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Numerical forcing scheme to generate passive scalar mixing on the centerline
of turbulent round jets in a triply periodic box
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Numerical studies of passive scalars in three-dimensional (3D) periodic box turbulence
have often used arbitrary scalar forcing schemes to sustain the variance. These existing
methods represent certain flow configurations, but they have not been derived using specific
velocity and scalar profiles. In this work, a forcing technique is devised to generate
centerline scalar mixing of round jets in a triply periodic box. It is derived from the scalar
transport equation using a Reynolds-like decomposition of the scalar field. The equation is
closed by applying the known mean velocity and scalar profiles of axisymmetric jets. The
result is a combination of a mean gradient term and a linear scalar term. Direct numerical
simulations at different Reλ have been performed with these source terms for unity Schmidt
numbers. Scalar flux values and scaling exponents of energy spectra from simulations are
comparable to experimental values. In addition, a dimensional analysis shows that the
normalized scalar statistics, such as variance, flux, and dissipation rate, should only be
a function of Reynolds number; indeed, such quantities computed from our simulations
approach constant values as the Reynolds number increases. The effects of velocity forcing
on scalar fields are also investigated; changing velocity forcing terms may result in unstable
scalar fields even under the same scalar forcing. It may indicate that an appropriate relation
between the velocity and scalar forcing schemes can help producing a proper scalar mixing
environment.

DOI: 10.1103/PhysRevFluids.4.124504

I. INTRODUCTION

Passive scalars refer to diffusive scalar quantities that are convected by the velocity field but do
not influence the fluid motion itself. The transport of passive scalars in an incompressible flow is
governed by the following equation:

∂C

∂t
+ u · ∇C = ∇ · (D∇C), (1)

where C is the scalar, D is its diffusivity, and u is the velocity. Numerical computations are often
used to examine the mixing characteristics of passive scalars, but the computational cost and
complexity of geometry can make it difficult to conduct them. To cope with these problems, a
three-dimensional (3D) periodic box with zero mean scalar and velocity has been used intensively to
study scalar turbulence [1–12]. Unfortunately, the solution of Eq. (1) with triply periodic boundary
conditions is that of a decaying scalar field.
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Scalar variance can be prevented from decaying by including a source term in the scalar transport
equation. Below is the incompressible advection-diffusion equation with a forcing term:

∂C′

∂t
+ u · ∇C′ = ∇ · (D∇C′) + f , (2)

where C′ is the forced scalar and f is a forcing term. Three main schemes have been proposed in
the literature: mean gradient forcing (MG) [1], linear scalar forcing (LS) [11], and reaction analogy
forcing (RA) [12].

The mean gradient forcing technique (MG) [1] models a passive scalar in the presence of a mean
gradient G (e.g., 〈−g, 0, 0〉) across the scalar field. The forcing term can be derived by imposing a
mean gradient:

C = C′ + G · x. (3)

Then, the derived forcing term is f = −u · G. Various numerical studies with the MG method have
been conducted to examine the scalar mixing characteristics over a range of Schmidt numbers [1–4],
with a particular emphasis on scalar flux [5], dissipation [6,7], spectrum [8], and structure functions
[9,10].

The linear scalar forcing technique (LS) [11] aims to capture the nature of decaying turbulence.
The derivation of the forcing term begins by normalizing the scalar field:

C′ = C

√
σ 2

t

σ 2
c

, (4)

where σ 2
t is the targeted arbitrary scalar variance and σ 2

c is the unforced scalar variance. When
Eq. (4) is applied to Eq. (1) with an approximation that σ 2

t = σ 2 in the long-time limit, the forcing
term f = 1

2
χ

σ 2 C′ is derived, where χ ≡ 2D|∇C′|2 is the scalar dissipation rate and σ 2 is the variance
of C′. The overline · denotes ensemble averaging.

The reaction analogy forcing technique (RA) [12] models a hypothetical chemical reaction that
reverts the mixing process. The forcing term is f = sign(C) fc|C|n(1 − |C|)m, where m and n are the
stoichiometric coefficients of the hypothetical reaction. fc = 2mK/2m, where K is the reaction rate
constant.

Although these three forcing methods successfully maintain scalar variance at a certain value,
their derivations do not involve any information about velocity fields, nor is there any relation
between the scalar forcing and the velocity forcing. The main objective of the current work is to
introduce a scalar forcing scheme that generates the mixing of a specific practical flow. The target
mixing is that of a fully developed turbulent round jet in the centerline region with unity Schmidt
number.

In Sec. II, we will review the velocity forcing scheme of Rah et al. [13], which the current scalar
forcing is based on. In Sec. III, the forcing term is derived, and a dimensional analysis is provided.
In Sec. IV, simulation results are presented and compared against experiments. Finally, in Sec. V,
the effects of velocity forcing on the scalar field are discussed.

II. REVIEW OF JET CENTERLINE (JC) VELOCITY FORCING

A velocity forcing scheme has been developed recently [13] to generate the turbulence of a round
jet in a 3D periodic box. Since a similar derivation approach will be taken in the present work for
the development of the scalar forcing terms, the derivation of the jet velocity forcing scheme is
reviewed first.

The derivation begins with Lundgren’s idea [14] to obtain the momentum equation for the
fluctuating velocity u′ from the Navier-Stokes equation by subtracting the mean of the equation:

N (u + u′) − N (u + u′), (5)
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where N is the set of Navier-Stokes equations and u is the mean velocity. Equation (5) gives

∂u′

∂t
+ u · ∇u′ + u′ · ∇u + u′ · ∇u′ − ∇ · u′u′ = − 1

ρ
∇p′ + ν∇2u′, (6)

where ν is the kinematic viscosity of the fluid. Lundgren argued that it might be appropriate to use
a source term of the form f u = Au′ with an arbitrary constant A, since the energy production term
u′ · ∇u is linear to u′.

