x) = λ jψ j (x), (5)

φn(x) = u′(x, t )ψn(x)
1√
λn

. (6)

The decomposition separates the field into spatial modes φn(x) and time dependent temporal
coefficients an(t ) [Eqs. (7) and (8)]. The spatial modes and the temporal coefficients form distinct
orthogonal sets, and the modal energy (λn) may be determined by the autocorrelation of the
corresponding temporal coefficient [Eq. (9)]:

u(x, t ) = ū(x) +
N∑

n=1

an(t )φn(x), (7)

an(t ) = [u(x, t ),φn(x)], (8)

λn = an(t )2. (9)

The sPOD was performed on a uniformly sampled (�x/D = 0.05) subset of the DNS solution to
make the problem computationally tractable. The domain was restricted to the wake of the cylinder
(0.5 � Sx/D � 8.5, −4 � Sy/D � 4), with the spanwise extent and number of snapshots dependent
on Re (Table II).
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FIG. 4. Vortex shedding topological regimes for (a) Re = 100, (b) Re = 220, (c) Re = 300, (d) Re = 800,
and (e) Re = 1575. Vortices are visualized using the Q-criterion (Q = 0.01) [55], colored by the streamwise
vorticity.

III. RESULTS

A. Overview of primary flow quantities

1. Vortex dynamics

Figure 4 presents isosurfaces of Q = 0.01 [55]. Positive values of Q correspond to flow regions
where vorticity dominates over shear and, hence, the isosurfaces serve as a vortex identification
criterion. The isosurfaces are colored by streamwise vorticity to show the orientation of the
secondary vortices. Defining vortex structures for each Re are further highlighted by white dashed
lines to aid the discussion. For Re = 100 [Fig. 4(a)], the two-dimensional simulation captures the
parallel shedding mode in the laminar shedding regime [56], where elliptically shaped vortices are
shed alternately into the wake. For Re = 220 [Fig. 4(b)], the mode A instability [12] of the primary
spanwise vortices is amplified, beginning as an elliptic instability in the cores of the spanwise
vortices before further amplification in the high strain region of hyperbolic flow connecting the
primary rollers [13]. After the initial instability growth, large-scale vortex dislocations develop,
resulting in the mode A∗ regime, typical of both DNS [18] and experiments [20]. For Re = 300
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FIG. 5. Time sequence of a hairpin vortex formation for Re = 800. Vortices are visualized using the Q-
criterion (Q = 0.01), colored by the streamwise vorticity.

[Fig. 4(c)], the mode B instability is amplified, which has been linked to a hyperbolic instability
of the highly strained vorticity layer between the vortex cores [12]. The mode B instability form
predominantly in pairs of streamwise vortices of opposing sign, such as those highlighted in
Fig. 4(c), and can be observed persisting for Re = 800 [Fig. 4(d)] and 1575 [Fig. 4(e)]. Besides
exhibiting different characteristic wavelengths, the mode A and mode B vortices have topological
differences. At a given spanwise location, the mode A instability switches orientation between
each subsequently shed vortex [see the highlighted vortices at z/D ≈ 1.5, Fig. 4(b)]. However, the
mode B instability induces the formation of similar structures with the same orientation between
subsequently shed vortices, leading to a continuous weaving of vortex filaments through the vorticity
sheets between the main spanwise rollers [see the highlighted vortices at z/D ≈ 0, Fig. 4(c)].
For Re = 800 [Fig. 4(d)] and Re = 1575 [Fig. 4(e)], the mode B structures remain to be the
dominant secondary structures in the wake, but additional secondary structures of varying scales
and orientation also begin to form and produce more complex vortex interactions in the wake.

