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Dispersion and reaction in random flows:
Single realization versus ensemble average
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We examine the dispersion of a passive scalar released in an incompressible fluid
flow in an unbounded domain. The flow is assumed to be spatially periodic, with zero
spatial average, and random in time, in the manner of the random-phase alternating sine
flow which we use as an exemplar. In the long-time limit, the scalar concentration takes
the same, predictable form for almost all realizations of the flow, with a Gaussian core
characterized by an effective diffusivity, and large-deviation tails characterized by a rate
function (which can be evaluated by computing the largest Lyapunov exponent of a
family of random-in-time partial differential equations). We contrast this single-realization
description with that which applies to the average of the concentration over an ensemble
of flow realizations. We show that the single-realization and ensemble-average effective
diffusivities are identical but that the corresponding rate functions are not, and that the
ensemble-averaged description overestimates the concentration in the tails compared with
that obtained for single-flow realizations. This difference has a marked impact for scalars
reacting according to the Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP) model. Such
scalars form an expanding front whose shape is approximately independent of the flow
realization and can be deduced from the single-realization large-deviation rate function.
We test our predictions against numerical simulations of the alternating sine flow.
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I. INTRODUCTION

We are interested in the dispersion of a passive scalar field under the combined action of
advection by a prescribed flow and molecular diffusion. The scalar concentration C(x, t ) is governed
by the advection-diffusion equation

∂tC + u · ∇C = κ∇2C, (1)

where κ is the molecular diffusivity and u(x, t ) a velocity field satisfying ∇ · u = 0 as appropriate
for incompressible flows. In the Lagrangian interpretation of (1), the positions X (t ) of scalar
particles obey the stochastic differential equation

dX = u(X (t ), t )dt +
√

2κ dW , (2)

where W is a multidimensional Brownian motion. When suitably normalized, the concentration in
(1) is identified with the probability density function

C(x, t ) = E[δ(X (t ) − x)] (3)
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of the particle positions, where E denotes expectation over realizations of the Brownian motion
conditioned on X (0) = 0 so that C(x, 0) = δ(x).

We focus on random flows, taking u(x, t ) to be a random field with given stationary statistics,
as is standard when modeling turbulent dispersion [1–4]. This introduces an ensemble of flow
realizations, additional to the ensemble of Brownian motion, with an associated average which we
denote by 〈·〉. The averaged scalar concentration, defined as

〈C(x, t )〉 = 〈E[δ(X (t ) − x]〉, (4)

is often the main object of investigation (e.g., Ref. [3]). However, for practical purposes, when
a single flow realization is experienced, it is the single-realization dynamics of C that matters.
For large times and/or on large spatial scales, ergodicity arguments can be invoked to identify
C with 〈C〉. The relationship between the single-realization C and the ensemble-averaged 〈C〉
is in fact rather subtle; it is the topic of this paper. In statistical-physics parlance, the fixed
flow realization associated with C corresponds to a quenched disorder, while the sampling over
realizations associated with 〈C〉 corresponds to an annealed disorder.

We investigate the relationship between C and 〈C〉 in the context of the initial-value problem
for (1) in an unbounded domain, corresponding to the instantaneous release of a localized patch
of scalar. In the absence of advection (u = 0), the concentration behaves asymptotically as the
Gaussian (4πκt )−d/2e−|x|2/(4κt ), with d the number of spatial dimensions. For a spatially periodic,
time-independent u �= 0, at a coarse-grained level, the core of the concentration is also Gaussian: the
dynamics of C is approximately diffusive, with a (tensorial) effective diffusivity which is computed
through the solution of the cell problem of homogenization theory (see, e.g., Refs. [3,5] and refer-
ences therein). The tails, however, are non-Gaussian: they take a large-deviation form, characterized
by a rate function which is deduced from the solution of an eigenvalue problem (generalizing the
cell problem of homogenisation) and encodes all the cumulants of the concentration [6]. These
conclusions extend naturally to flows that are also periodic in time.