Rah et al. [13], on the other hand, examined all the terms in Eq. (6) by using the known mean
velocity information of a round jet from [15,16]

ux = Uc
F ′(η)

η
, (7)

ur = Uc

[
F ′(η) − 1

η
F (η)

]
, (8)

where Uc is the centerline mean velocity, η = r/x is the ratio of a radial coordinate to an axial
coordinate, and F (η) is a function to be determined by the experiment.

It should be highlighted that the forcing term was developed to be used in a cubic box with triply
periodic boundary conditions, in which the flow is statistically homogeneous, while in a practical
round jet, the magnitudes of velocities decrease with the axial direction as 1/x. Thus, the following
normalized Reynolds decomposition was suggested to make the fluctuating velocities suitable for
periodic boundary conditions:

u∗
x = x

xo
(ux − ux ) exp

(
1 − x

xo

)

u∗
i = x

xo
(ui − ui ), (9)

where xo is the axial location, ux is the original longitudinal velocity, and ui is either of the transverse
velocities of a jet. The asterisk (∗) denotes the normalized quantity. The exponential term in the
longitudinal normalization is added to enforce ∇ · u∗ = 0.

Equation (9) is now applied to Eq. (6), and the known mean velocity profiles of turbulent
round jets [15] are also applied to u. Each term is then evaluated at r = 0 and x = xo. After some
simplification for high Reynolds numbers, the forcing term takes the following form:

f u = 1

2

Uc

xo
(2u∗

x ı̂ + u∗
y ȷ̂ȷ + u∗

z k̂), (10)

where ı̂, ȷ̂ȷ , and k̂ are the unit vectors in Cartesian coordinates. As apparent in the form of the
source term, the simulation has a target experiment. Its Uc and xo values determine the coefficients
of the forcing term. This jet centerline (JC) velocity forcing term was found to successfully create
turbulence in a 3D periodic box, whose turbulent characteristics resemble those of a round jet on
the centerline.

Since the forcing coefficient Uc/xo and the computational domain length Lx are the only inputs
into these simulations, they determine the output turbulent parameters. An a priori analysis [13]
provided algebraic expressions for key turbulent quantities:

ko = 27

8

(
Uc

xo

)2
(

1 +
〈〈

u∗2
x

〉〉
〈〈u∗2〉〉

)2

l2
o , (11)

εo = 27

8

(
Uc

xo

)3
(

1 +
〈〈

u∗2
x

〉〉
〈〈u∗2〉〉

)3

l2
o , (12)

lo =
(

2

3
ko

) 3
2
/

εo, (13)
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where ko, εo, lo are the expected values for the kinetic energy, dissipation rate, and integral
length scale, respectively. 〈〈 · 〉〉 denotes time averaging of volume-averaged values. The ratio
〈〈u∗2

x 〉〉/〈〈u∗2〉〉 and lo are outputs of the numerical simulations, which are found to be constant
independently of Reynolds numbers:

lo ≈ 0.24Lx, (14)〈〈
u∗2

x

〉〉
〈〈u∗2〉〉 ≈ 0.49. (15)

Thus, Eqs. (11) and (12) show that

ko ∝
(

Uc

xo

)2

L2
x , (16)

εo ∝
(

Uc

xo

)3

L2
x . (17)

The Reynolds number of the simulations can also be predicted a priori. The root mean square
velocity fluctuation, urms, the Taylor microscale, λ, and the Taylor-microscale Reynolds number,
Reλ, are defined as

urms =
√

2k

3
, (18)

λ =
√

15
ν

ε
urms, (19)

Reλ = λurms

ν
. (20)

From Eq. (11), the expected value for Reλ can be found to be

Reo
λ =

√√√√45

2ν

Uc

xo

(
1 +

〈〈
u∗2

x

〉〉
〈〈u∗2〉〉

)
l2
o . (21)

More details on the derivations can be found in Ref. [13].

III. PROPOSED FORCING TERM

A. Derivation of the forcing term

In a similar fashion to the velocity case introduced in Sec. II, the goal is to derive a scalar
source term that generates turbulent mixing similar to that of a round jet on the centerline. This
methodology is developed to be used in a cubic box with periodic boundary conditions. The passive
scalar inside the box will be homogeneous with zero mean. In a practical round jet, however, the
fluctuating scalar C′ is known to decrease with the axial direction as 1/x [15]. Thus, to make the
scalar appropriate for homogeneity and periodic boundary conditions, the following normalization
is suggested:

C∗ = x

xo
(C − C), (22)

where C is the original scalar and C is the mean scalar.
With Eqs. (9) and (22), we can obtain the governing equation for the scalar fluctuation from

the incompressible advection-diffusion equation, Eq. (1). Then, each term can be evaluated on the
centerline (i.e., r = 0) and at x = xo by using the mean profiles for u from Refs. [15,16] and C from
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Refs. [17–21]:

C = Cc exp[−γ1(r/x)2], (23)

where Cc is the centerline mean scalar and γ1 is a constant to be determined by the experiment. The
result is

∂C∗

∂t
+ u∗ · ∇C∗ − ∇ · (D∇C∗)

= Uc

xo
C∗ + Cc

xo
u∗

x + u∗ · ∇C∗ + u∗
xC∗

xo
− u∗

xC∗

xo
+ 2D

(
C∗

x2
o

− 1

xo

∂C∗

∂x

)
. (24)

Each term of Eq. (24) impacts the distribution of C∗ to a different extent. For the current study, it
is our intent to retain only those terms significantly contributing to the first and second moments of
C∗. Other terms will be considered negligible.