A comprehensive description of the vortex dynamics beyond Re > 300 has yet to be estab-
lished [20,21,23], although the various stages of KH roller development in the separated shear
layers [Fig. 4(e)] [24] for Re � 1000 has been considered in a number of studies [27,57–59]. A
qualitative description of the evolution of secondary structures and the resulting changes in the wake
vortex dynamics can be obtained from the Q isosurfaces in Figs. 4(d) and 4(e). Specifically, mode
B vortices are identified for Re = 800 as strong streamwise structures which weave and connect
between the primary vortices. Additional structures are identified pinching off from the spanwise
vortex furthest from the wake centreline, forming hairpin vortices which straddle the dominant
mode B structures [see the highlighted vortex in Fig. 4(d)]. For Re = 1575, the KH instability
leads to convective amplification of perturbations in the shear layer and shedding of KH vortices
prior to the formation of the main spanwise rollers, with the KH vortices following deformation
patterns of the stronger structures in the wake or being amalgamated into them [highlighted vortices
at x/D ≈ 0.6 and 1, Fig. 4(e)] [27]. The hairpin deformations have been previously identified by
Mittal and Balachandar [21] for Re = 525 as repeating every other shedding cycle, which is an
observation repeated in the current results and is a mechanism consistent with the period doubling
hypothesis of cylinder wake transition proposed in Karniadakis and Triantafyllou [19]. Hence, a
defining characteristic of instability following the 2D → A → A∗ → B transition sequence of
the cylinder wake with increasing Re is that of hairpin-like structures which straddle the mode B
instability. The formation of a prototypical hairpin structure is shown in the time sequence presented
in Fig. 5 for Re = 800, and shows the process of pinching off vorticity from the main spanwise
roller, which then reorients and merges with the mode B vortices to form the legs of a hairpin.
The wake state following the excitation of this instability is denoted B+, hereafter. The results for
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FIG. 6. Dominant spanwise wavelength of the secondary structures in the cylinder wake overlayed on
three-dimensional Floquet stability analysis results [60]. Solid dotted lines indicate the neutral curve and
dashed lines indicate the most unstable wavelengths.

Re = 300 [Fig. 4(c)] show preliminary deformation of the upper layer of the spanwise vortices
induced by the precense of the mode B instability structures. This indicates that inception of the
instability is linked to the presence of the mode B structures, explaining its absence as a distinct
mode in previous Floquet instability analysis, which considers phase averaged fields with respect to
the primary instability that would not contain mode B structures [60].

Figure 6 shows the dominant spanwise wavelengths (λz) of the secondary vortex structures in
the wake, where the current data are shown amongst the collated results of experimental, numerical,
and instability analyses [17,20,29–31,60–62]. The mean wavelengths were estimated using the two-
dimensional correlation of the streamwise vorticity in the y-z plane at x/D = 2.5 [Eq. (10)] and
computing the spanwise distance between adjacent dominant peaks:

Rωx (xo, y, y′, z, z′) = ωx(xo, y, z)ωx (xo, y′, z′)
σωx σω′

x

. (10)

In general, the spanwise wavelengths are observed to increase with streamwise distance [62];
thus, the measurement plane at x/D = 2.5 was selected as it is located immediately downstream
from the formation of the primary and secondary vortices in all cases. For Re = 220, the autocorre-
lation analysis was performed using only data during the initial growth period of the mode A insta-
bility, to compare with previously published results [20]. The results for each Re (Fig. 6) compare
favorably to the results of previous experimental studies and instability analyses [11,60]. Notably,
Fig. 6 shows a wide band of unstable wavelengths present for the mode A instability at Re = 220
[Fig. 4(b)], which results in the observed vortex dislocations [15] due to differences in the wave-
lengths of excited modes [13]. Henderson [23] argues that the competing mode A wavelengths lead
to a wake with chaotic dynamics. However, it is unclear in the current results whether the complexity
observed for Re = 220 [63] is truly chaotic or simply due to complex interactions occurring between
the excited modes. For Re � 300, the mode B vortices remain the dominant streamwise structures
in the wake, however, their spanwise wavelength progressively decreases with increasing Re.