In this paper, we examine the case of spatially periodic, random-in-time flows. This class includes
the widely studied random alternating sine flow introduced by Pierrehumbert [7] which we use as
our testbed. For these flows, the coarse-grained picture of a Gaussian core and large-deviation tails
continues to hold, with a single effective diffusivity and a single rate function describing the concen-
tration C in almost all realizations of the flow. On the other hand, the ensemble-averaged concen-
tration 〈C〉 also has a Gaussian core and large deviations tails. We show that, under the assumption
of a vanishing spatial average of u, the Gaussian cores of C and 〈C〉 coincide; in other words, the
single-realization and ensemble-average effective diffusivities are identical. The large-deviation tails
of C and 〈C〉 are generally different, however, and we show that 〈C〉 overestimates the concentration
in the tails. We illustrate these results using numerical simulations of the alternating sine flow.

The differences in tail behavior take a crucial importance for reacting scalars. When a logistic
term is added to (1), leading to an FKPP model, the scalar dynamics is characterized by reaction
fronts whose speed can be determined from the large-deviation rate function characterizing the
dispersion of the nonreacting scalar [8,9]. We demonstrate the value of this observation in the
context of flows that are random in time by predicting the location of a chemical front propagating
in the alternating sine flow and checking the prediction against a numerical simulation.

The paper is organized as follows. Section II motivates the problem considered by introducing
the random alternating sine flow and presenting numerical results which illustrate its action on a
passive scalar. Section III establishes the equivalence of C and 〈C〉 in the diffusive approximation
that applies to the core of the scalar concentration when the spatial average of u vanishes. We
check this prediction in the case of the alternating sine flow for which the effective diffusivity
can be computed analytically by exploiting its ensemble-average interpretation. We consider the
large-deviation aspects in Sec. IV. We show there how the single-realization rate function can be
obtained by computing the largest Lyapunov exponent of a family of partial differential equations
with coefficients which are random-in-time and periodic in space. We carry out this computation
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for the alternating sine flow and show that the single-realization rate function so obtained differs
from the ensemble-average one (which is given in closed form up to a Legendre transform). We
highlight the importance of our findings for reacting scalars by examining front propagation in the
FKPP model with the random alternating sine flow in Sec. V. We conclude in Sec. VI.

II. A SIMPLE MODEL OF RANDOM DISPERSION: THE ALTERNATING SINE MODEL

To make the problem concrete, we start by introducing a simple model of random dispersion.
We consider the 2D alternating sine flow with random phases popularized by Pierrehumbert [7]
and still widely studied (see, e.g., Refs. [10,11], among others). This is one of the simplest random
flows that efficiently stretches and folds material lines, making it uniformly mixing. This feature
is crucial to enhance dispersion over that achieved by the sole action of molecular diffusion. The
model simplifies both analytical and numerical computations by treating advection and diffusion in
alternate steps in a manner akin to standard time-splitting numerical methods [12].

The velocity field of this alternating sine model is spatially periodic and random in time. The
scalar field obeys the evolution equation

∂tC =

⎧⎪⎨⎪⎩
−4a sin (y + ϕn)∂xC for t ∈ [n, n + 1/4)

−4a sin (x + ψn)∂yC for t ∈ [n + 1/4, n + 1/2)

2κ∇2C for t ∈ [n + 1/2, n + 1)

, (5)

where n ∈ N labels the iterations, a is the maximum excursion distance in x and y over an iteration,
(ϕn, ψn) are random phases drawn independently from a uniform distribution in [0, 2π ], and κ is
the molecular diffusivity. In (5), time and space have been nondimensionalized to set the time of
each iteration—in effect the correlation time of the velocity—to 1 and the spatial period to 2π .