First, u∗ · ∇C∗ and u∗
xC∗/xo appear as C∗ u∗ · ∇C∗ and C∗ u∗

xC∗/xo, respectively, in the scalar
variance equation. They do not contribute to the mean scalar variance, because C∗ ≡ 0. Similarly,
u∗

xC∗/xo appears as u∗
xC∗2/xo in the variance equation. The magnitude of u∗

xC∗2/xo can be

compared to that of UcC∗2/xo. According to experiments [22–24], the value of u′
xC

′2/UcC2
c is about

0.0002–0.0008 and that of C′2/C2
c is about 0.036–0.044. Then, the ratio of u′

xC
′2/UcC2

c to C′2/C2
c

ranges from 0.0005 to 0.002. Although Eq. (24) is for the normalized quantities, u∗ and C∗, we will
assume here that turbulent parameters of normalized quantities are comparable to those of u′ and
C′. Thus, we conclude that u∗

xC∗/xo is also negligible.
Next, DC∗/x2

o 
 UcC∗/xo for high Reynolds number and/or high Schmidt number flows, where
the Schmidt number is defined as Sc ≡ ν/D. The ratio Ucxo/D is proportional to the jet Péclet
number, PeD = ReD · Sc = Uod/D, based on the exit nozzle velocity, Uo, and the nozzle diameter,
d [15]. Similarly, D

xo

∂C∗
∂x 
 u∗ · ∇C∗. The ratio of the two terms is also of the same magnitude as

the Péclet number.
With these simplifications, the only terms significantly contributing to the scalar variance are

Uc
xo

C∗ and Cc
xo

u∗
x . Thus, only these two terms are retained on the right-hand side of the governing

equation for the passive scalar:

∂C∗

∂t
+ u∗ · ∇C∗ − ∇ · (D∇C∗) = Uc

xo
C∗ + Cc

xo
u∗

x . (25)

Under the assumption of statistical homogeneity, we obtain the scalar variance equation from
Eq. (25):

dC∗2

dt
= −χ + 2

Uc

xo
C∗2 + 2

Cc

xo
u∗

xC∗, (26)

where χ ≡ 2D∇C∗ · ∇C∗ is the scalar dissipation rate. By construction, ensemble-averaged quan-
tities should be statistically stationary in the considered region. Then, Eq. (26) becomes

χ = 2
Uc

xo
C∗2 + 2

Cc

xo
u∗

xC∗. (27)

B. Properties of the forcing term

This current forcing term, Uc
xo

C∗ + Cc
xo

u∗
x , is the result of applying the physical laws of a practical

turbulent flow. The mean velocity and scalar profiles of a round jet, Eqs. (7)–(23), have been used
during the derivation. The target experiment determines the coefficients of the source terms with its
Uc, Cc, and xo values. They control the magnitudes and characteristics of scalar turbulent quantities
in a 3D box, which should be similar to those of a round jet on the centerline.

This forcing term is also a combination of two previously existing methods: the linear scalar
forcing (LS) and mean gradient forcing (MG). Uc

xo
C∗ is linear to a scalar like LS, and Cc

xo
u∗

x is linear
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TABLE I. Inputs and outputs of DNS.

Input Uc
xo

Cc
xo

Lx ν

[T −1] [θL−1] [L] [L2T −1]

Output C∗2 u∗
xC∗ χ

[θ2] [θLT −1] [θ2T −1]

to a velocity like MG. Although the coefficients are arbitrary for the original MG and LS terms,
they have the same forms as the current forcing term. It should be noted that this similarity is only
a result of applying the physics of a practical flow.

C. Dimensional analysis

There are four input parameters for the simulations: the coefficients for the forcing terms, Uc/xo

and Cc/xo, the domain width Lx, and viscosity ν. These four parameters control the outcomes of
the simulations, such as C∗2, u∗

xC∗, or χ . It is important to note that these three quantities are not
independent and are related through the scalar variance equation, Eq. (27). Table I summarizes the
inputs and outputs and their units. T represents a time unit; L, a length unit; and θ , a scalar unit.

We can apply Buckingham π theorem to a set of four inputs and one outcome. For example,
there exists a function g of relating C∗2 to the four input parameters:

g

(
C∗2,

Uc

xo
,

Cc

xo
, Lx, ν

)
= 0. (28)

We suggest two nondimensional groups:

π1 ≡ C∗2

(Cc/xo)2L2
x

, (29)

π2 ≡ (Uc/xo)L2
x

ν
. (30)

π2 is proportional to ReD, because Lx = 0.399xo [13], and Ucxo/ν is proportional to ReD [15], as
discussed in Sec. III A. Then, by the Buckingham π theorem,

C∗2 = α1(Reλ)

(
Cc

xo

)2

L2
x . (31)

α1 is a scaling coefficient, which may be a function of the Reynolds number. ReD is replaced by
Reλ, because it is found that Reλ ∝ Re1/2

D for turbulent round jets [25,26].
A similar procedure is used to suggest the following relation for u∗

xC∗:

u∗
xC∗ = α2(Reλ)

(
Uc

xo

)(
Cc

xo

)
L2

x . (32)

This suggestion comes from Eq. (31) and the fact that
√

u∗
x

2 ∝ (Uc/xo)Lx from Eq. (11).
The final relation is for χ :

χ = α3(Reλ)

(
Uc

xo

)(
Cc

xo

)2

L2
x . (33)

This relation comes from Eqs. (27), (31), and (32). Section IV will examine the three coefficients,
α1, α2, and α3.
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TABLE II. Relevant parameters of the target experiments and the corresponding simulations.