2. Structural loads

Figures 7(a)–7(c) plot the RMS fluctuating lift coefficient (C′
L), mean drag coefficient (CD), and

sectional RMS drag coefficient (C′
D), respectively, comparing the DNS data to a compilation of both

experimental and numerical literature sources [6,9,16,23,34,50,64–86]. In each case, the total RMS
coefficients are converted to sectional RMS coefficients by evaluating the spanwise correlation of
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FIG. 7. (a) Sectional RMS lift coefficient, (b) mean drag coefficient, and (c) sectional RMS drag coefficient
versus Re.

the fluctuating pressure lift [RLL(s)] and fluctuating pressure drag [RDD(s)] across the model length
0 � s � Lz for the duration of the integrated time period used for statistics. The sectional RMS
force coefficients are then computed from the relations in Eqs. (11) and (12) [52]:

C′
L,T

C′
L

= 1

Lz

[
2

∫ Lz

0
(Lz − s)RLL(s)ds

]1/2

, (11)

C′
D,T

C′
D

= 1

Lz

[
2

∫ Lz

0
(Lz − s)RDD(s)ds

]1/2

. (12)

The current results compare favorably with the data from previous studies up to the quantified
uncertainty bounds, which accounted for statistically dependent sampling of the data [87] using
an effective number of samples Neff = N�t/2Tint, where Tint is the integral time scale measured
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FIG. 8. Power spectral density of the (a) lift force fluctuations and (b) drag force fluctuations for each Re.
Spectral resolution varies from 0.004–0.019 f D/Uo for Re = 100 to Re =1575. Spectra are offset vertically by
factors of 104 as Re increases.

by the zero crossing of the signal autocorrelation function. Notably, uncertainty in the fluctuating
quantities in Figs. 7(a) and 7(c) is higher for cases dominated by low-frequency fluctuations in the
forces, leading to an increase in the integral time scale. The data for the sectional RMS lift coefficient
[Fig. 7(a)] resolve a substantial minimum in C′

L for approximately 800 < Re < 5000, where only
the 3D simulations of Norberg [88] and experiments of McClure and Yarusevych [34] are available
for comparison. The experimental measurements produce marginally lower C′

L compared to the
simulations, which may be attributed to uncorrelated end cells present in the experiment, causing a
violation of the spanwise homogeneity assumption invoked in the derivation of Eq. (11). The mean
drag coefficient results [Fig. 7(b)] compare well with the drag curve of Wieselsberger [64] over
the Re range investigated. Minor discrepancies from the trend are in agreement with deviations at
comparable Re seen in other recent investigations [16,89]. Measurements of C′

D [Fig. 7(c)] show a
high degree of scatter across multiple studies. This perhaps is partially responsible for the fact that
C′

D data are more scarcely documented in the literature, even though the forcing is nonnegligible
and is in fact comparable in magnitude to C′

L for Re ≈ 103, which can have important implications
for vortex-induced vibration (VIV) [90–92]. The interpretation of Fig. 7(c) requires the knowledge
that C′

D can have significant energy concentrated in both a narrow frequency band around twice
the shedding frequency 2 fS [77], and a wider band at low frequencies. The component at 2 fS is
caused by the formation of two low pressure vortex cores just downstream of the cylinder every
shedding period, hence its magnitude is dependent on the formation length (l f ) and follows trends
in C′

L closely [Fig. 7(a)]. The low-frequency components are associated with a slow modulation
of the base flow [86], leading to drifting of the base pressure on the aft of the cylinder surface.
Spectral analysis of the drag force fluctuations presented in Fig. 8 indicates that the amplitude of
drag fluctuations at 2 fS increases significantly on the interval 50 < Re < 300, before incurring a
significant decrease for 800 < Re < 5000, similar to tends observed for C′

L. However, C′
D incurs a
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relatively minor (≈50%) decrease for 800 < Re < 5000 in magnitude whereas C′
L [Fig. 7(a)] incurs

nearly a 90% decrease. This is due to the rise of energy at low frequencies which now dominates
C′

D in this regime (Fig. 8). For Re > 5000, inspection of the previously published drag traces [9,84]
indicates that significant fluctuations occur once again at 2 fS , comparable to fluctuations at lower
frequencies. The high degree of scatter in Fig. 7(c) is hence attributed primarily to the low frequency
component variations in the drag force [93], which require large sampling intervals for accurate
measurement and may be sensitive to free-stream turbulence parameters [86,94].