The time-splitting enables a direct stepwise integration, turning the dynamics into that of a map.
Let us introduce Cn(x) = C(x, t = n), with x = (x, y). The solutions of the first two steps in (5) are
obtained as C(x, y, t ) = Cn[x − 4a sin(y + ϕn)(t − n), y] and C(x, y, t ) = Cn+ 1

4
[x, y − 4a sin(x +

ψn)(t − n − 1/4)] by integrating the advection equations. The solution of the diffusion equation
in the third step is simply a convolution of Cn+ 1

2
(x) with a Gaussian diffusion kernel. This gives the

three-step map

Cn+ 1
4
(x, y) = Cn(x − a sin (y + ϕn), y), (6a)

Cn+ 1
2
(x, y) = Cn+ 1

4
(x, y − a sin (x + ψn)), (6b)

Cn+1 = K ∗ Cn+ 1
2
, (6c)

where K (x) = (4πκ )−1e−|x|2/(4κ ) and the asterisk denotes the convolution product. Numerically,
the iterations (6) are carried out by discretizing C over a uniform square grid, with the two advection
steps (6a), (6b) performed using a bilinear interpolation and the convolution of the diffusion step
(6c) performed in Fourier space.

Figure 1 illustrates the dynamics (6) by showing the concentration field Cn and the intermediate
fields Cn+ 1

4
and Cn+ 1

2
for n = 0, 1, 2, starting from a diamond-shaped scalar patch. It can be

contrasted with Fig. 2 which shows the same fields but averaged over 1000 realizations of the
velocity field. The single realizations and ensemble-averaged concentration are quite different in
these early iterates of the alternating sine flow, but our focus is on the long-time (large-n) behavior
when the scalar has spread over many flow periods and is well represented by a coarse-grained
description. In this limit, Cn and 〈Cn〉 are related in a manner that we elucidate in the rest of the
paper.

We emphasize that we consider scalar dynamics in an unbounded domain. In a bounded domain,
achieved, e.g., by imposing periodic boundary conditions for Cn, the evolution is radically different,
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FIG. 1. Evolution of an initial diamond-shaped scalar patch (upper-right panel) through the successive
steps (6a)–(6c) of the alternating flow with a = π and κ = 10−2. The computation uses a 10242 discretization
of the domain [−4π, 4π ]2.

with a scalar relaxing exponentially fast towards a homogeneous state and adopting the form of a
strange eigenmode [7,10,13].

III. DIFFUSIVE APPROXIMATION

In the long-time limit, when the passive scalar has sampled the velocity field well, the advection-
diffusion equation (1) is often approximated by a diffusion equation

∂tC + v · ∇C = ∇ · (K · ∇C), (7)

where v is a uniform effective velocity and K a uniform effective-diffusivity tensor [3,5]. Corre-
spondingly, the concentration field takes a Gaussian form. This is a manifestation of the central
limit theorem which applies at distances that are O(

√
t ) away from the center of mass. The diffusive

approximation implies the asymptotic linear growth with time of the mean and covariance of the
position of particles obeying (2). The effective velocity and diffusivity

v = lim
t→∞

E[X (t )]

t
, (8a)

K = lim
t→∞

E[X (t ) ⊗ X (t )] − E[X (t )] ⊗ E[X (t )]

2t
, (8b)

where ⊗ denotes the tensor product, then characterize the dispersion for a specific realization of the
velocity field. We expect v and K to be identical for almost all realizations of the velocity field: this
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FIG. 2. Same as Fig. 1 but with an average over 1000 realizations of the flow.

is the property of self-averaging which arises provided that the ensemble of velocity field is well
sampled in the long-time limit. When if holds, it is clear that v = 〈v〉 and K = 〈K〉.

The property of self-averaging has been explored, mostly for media that are random in space;
though delicate to establish rigorously, it appears to be generic in the absence of anomalous diffusion
(e.g., Ref. [14]). In Sec. IV we give an argument for flows that are random in time which indicates
that self-averaging holds generically not only for v and K but more generally for all the cumulants
of C divided by t . Numerical results demonstrate this to apply to the alternating sine model.