Target experiments Simulation parameters

Uc/xo Cc/xo ν = D ReD L κmaxη N Reλ

DNS1 0.0212 2.41 1.64 × 10−5 600 0.649 2.0 64 32
DNS2 0.0531 2.41 1.64 × 10−5 1500 0.649 2.0 128 51
DNS3 0.134 2.41 1.64 × 10−5 3900 0.649 2.0 256 81
DNS4 0.230 2.41 1.64 × 10−5 6700 0.649 2.0 384 107
DNS5 0.339 2.41 1.64 × 10−5 9800 0.649 2.0 512 129
DNS6 0.852 2.41 1.64 × 10−5 25000 0.649 2.0 1024 205

Finally, since Lx = 0.399xo, the ratios C∗2/C2
c , u∗

xC∗/(UcCc), and χ/(UcC2
c ) should only depend

on the Reynolds number. In other words, after appropriate normalizations, the turbulent character-
istics should only be determined by the Reynolds number.

IV. RESULTS

A. Simulation procedure

The governing equations, Eqs. (6) and (25), are solved using the NGA code [27]. NGA is a
three-dimensional, finite difference solver suitable for variable density, low Mach number, and
laminar and turbulent flows. It solves the continuity, Navier-Stokes, and scalar transport equations
in physical space, not in spectral space, while discretely conserving kinetic energy.

The initial velocity and scalar fields are randomly generated, following the method used by
Eswaran and Pope [28]. The velocity fields are subject to the continuity constraint and conformed to
a specified Passot-Pouquet energy spectrum [29]. The scalar fields are produced in a similar manner.
A detailed explanation can be found in Ref. [30]. As mentioned in Sec. I, only unity Schmidt
number simulations are considered in the present work. The Courant-Friedrichs-Lewy condition,
CFL � 0.9, has been imposed for all the simulations in the current paper.

The procedure of conducting the direct numerical simulation (DNS) in the current investigation
can be summarized as follows:

(i) Find the centerline velocity Uc, centerline scalar Cc, and the axial location xo of the target
experiment.

(ii) Use Uc/xo and Cc/xo to determine the source term for the DNS.
(iii) Use xo to determine the length of the DNS cubic box, Lx.
(iv) Perform the DNS in a triply periodic configuration with the target ν = D.
As in our previous work, Lx = 0.399xo is used to match the integral length scale with a given

target experiment; a detailed analysis can be found in Ref. [13].
Six DNS have been performed with Sc = 1, as shown in Table II, with the bounded cubic Hermite

polynomial (BCH) scalar transport scheme [31]. The target experiment is a slightly heated turbulent
air jet in Ref. [24]. However, since its Reynolds number is too high, we have applied lower Uc values
for our simulations to decrease the Reynolds numbers.

For each time-averaged quantity shown in this work, averaging uncertainty is presented as an
error bar. This uncertainty quantification method is explained in detail in the Appendix (Sec. A).
For the accurate examination of time-averaged values, the simulations have to run for a sufficiently
long time. However, we could not run DNS6 long enough, because of its high computational cost.
As a result, DNS6 has been omitted from analysis in Secs. IV B and IV D.

B. Scaling coefficient

In this section, we report the values of α1, α2, and α3 by using DNS1-5, for the three relations,
Eqs. (31)–(33), in which time-averaged values of volume-averaged quantities are used in the place of
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FIG. 1. Scaling coefficients for the variance [(a), Eq. (31)], the scalar flux [(b), Eq. (32)], and the dissipation
rate [(c), Eq. (33)] from DNS1-5. The dashed lines are weighted least-squares fits of a functional form h(Reλ) =
a1 − a2 exp(−a3Reλ).

ensemble-averaged ones. This is justified because of the statistically homogeneous and statistically
stationary nature of the flow. The results are plotted as a function of Reλ in Fig. 1. The uncertainty
tends to be larger for higher Reynolds number data, as it is more difficult to have a large number of
samples due to the high computational cost. Nevertheless, we will focus on the average quantities
for all data.

Each coefficient appears to approach a plateau rapidly, as the Reynolds number increases. The
lack of an inertial range for low Reynolds number flows might be the cause for the low coefficient
values. An exponential fitting is provided to estimate the high Reynolds number limit. The dashed
lines are weighted least-squares fits of a functional form h(Reλ) = a1 − a2 exp(−a3Reλ). It is found
that

α1 → 1.60, (34)

α2 → 0.453, (35)

α3 → 3.72. (36)

As stated in Sec. III C, the three coefficients are related by the scalar variance equation under
statistical stationarity [Eq. (27)]. More precisely, it can be deduced that

α3 ≈ 2(α1 + α2). (37)

Figure 1(c) shows 2(α1 + α2). There is a small difference between α3 and 2(α1 + α2), which is the
inevitable consequence of numerical dissipation of the scalar transport scheme. Figure 2 displays
such dissipation defined as αnum ≡ 2(α1 + α2) − α3 for DNS1-5, which increases with the Reynolds
number. The ratio of numerical to physical dissipation increases from about 7% to about 10%.