B. Vortex tracking and statistics

As Re is increased and the cylinder wake undergoes laminar-to-turbulent transition (Fig. 4),
the secondary vortex dynamics show distinct topological changes which occur in conjunction with
large changes in fluctuating loads (Fig. 7). This motivates investigation of the integral effects
secondary vortex development has on the primary shedding instability, to understand its influence
on the structural loading. Holistically, the sectional fluctuating loads can decrease for three reasons:
(i) the formation length (l f ) contracts, weakening the surface pressure fluctuations induced by the
primary vortices, (ii) symmetric modes are excited near the surface, increasing the correlation of
fluctuating surface pressures on opposing sides of the cylinder, or (iii) the circulation of the primary
vortices decreases, weakening their induced fluctuations. Indeed, the large decrease in C′

L and C′
D

[Figs. 7(a) and 7(c)] for 800 < Re < 5000 has been associated with both an increase in l f and an
increase in correlation of the surface pressures acting on the opposing shoulders of the cylinder [88].
However, it has been conjectured that the secondary vortices can act to decrease the circulation of
the spanwise vortices [29,34,35], whereas models of formation region dynamics typically assume
constant circulation with Re [32]. With access to the validated three-dimensional DNS data (Figs. 6
and 7), the effect of secondary vortex circulation can be determined from careful tracking and
quantification of vortex statistics in the wake.

The secondary vortex statistics are calculated using the iterative code with a starting y-z plane at
x/D = 2.5. To filter out erroneous identification of spanwise rollers as secondary structures, vortices
oriented within a 20◦ solid angle (γ > 20◦) of the z axis were rejected. Decreasing this rejection
angle causes a significant increase of the mean circulation and vortex diameter statistics, indicating
it is a good threshold for rejecting erroneously detected spanwise vortices, which characteristically
have higher vortex diameter and circulation. Figure 9(a) shows a sample result of the vortex
detection code for Re = 300. The figure verifies that the code converges correctly on all the
streamwise vortex cores passing through the y-z plane at x/D = 2.5. Each detected secondary vortex
has an associated mean orientation [ω̄ j , black arrows, Fig. 9(a)] along with an enclosed vorticity
component in the direction of mean orientation [ω · n̂, yellow and purple contours, Fig. 9(a)], while
the closed contour encompassing Q < 0.01 [white isosurfaces, Fig. 9(a)] is used to define each
vortex area 
 j . The vortex area is seen to encapsulate the majority of the vorticity of the secondary
vortices with minimal discrepancies in shape and location compared to the vorticity contours. Such
agreement is expected for vortex detection based on Q-criterion in the wake, since viscous effects
and unsteady irrotational straining [95] are minimal outside the formation region where secondary
vortices primarily advect in the wake.

Figures 9(b)–9(e) show the joint probability distributions of vortex inclination
[β = tan−1(ω̄y/ω̄x )] with respect to the streamwise axis and the transverse centroid position
(ȳ) from the wake centreline for each Re. In each case, there are two concentrated bands spanning
−45◦ < β < 0◦ and 0◦ < β < 45◦ for Re = 220 [Fig. 9(b)], and expanding to −70◦ < β < 30◦
and −30◦ < β < 70◦ for Re = 1575 [Fig. 9(e)], indicative of the increase in disorder in B+ wake
transition for Re � 800. The dependence of β on ȳ is due to the curvature of the vortex structures in
the wake, which wrap around the main spanwise rollers along the principal strain directions [13,20].
This renders the measurement of vortex angle in the wake dependent on sampling position. For mode
A and mode B vortex formation [Figs. 9(b) and 9(c)], β is distributed along a narrow band, indicative
of the more organized structure of the wake, which can also be seen in velocity phase space traces
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FIG. 9. (a) Visualization of secondary vortex identification results for Re = 300, arrows denote orientation
and relative magnitude of mean vorticity in each vortex core. The orientation of the secondary vortices with
respect to the x axis (β) is tracked as the cores advect past a sample y-z plane at x/D = 2.5 and its joint
probability distribution with transverse centroid position (y) is plotted for (b) Re = 220, (c) Re = 300, (d) Re =
800, and (e) Re = 1575.