The ensemble-averaged concentration 〈C〉 is also approximately Gaussian, with corresponding
effective velocity and diffusivity defined as

v ≡ lim
t→∞

〈E[X (t )]〉
t

, (9a)

K ≡ lim
t→∞

〈E[X (t ) ⊗ X (t )]〉 − 〈E[X (t )]〉 ⊗ 〈E[X (t )]〉
2t

. (9b)

With the self-averaging property, we readily obtain that v = v and

K = K + lim
t→∞

〈E[X (t )]〉 ⊗ 〈E[X (t )]〉 − 〈E[X (t )] ⊗ E[X (t )]〉
2t

. (10)

It is not obvious whether K = K or not. The difference depends on the size of the fluctuations in
the position of the center of mass E[X (t )] between realizations of the flow (see Refs. [14,15] for a
discussion in the context of spatially random media). In the next subsections, we establish that the
equality holds for spatially periodic flows provided that the spatial average of u vanishes, and we
verify this conclusion for the alternating sine model. This equivalence between single-realization
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and ensemble-averaged diagnostics of dispersion does not generalized to high-order cumulants as
we discuss in Sec. IV.

A. Equivalence for spatially periodic random flows with vanishing mean

We restrict our attention to flows u that are random in time, with stationary statistics, zero mean,
and finite correlation time, and 2π -periodic in space with vanishing spatial average. We show that
flows in this class satisfy K = K, hence that the single-realization and ensemble-averaged scalar
fields C and 〈C〉 are equivalent in the diffusive approximation. We start by averaging (2) with respect
to both the Brownian motion and the velocity realization. This gives 〈E[X (t )]〉 = 0, since 〈u(·, t )〉 =
0, hence

v = v = 0 (11)

and

K = K − lim
t→∞

〈E[X (t )] ⊗ E[X (t )]〉
2t

(12)

using (10). We now show that ‖ 〈E[X (t )] ⊗ E[X (t )]〉 ‖ = o(t ).
In order to estimate E[X (t )], we introduce the expected displacement at time t of a particle

initially located at x,

χ(x, t ) = E[X (t )|X (0) = x] − x, (13)

such that E[X (t )] = χ(0, t ). The expectation in (13) satisfies the backward Kolmogorov equation
(e.g., Ref. [16], ch. 8)

∂t (χ + x) − (u · ∇)(χ + x) = κ�(χ + x), (14)

hence χ satisfies the corresponding forced equation

∂tχ − (u · ∇)χ = κ�χ + u, (15)

with the initial condition χ(x, 0) = 0. Since u and the initial condition χ(x, 0) are both spatially
periodic, the solution χ of Eq. (15) is spatially periodic. The cell-integrated variance

σ (t ) = 〈A [|χ|2(x, t )]〉, (16)

where A denotes spatial averaging over a periodic cell, is found from (15) to satisfy

dσ

dt
= −2κ 〈A [‖∇χ‖2]〉 +2〈A [u · χ]〉 (17)

using integration by parts and the incompressibility condition ∇ · u = 0 and where ‖ · ‖ denotes
the Frobenius norm. We bound the right-hand side of (17) in terms of σ . Averaging Eq. (15) and
using that A [u] = 0 gives A [χ] = 0. This enables us to use the Poincaré inequality for the term
A [‖∇χ‖2] and the Cauchy-Schwarz inequality for the term A [u · χ]. This yields the differential
inequality

dσ

dt
� −2κσ + 2U

√
σ , (18)

where the domain is taken as [0, 2π ]d so that the Poincaré constant is 1, and U = 〈A [|u|2]〉1/2 is
the root-mean-square velocity. Integrating in time, we obtain

σ (t ) � U 2

κ2
(1 − e−κt )2 � U 2

κ2
. (19)