C. Instantaneous mixing structures

To study the impact of the source terms, three scalars were transported simultaneously for all
simulations: the first scalar with the original jet centerline (JC) source terms, Uc

xo
C∗ + Cc

xo
u∗

x ; the

second scalar with only the linear scalar (LS) term with the target variance σ 2
t = 0.001, Uc

xo
C∗; and

the third scalar with only the mean gradient (MG) term, Cc
xo

u∗
x . The contours of these three scalar

fields on a cross section in the middle of the simulation cubic box from DNS2 are shown in Fig. 3.
Each plot uses 10 contour levels from its own minimum value (dark blue) to maximum value (bright
yellow).
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FIG. 2. Numerical dissipation defined as αnum ≡ 2(α1 + α2) − α3 for DNS1-5.

The mixing structures are homogeneous for all plots, as expected. Although the three forcing
methods produce different scalar statistics, as will be shown in Sec. IV D, it is difficult to identify
visually the difference from the contour plots.

The JC plots are highly similar to the MG plots, which is to be expected because one of the terms
in the JC forcing method is a mean gradient term, Cc

xo
u∗

x . Since this term is shared by both JC and
MG, there must be similarities in any instantaneous JC and MG scalar fields. However, they are not

FIG. 3. Contours of scalar fields from DNS2 in xy (top) and yz (bottom) planes with three different forcing
methods: the linear scalar (LS) forcing (left), the jet centerline (JC) forcing (middle), and the mean gradient
(MG) forcing (right).
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FIG. 4. Normalized scalar flux 〈〈u∗
xC∗〉〉√

〈〈u∗
x

2〉〉〈〈C∗2〉〉
and its corresponding experimental quantity. Round jet

experiments with Sc ≈ 1 are from Anderson and Bremhorst [23], Darisse et al. [24], and Chevray and Tutu
[32], from low to high Reynolds numbers. Round jet experiments with Sc 
 1 are from Webster et al. [21] and
Antoine et al. [33], from low to high Reynolds numbers. The figure displays DNS1-5 results with the original
forcing terms, Uc

xo
C∗ + Cc

xo
u∗

x (red triangles); with only the linear scalar (LS) term, Uc
xo

C∗ (black triangles); and

with only the mean gradient (MG) term, Cc
xo

u∗
x (blue triangles). The mean of DNS1-5 values with the original

forcing terms is 0.52, shown as the dashed red line.

exactly the same, because there is another term in JC forcing, the linear scalar term. This additional
LS term leads to a larger scalar variance compared to that of MG forcing.

For the scalars in LS plots, it is difficult to compare the magnitude against others, as the variance
is imposed to be σ 2

t = 0.001 in LS forcing. As compared to MG plots, the LS ones are much less
similar to JC plots; there is much less correlation between the LS fields and the JC fields.

D. Validation against experimental data: Scalar flux

Normalized scalar flux quantities, 〈〈u∗
xC∗〉〉/

√
〈〈u∗

x
2〉〉〈〈C∗2〉〉, have been calculated from simula-

tions and compared against experiments. The equivalent experimental value is

〈u′
xC

′〉t√〈
u′

x
2
〉
t 〈C′2〉t

∣∣∣∣∣∣
x=xo

, (38)

where 〈 · 〉t denotes time averaging. The comparison is shown in Fig. 4.
Unity Schmidt number experiments are from works by Anderson and Bremhorst [23], Darisse

et al. [24], and Chevray and Tutu [32]. High Schmidt number experiments from the works of
Webster et al. [21] and Antoine et al. [33] are also listed for completeness, because the range of
scalar flux values appears independent of Schmidt numbers. Reλ = 1.3

√
ReD has been applied to

the experiments to convert ReD to Reλ [26]. There is some scatter in the published values ranging
from 0.4 to 0.6 for both unity and high Schmidt number experiments. However, there are no apparent
trends.

To study the impact of the source terms, three cases have been performed with the same velocity
field. In other words, three scalars were transported simultaneously for all simulations: the first
scalar with the original source terms, Uc

xo
C∗ + Cc

xo
u∗

x ; the second scalar with only the linear scalar (LS)

term with the target variance σt = 0.001, Uc
xo

C∗; and the third scalar with only the mean gradient

(MG) term, Cc
xo

u∗
x . The error bars are only shown for the flux with the original source terms (red

triangles) and were estimated using the numerator 〈〈u∗
xC∗〉〉 only. Once again, the simulations in the

current study have been performed with Sc = 1.
The scalar flux values from the current study seem fairly constant, independently of the Reynolds

number. In the discussion of scaling coefficients in Sec. IV B, the effect of Reynolds number
is already diminished at Reλ � 50. It is very likely that the temporal mean of volume-averaged
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FIG. 5. Scalar energy spectrum: φ(κ1) computed from DNS5 at Reλ = 129, and its least-squares fit result
with model spectrum, Eq. (40).

turbulent quantities is quite constant for Reλ � 50. Therefore, the effect of Reynolds number on
normalized scalar flux must also be minimal for higher Reynolds numbers.

The mean of four scalar flux values with the original source terms, Uc
xo

C∗ + Cc
xo

u∗
x , is about 0.52,

which is expressed with the red dashed line in Fig. 4. This value lies within the range of the reported
experimental values. In contrast, the scalar flux 〈〈u∗

xC∗〉〉 is zero for LS forcing, because there is no
term in the advection-diffusion equation that produces a correlation between the velocity and the
scalar. When the DNS is performed only with the MG term, the scalar flux is systematically larger
than the largest experimental values.