in Karniadakis and Triantafyllou [19], which show a low-dimensional attractor governing the flow
field dynamics for this Re range. For Re = 220 [Fig. 9(b)], the mode A vortex loops are found in the
probability distribution [p(ȳ, β )] as a wider band distributed closer to β = 0 and closer to the wake
centreline (y = 0) than the mode B structures. Since the mode B structures have smaller λz (Fig. 6),
they occur more frequently than the mode A structures, hence the probability density function is
weighted more strongly toward showing mode B structures, even though the wake state is mode A∗
for the majority of the sample. For Re = 800 and Re = 1575, a significant broadening of the proba-
bility distributions is observed as secondary vortices occupy positions closer to the wake centreline
and are strained and tilted more significantly, marking the transition of the wake past mode B.

The changes in the complexity of the vortex dynamics in the wake with Re may also be elucidated
through an sPOD analysis. Figure 10 shows the relative energy spectra across the sPOD modes for
each Re. The amount of relative energy in the first two sPOD modes decreases with Re from 0.96 for
Re = 100 to 0.42 for Re = 1575. The exception to the trend is Re = 220, which has less energy in
the first two modes compared to Re = 300. This is due to the vortex dislocations present in the mode
A∗ state (Fig. 4), causing a significant amount of the energy to spread to the third and fourth modes
(0.15), which are associated with angular deformation of the primary rollers. Indeed, the combined
energy of the first four modes remains higher for Re = 220 than 300 (Fig. 10). Besides the decrease
in relative energy content in the most energetic modes for increasing Re, topologically different
behavior of the tails of the spectra can also be discerned from Fig. 10. Specifically, the entirely
two-dimensional instability present for Re = 100 leads to a rapidly decaying energy spectrum as
harmonic pairs of the primary instability cascade. For the initial three-dimensional instabilities, A∗
and B, the decay of energy in the higher modes is less rapid, and though they have different distri-
butions of relative energy in the first few modes, the tails collapse onto similar profiles. Presumably,
mutual interactions of the A∗ and B instabilities with the 2D instability and its harmonics causes the
spread of energy to the higher modes. For Re = 800 and 1575, a clear distinction can be made from
the other Re cases, with the exponential decay of the energy content delayed until approximately the
400–500th mode. The relatively high amount of energy being spread out over the first few hundred
modes is associated with a change in the topology to a more complex attractor for the dynamics [23],
indicative of a more chaotic wake dynamics stemming from transition to the B+ state. Thus, this
signature in the sPOD modal energy spectrum can serve to identify the onset of the B+ mode.
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FIG. 10. sPOD modal energy distribution.

Figure 11 compares three-dimensional isosurfaces of the streamwise component of the first
five sPOD modes for Re = 1575. The results demonstrate that the first two modes [Figs. 11(a)
and 11(b)] form a pair representing the primary two-dimensional global instability of the flow for
every Re, with corresponding temporal coefficients fluctuating at fS . The third mode [Fig. 11(c)] is
an unpaired mode, symmetric about the wake centreline, whose temporal coefficient is dominated by
low frequency activity and is the well-known shift-mode modulating cylinder wake activity [42,43].
Notably, in three dimensions, the shift mode has substantial spanwise variation and reverses sign
after some spanwise distance. This indicates that the wake modulation effects are correlated only
along a finite spanwise length, and the damping and enhancement of the primary shedding instability

FIG. 11. Isosurfaces of streamwise velocity for the first five (a)–(e) normalized POD mods for Re = 1575
(yellow, u/Uo = 0.6 × 10−3; purple, u/Uo = −0.6 × 10−3).
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FIG. 12. Properties of secondary vortices (a) mean circulation (�x,y) and (b) mean vortex diameter (d) at
x/D = 2.5.

varies continuously along the span at any given time. The fourth and fifth modes [Figs. 11(d)
and 11(e)] form a pair representing oblique shedding of primary vortices, similar to the first and
second modes capturing primary shedding. For Re = 220–800, the oblique mode pair is more
energetic than the shift mode and forms the third and fourth modes instead.