E. Validation against experimental data: Scaling exponent of energy spectra

A scalar energy spectrum can be easily computed from the triply periodic DNS. The one-
dimensional energy spectrum, φ(κ1), is defined as∫ ∞

0
φ(κ1)dκ1 = 1

2
〈C∗2〉, (39)

where κ1 is the wave number in the longitudinal direction. φ(κ1) is the Fourier transform of the
spatial correlation function 〈C∗(x) · C∗(x + r1)〉, where r1 is a vector in the longitudinal direction.
An example of scalar energy spectra is shown in Fig. 5. It is computed from DNS5 at Reλ = 129.

Our interest is to determine the scaling exponent n for the relation φ ∼ κ−n in the inertial-
convective subrange and compare it against experiments. We use the following model spectrum:

φ̂(κ1) = B1κ
−n
1 exp

{−B2
([

(ηκ1)4 + B4
3

] 1
4 − B3

)}
, (40)

where B1, B2, and B3 are constants, and η = (ν3/ε)1/4 is the Kolmogorov length scale. This form
of a function was used by Lee et al. to model a scalar spectrum [38]. The exponential part for the
dissipation range is adopted from the kinetic energy model spectrum of Pope [16]. A least-squares
fit is used over the entire spectrum with Eq. (40) to determine B1, B2, B3, and n. For the example
shown in Fig. 5, n is found to be 1.24 with this method. All of the fitting results are shown in
Table III.
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TABLE III. Least-squares fit results.

B1 B2 B3 n

SCL1 0.744 4.86 1.21×10−4 0.964
SCL2 0.843 3.85 0.0788 1.03
SCL3 0.492 5.37 0.106 1.15
SCL4 0.184 5.13 0.120 1.20
SCL5 0.650 5.40 0.110 1.24
SCL6 0.345 5.30 0.090 1.33

The n values computed from DNS1-6 are displayed in Fig. 6. They show a clear trend of
increasing scaling exponents with increasing Reλ. Experimental values of round jets are taken from
Refs. [34,35]. For the spectrum in Ref. [35], we applied the same least-squares fit to find the scaling
exponent. Although our simulations do not match the Reλ of experiments presented in this work
exactly, the result from DNS6 is comparable to the two experimental values.

Scaling exponents from various other shear flows [36] are also shown in Fig. 6 for an additional
comparison. The dashed line is a fit provided by Ref. [37] for these shear flows. Although it is
difficult to conclude from this comparison that round jets display the same scalar energy spectra as
other shear flows, it should be noted that the n values from our simulations, jet experiments, and
other shear flows are along the similar increase curve.

V. DISCUSSION

In this section, we examine the effects of the velocity forcing scheme on the statistics of the
scalar field. The numerical computations presented in the current study apply the jet centerline (JC)
velocity forcing on velocity fields and the JC scalar forcing on the scalar fields.

A. Simulations with different velocity forcing terms

The forcing term for the JC velocity method is anisotropic and linear with the velocity
components, as shown in Eq. (10). We will denote the forcing coefficient Uc/2xo as A. Then, the
forcing terms in the original JC velocity method can be expressed as

f u = fxu∗
x ı̂ + fyu∗

y ȷ̂ȷ + fzu
∗
z k̂ (41)

= 2Au∗
x ı̂ + Au∗

y ȷ̂ȷ + Au∗
z k̂. (42)
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FIG. 6. Scaling exponent n for the scalar energy spectra, φ ∼ κ−n, calculated from DNS1-6. Experimental
values are taken from two round jets [34,35] and other shear flows [36]. The dashed line is a fit provided by
Ref. [37]. The dash-dotted line shows n = 5/3.
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TABLE IV. Forcing coefficients for the linear velocity forcing terms for simula-
tions with A = Uc/2xo.

fx fy fz Reλ rχ 2 Uc
xo

〈〈ε〉〉
〈〈k〉〉

DNS1 2A A A 32 1.5 1.2
Iso1 A A A 22 1.8 2.1
Iso2 4A A A 49 1.3 0.76
Mag1 A A/2 A/2 22 2.0 2.6
Mag2 4A 2A 2A 43 1.2 0.63

Additional DNS have been performed with different coefficients for the linear velocity forcing
terms, as shown in Table IV. Each simulation still uses the same JC scalar forcing.

The baseline case is DNS1 from Table II. Iso1 is isotropic, while Iso2 imposes a stronger
anisotropy than DNS1. Mag1-2 use the same 2 : 1 : 1 ratio for the forcing coefficients, but Mag1
is smaller and Mag2 is larger in forcing magnitudes than DNS1. Iso1 and Mag1 are found to
be unstable; their statistical values, such as volume-averaged variance and dissipation, increase
exponentially over time. The stability issue will be discussed in Sec. V D.

B. Timescale ratio

Let us define the timescale ratio as

rχ ≡ χ/C∗2

ε/k
. (43)

For simulations with the proposed JC scalar forcing, we can deduce from Eqs. (31) and (33) in
Sec. III C that

χ

C∗2
= α3

α1

Uc

xo
. (44)

Also, for the JC velocity forcing, we can find from Eqs. (11) and (12) that

ε

k
=

(
1 +

〈〈
u∗2

x

〉〉
〈〈u∗2〉〉

)
Uc

xo
, (45)

with the assumption that the ensemble-averaged quantities are equal to their expected values.
The timescale ratio, rχ , for the simulations with the original JC velocity and the proposed JC

scalar forcing will be

rχ = α3/α1

1 + 〈〈u∗2
x 〉〉

〈〈u∗2〉〉
. (46)

From the exponential fits in Sec. IV B, rχ should be around 1.5 for any Reλ larger than 25.
The ratios rχ from DNS1-5, Iso1-2, and Mag1-2 are displayed in Fig. 7. For the computation

of rχ , the temporal mean of (〈χ〉/〈C∗2〉)/(〈ε〉/〈k〉) has been used, where 〈 · 〉 denotes a volume-
averaged quantity at one sample time.

As expected from Eq. (46), rχ of DNS1-5 is around 1.5. The ratios rχ of Iso2 and Mag2 are
smaller than those of DNS1-5 by about 18% and 25%, respectively. Nevertheless, the ratio of scalar
to velocity timescales is fairly independent of the velocity forcing scheme (both magnitude and
anisotropy).
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FIG. 7. Timescale ratio rχ [Eq. (43)] from DNS1-5, Iso1-2, and Mag1-2. The mean of DNS1-5 values is
shown as the dashed red line.

C. Effect of velocity forcing on scalar flux

Normalized scalar flux quantities, 〈〈u∗
xC∗〉〉/

√
〈〈u∗

x
2〉〉〈〈C∗2〉〉, have been computed from DNS1-

5, Iso1-2, and Mag1-2, as shown in Fig. 8. The flux values of Iso2 and Mag2 are larger
than those of DNS1-5, with a maximum deviation of about 18% for Mag2. In clear contrast,
〈〈u∗

xC∗〉〉/
√

〈〈u∗
x

2〉〉〈〈C∗2〉〉 of Iso1 and Mag1 are essentially zero, which indicates that velocity and
scalar fields remain uncorrelated, despite the MG term in the transport equation. This phenomenon
is actually caused by the instability of Iso1 and Mag1 simulations and is discussed next.

D. Stability of scalar equation

The stability of our simulation system can be examined by analyzing the scalar variance equation.
Using Eq. (43), the equation for the volume-averaged scalar variance 〈C∗2〉 can be expressed as

d〈C∗2〉
dt

= −〈ε〉
〈k〉

(
rχ − 2

Uc

xo

〈k〉
〈ε〉

)
〈C∗2〉 + 2

Cc

xo
〈u∗

xC∗〉. (47)

If rχ > 2Uc
xo

〈k〉
〈ε〉 , the solution is stable; the two terms on the right-hand side (RHS) become balanced,

and the system finds a statistically stationary state. However, if rχ < 2Uc
xo

〈k〉
〈ε〉 , the solution is unstable;

the scalar variance keeps increasing and does not reach a statistically stationary state.
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FIG. 8. Normalized scalar flux from DNS1-5, Iso1-2, and Mag1-2. The mean of DNS1-5 values is shown
as the dashed red line.
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FIG. 9. Volume-averaged ratio, 2 Uc
xo

〈k〉
〈ε〉 , from DNS1, Iso1-2, and Mag1-2, plotted as a function of the time

normalized by the eddy timescale, τ = ko/εo. The horizontal dashed line indicates the time-averaged value of
each simulation.

Figure 9 displays the ratios of volume-averages, 2Uc
xo

〈k〉
〈ε〉 , from DNS1, Iso1-2, and Mag1-2, plotted

as a function of normalized time. As a reminder, for passive scalars, this ratio is only a result of the
velocity forcing scheme and is not influenced by the scalar field. Table IV reports the time averages
of rχ and 2Uc

xo

〈k〉
〈ε〉 for each simulation.

As expected from Eq. (47), for stable simulations, DNS1, Iso2, and Mag2, the time-averaged
value of 2Uc

xo

〈k〉
〈ε〉 is smaller than its respective rχ . On the other hand, for unstable simulations, Iso1

and Mag1, the time-averaged value of 2Uc
xo

〈k〉
〈ε〉 is larger than its respective rχ . For unstable Iso1 and

Mag1, the velocity-scalar correlation cannot be developed, as shown in Sec. V C, because the scalar
field cannot reach a statistically stationary state.

We have found that the velocity forcing affects the scalar statistics and the stability of the
simulations. It also shows the need for an appropriate relation between the velocity and scalar
forcings. Simulations with the proposed JC scalar forcing must use the JC velocity forcing, in order
to produce the proper turbulence of a round jet on the centerline. This inherent relation ensures that
the simulations are stable and produce the correct scalar turbulence.

VI. CONCLUSION

The forcing method derived in this work is based on the physical properties of a turbulent round
jet, which are applied to the scalar transport equation. A normalization on the scalar has also been
applied to derive the source term to be used in a triply periodic box. The derivation result is a
combination of two previously existing methods, namely mean gradient (MG) and linear scalar
(LS).

A dimensional analysis was introduced to seek relations between the inputs and outputs of our
simulations with jet centerline (JC) velocity and JC scalar forcing. It was found that normalized
scalar statistics, such as variance, flux, and dissipation rate, should only be a function of Reynolds
number. Our simulation results indicate that such quantities approach constant values as the
Reynolds number increases.

Normalized scalar flux quantities and scaling exponents of scalar energy spectra were compared
against experiments. Unfortunately, only a small amount of data is available in the literature, and
some scatter among the experimental values exists. There is a difficulty in the comparison, because
of the small amount of available data in the literature and the scatter among the experimental values.
Nevertheless, the simulations results are comparable to the round jet measurements.

The effects of velocity forcing schemes on the scalar fields were also investigated by altering
the velocity forcing coefficients while maintaining the same JC scalar forcing. It was observed that
velocity forcing had a slight influence on the resulting timescale ratio rχ and scalar flux. More
importantly, however, changing velocity forcing terms may result in unstable scalar fields even
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under the same scalar forcing. This finding shows that a scalar forcing needs to be properly derived
in relation to this particular velocity forcing, at least.