Figures 12(a) and 12(b) show the variation of the mean circulation and diameter of the secondary
vortices with Re. The circulation is measured by the area integral of plane-normal vorticity over

 j [Eq. (4)] and the vortex diameter is defined as the diameter of the circle whose area matches
the area of 
 j [Eq. (3)]. The mean circulation of the secondary vortices is at a maximum of
�x,y/UoD = 1.04 for Re = 220 [Fig. 12(a)], at a minimum of �x,y/UoD = 0.53 for Re = 220, and
remains approximately constant at �x,y/UoD = 0.75–0.76 for Re � 800. The mean vortex diameter
is at a maximum of d/D = 0.59 for Re = 220 and decreases with increased Re [Fig. 12(b)].
The decrease in vortex diameter with increasing or constant circulation for Re � 300 implies an
increase in straining of the secondary vortices with increasing Re, associated with the generation of
turbulence.

Measurements of the strength of the streamwise vortices (�x,y) facilitates a discussion about the
influence of the reorientation of spanwise vorticity in the wake on the strengths of the primary
rollers. The goal is to determine whether the secondary instability growth can be directly linked
to weakening of the spanwise vortices and held partly responsible for the observed changes in
fluctuating loads (Fig. 7) with Re and for modified cylinder geometries [34,35]. A balance of
the spanwise vorticity transport is constructed [Eq. (13)] such that the production of spanwise
vorticity, K̃S [96] at the cylinder wall in the upper half plane is balanced by the vorticity advection
by the primary vortices, Kz = �z fS , the reorientation of vorticity into streamwise or transverse
oriented vortices, Kx,y, and the vorticity annihilation with opposing vorticity bearing fluid from the
lower half plane, Ka. For quantitative analysis, K̃S is calculated using the mean advected vorticity
from each separated shear layer K̃S = ∫ Lz

0

∫ ∞
0 u(D/2, y, z)ωz(D/2, y, z)dydz, Kz is calculated by

a measurement of the phase-averaged strength of the wake vortices and the shedding frequency
Kz = �z fS , and Kx,y is estimated assuming the secondary vortices form in opposing pairs in the
wake, leading to a reduction in the advected spanwise vorticity of Kx,y = �x,y[1 − cos(γ )] fS , where
γ is the solid angle of the orientation of each secondary vortex with the spanwise axis:

K̃S = Kz + Kx,y + Ka. (13)

The vorticity balance terms Kz, Kx,y, and Ka vary with increasing streamwise distance, generally
leading to increasing Ka and decreasing Kz and Kx,y. However, the main variations occur due
to the highly unsteady mixing during vortex formation, which is the primary region of interest
since its proximity to the surface implies the strongest effects on structural loading characteristics
(Fig. 7). Hence, measurements of the advective quantities in Eq. (13) are evaluated at x/D = 2.5,
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FIG. 13. Transport of spanwise vorticity after generation at the cylinder wall (K̃S), advection in the wake
(Kz), reorientation into transverse or streamwise vorticity in the wake (Kx,y), and cross-annihilation of vorticity
(Ka).

immediately following vortex formation. The annihilation term (Ka) is determined from Eq. (13)
based on the estimated values of K̃S , Kz, and Kx,y.

Figure 13 plots the respective terms in Eq. (13) for each Re. The results indicate that the
proportion of spanwise vorticity (Kx,y) reoriented in the transverse and streamwise directions in
the wake increases with Re (Fig. 13). However, while a general decreasing trend can be discerned
in the proportion of spanwise vorticity advected by the primary vortices (Kz) with increasing Re,
the data at Re = 300 deviates from this trend. This is likely attributed to the fact that the mode B
vortices, which dominate the secondary vortex developments for Re = 300, form due to a hyperbolic
instability in the vorticity braids connecting the primary vortices [12], whose contribution is not
explicitly accounted for in Eq. (13). In contrast, the elliptic instability in mode A∗ at Re = 220
directly involves the primary rollers causing reorientation of vorticity. Similarly, for Re = 800 and
Re = 1575, the pinching formation mechanism for the hairpin vortices in B+ transition identified
in Figs. 4(d) and 5 causes explicit reorientation. As a result, the vorticity advected in the primary
rollers (Kz) decreases after B+ transition for Re > 300, while the proportion annihilated across the
wake (Ka) showing no discernible trend with Re. The decrease in the relative strength of the vortices
with increased Re due to the vorticity reorienting mechanism for Re > 300 is therefore concluded
to have a subsidiary role in the large decrease in C′