The current study devised the scalar forcing technique that replicates the mixing nature in a
practical flow. It proves the possibility of creating a realistic mixing environment in a simple 3D
periodic domain instead of computing an entire flow. The mathematical methodology is not limited
to turbulent round jet centerlines and should be applied to different flow configurations in future
studies.
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APPENDIX: UNCERTAINTY QUANTIFICATION

1. Definitions

Suppose there are N time-sequential samples available, modeled as a stationary ergodic random
process xi sampled at every �t . The autocorrelation function for this random process is defined as

ρ(k) ≡ E [(xi − μ)(xi+k − μ)]

σ 2
, (A1)

where k is the lag, μ is the expected mean of xi, and σ 2 is the variance, E [(xi − μ)2].
These samples are then divided into p number of nonoverlapping segments with length n = N/p.

A mean value, ŝ j , is calculated for each jth segment:

ŝ j = 1

n

n j∑
i=1+n( j−1)

xi. (A2)

The set of mean values from the segments, {ŝ j}, can also be considered as the elements of a random
process. The expected mean of ŝ j is μ. Let us define the expected averaging error as

δ2
n ≡ E [(ŝ j − μ)2]. (A3)

The goal of this uncertainty quantification is to estimate δ2
n when n → N .

2. Modeling

According to Ref. [39],

δ2
n = σ 2

n

[
1 + 2

n−1∑
k=1

(
1 − k

n

)
ρ(k)

]
. (A4)

Rearranging the terms, we obtain

δ2
n = 1

n

[
σ 2 + 2σ 2

n−1∑
k=1

ρ(k)

]
− 1

n2

[
2σ 2

n−1∑
k=1

kρ(k)

]
. (A5)

Inspired by the form of Eq. (A5), we suggest modeling the averaging error as

δ2
n ≈ f (n; B) = B1

n
+ B2

n2
, (A6)
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FIG. 10. Volume-averaged scalar flux, 〈u∗
xC∗〉, from DNS2 plotted as a function of the time normalized by

the eddy timescale, τ . The horizontal dashed line indicates its time-averaged value.

where B = [B1, B2] is a vector of parameters. This expression is exact in the limit of n�t sufficiently
larger than the integral timescale.

3. Calculation

In practice, we compute the averaging error for segments of length n as

δ̂2(n) = 1

p

p∑
j=1

[ŝ j (n) − μ̂]2, (A7)

where

μ̂ = 1

N

N∑
i=1

xi. (A8)

Then, a least-squares fit is used over δ̂2(n) with Eq. (A6) to determine B by solving

B = arg min
B

N/2∑
n=nk

[δ̂2(n) − f (n; B)]2. (A9)

Theoretically, the minimum number of segments is p = 2; thus, the maximum segment length is
N/2. As mentioned previously, the minimum segment length must be sufficiently large for Eq. (A6)
to be valid. We suggest varying nk , determining B for each nk value, and finally finding the maximum
f (N ):

δ̂2
N = max

nk

f
(
N ; B|nk

)
. (A10)

Because it is the most conservative choice, we will use this maximum f (N ; B) as the final estimation
for δ2

n as n → N .

4. Example

The volume-averaged scalar flux, 〈u∗
xC∗〉, has been computed from DNS2, and is shown in

Fig. 10, as a function of normalized time. In this example, the transient period is about 15τ . The
dashed line indicates the time-averaged value of the entire data. The algorithm introduced in the
previous section is applied to this data.
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FIG. 11. Averaging error δ̂2 as a function of n, for 〈u∗
xC∗〉 data presented in Fig. 10. The solid line represents

the least-squares fit result with δ̂2 for n � 920: δ̂2 = 0.00309/n − 0.911/n2.

δ̂2(n) from Eq. (A7) is shown in Fig. 11. Then, f (N ; B|nk ) from Eq. (A10) is computed as a
function of nk and displayed in Fig. 12. In this example,

arg max
nk

f
(
N ; B|nk

) = 920. (A11)

The corresponding fit result, f (n; B|nk=920) for n � 920, is shown in Fig. 11. Finally, the estimated
averaging error is

δ̂2
N = 3.56 × 10−8, (A12)√
δ̂2

N = 1.87 × 10−4. (A13)
√

δ̂2
N is about 4.32% of the mean value μ = 0.00437.
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FIG. 12. f (N ; B|nk ) from Eq. (A10) is computed as a function of nk .
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FIG. 13. The plot for timescale ratio [Eq. (43)] reproduced using summations of uncertainties for four
parameters, 〈χ〉, 〈C∗2〉, 〈ε〉, and 〈k〉.

The same procedure has been repeated for each data point presented throughout the paper. The
error bar indicates ±

√
δ̂2

N .

5. Uncertainty quantification for ratios of parameters

The timescale ratio rχ , defined in Eq. (43), is a ratio of four parameters. In Sec. V B, we computed
(〈χ〉/〈C∗2〉)/(〈ε〉/〈k〉) at each time step, and calculated the associated uncertainty.

Another method is to compute the uncertainties associated with four parameters separately and
add them. For example, we can compute 〈χ〉, 〈C∗2〉, 〈ε〉, and 〈k〉 at each time step and calculate
the uncertainty for each parameter. The final uncertainty for rχ is then the summation of four
uncertainties. The result using this method is shown in Fig. 13.

The error bar for each rχ is much greater than that in Fig. 7. It is shown that different methods of
computing uncertainties may produce very different results.
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