L and C′
D for Re � 300 [Figs. 7(a) and 7(c)], as the

change in relative strength of the primary vortices that can be attributed to spanwise reorientation is
approximately 20%, compared to the approximately 90% decrease in the fluctuating loads. However,
the precise quantitative effect is contingent on the uncertainty in circulation measurements indicated
in Fig. 13. The significance of a relative decrease in the strength of the primary vortices of 20% can
be inferred from inviscid models of the von Kármán wake [97], which predict lift fluctuations scale
linearly with dimensionless spanwise vortex circulation (CL,max = uadv�z/U 2

o D), which is further
compounded by the advective velocity (uadv) being proportional to �z.

IV. CONCLUSIONS

Direct numerical simulations of a circular cylinder in cross flow are performed for Re = 100,
220, 300, 800, 1575. The results indicate a route of transition in the cylinder wake of 2D → A∗ →
B → B+, where B+ denotes a wake containing mode B instabilities straddled with hairpin vortices.
The B+ regime is characterized by a significant increase in vortex deformation and irregularity in
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the wake along with a plethora of hairpin formations. The DNS simulations were validated against
previous experimental and numerical measurements of C′

L, CD, and C′
D. In particular, a compilation

of sources is used to construct a representative plot of C′
D over a wide range of Re that revealed

the significant data scatter within and between studies. An analysis of the compiled drag force
fluctuation data showed a relation between high data scatter and regimes where low frequency
fluctuations dominate for transitional and turbulent shedding regimes.

To facilitate the quantitative analysis of the vortex dynamics in the B+ transitional regime,
a three-dimensional vortex tracking algorithm was developed. The algorithm seeks to detect the
orientation, circulation, area, and centroid position of every vortex in a given sample plane.
The three-dimensional algorithm has the benefit of avoiding smearing of the structures onto a
measurement plane misaligned with each vortex orientation. The results indicate mean vortex
diameter contracts with Re, indicative of the higher vorticity stretching associated with increased
turbulent generation in the wake, and mean streamwise vortex circulation remains relatively
constant, besides the stronger mode A vortices for Re = 220. Broadening of the joint probability
distributions of the streamwise vortex inclination angle with the transverse centroid position in the
wake are indicative of the transition from relatively simple limit cycles governing the dynamics
for Re = 220 and Re = 300, where vortex formation is predictable, to a more complex turbulent
state for Re � 800, due to a high degree of deformation and chaotic vortex formations in the
wake, marking the B+ wake transition. An sPOD analysis is conducted to provide insight into the
modal behavior of the wake through transition. The results indicate that the relative energy content
contained in the first two modes decreases with Re significantly, spreading out to higher-order
modes. In addition, the modal energy spectrum serves as a good marker for B → B+ transition,
when the tail of the spectrum attains significant energy due to the dynamics switching to higher
dimensional attractors.

Quantitative analysis of the distribution of vortex strength and vorticity transport at the cylinder
surface and in the wake reveals a minor decrease in the average spanwise vortex strength with
increasing Re, attributed to vorticity reorientation caused by the mechanism of hairpin vortex
formation in the B+ regime for Re � 800. The annihilation of vorticity across the wake centerline is
shown to stay relatively constant with Re, consistent with earlier studies attributing it to an inviscid
mechanism. The identified decrease of about 20% in the advection of spanwise vorticity in the
primary vortices caused by spanwise vortex reorientation is therefore ascribed as a subsidiary cause
for the major reduction (≈90%) of fluctuating loads for Re � 800.
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