The Laplacian operator in Eq. (15) ensures that the solution χ is smooth, so the bounded-
ness of σ guaranteed by (19) implies that 〈|χ|2(0, t )〉 is also bounded. Finally, observing that
‖ 〈E[X (t )] ⊗ E[X (t )]〉 ‖ = O(〈|χ|2(0, t )〉) = O(1) = o(t ) we conclude that K = K.
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We note that the upper bound U 2/κ2 found in (19) is far from optimal. We also note that the
argument above relies crucially on the assumption A [u] = 0. Without this premise, it is possible
that K �= K. As an example, consider the case of a spatially uniform 2D flow with constant
magnitude U whose direction changes randomly every unit time. Such a flow has a nonzero spatial
average but its ensemble average vanishes. Computing the two diffusivity tensors is straightforward
and gives K = κId and K = (κ + U/4)Id , where Id is the d × d identity matrix.

B. Application to the alternating sine model

In this subsection, we compare the diffusive approximation of Cn and 〈Cn〉 for the alternating sine
model introduced in Sec. II. We introduce the finite-time velocities

vn ≡ E[X n]

n
, vn ≡ 〈E[X n]〉

n
, (20)

and the finite-time diffusivity tensors

Kn ≡ E[X n ⊗ X n] − E[X n] ⊗ E[X n]

2n
, (21a)

Kn ≡ 〈E[X n ⊗ X n]〉 − 〈E[X n]〉 ⊗ 〈E[X n]〉
2n

, (21b)

which converge to v, v, K, and K in the large-n limit.
The discrete-time equivalent of (2) associated with the map (6) is the random walk for the

position X n = (Xn,Yn) of a single scalar particle,

X n+ 1
4

= X n + a sin (Yn + ϕn)ex, (22a)

X n+ 1
2

= X n+ 1
4
+ a sin

(
Xn+ 1

4
+ ψn

)
ey, (22b)

X n+1 = X n+ 1
2
+

√
2κW n, (22c)

where the W n are independent Gaussian variables with zero mean and unit variance. Starting from
X 0 = 0, the scalar field Cn satisfying (6), once suitably normalized, is the probability density
function

Cn(x) = E[δ(X n − x)], (23)

of the particle position, with E denoting the expectation with respect to the Gaussian variables
W n associated to the molecular diffusion. Taking X 0 = 0 corresponds to a Dirac initial condition
C0(x) = δ(x), which we employ in what follows.

For the alternating sine flow, each realization is defined by a sequence of phases (ϕn, ψn), so the
ensemble average is

〈Cn〉 = 1

(2π )2n

∫
· · ·

∫
(ϕ,ψ)∈[0,2π]n

dϕdψ Cn, (24)

where ϕ = (ϕ0, . . . , ϕn−1) and ψ = (ψ0, . . . , ψn−1). We note that〈
Cn+ 1

4
(x, y)

〉 = 〈Cn(x − a sin ϕn, y)〉, (25)

which is readily established by the substitution ϕn �→ ϕn − y in the integral (24) defining the
ensemble average. Similarly, 〈

Cn+ 1
2
(x, y)

〉 = 〈
Cn+ 1

4
(x, y − a sin ψn)

〉
. (26)

As a result, 〈Cn〉 can be obtained as the ensemble-averaged probability density function

〈Cn(x)〉 = 〈E[δ(X̃ n − x)]〉 (27)
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FIG. 3. Magnitude of the effective velocity vn and of the (relative) difference between the effective
diffusivity Kn and the ensemble average K = (κ + a2/4)I2 as functions of n for the alternating sine flow for
a = π and κ = 10−2. Here vn and Kn are defined in Eqs. (20) and (21a) and estimated by numerical sampling
of the random walk (22) using 104 realizations of the Brownian motion.

associated with the modified random walk

X̃ n+ 1
4

= X̃ n + a sin ϕnex, (28a)

X̃ n+ 1
2

= X̃ n+ 1
4
+ a sin ψney, (28b)

X̃ n+1 = X̃ n+ 1
2
+

√
2κW n. (28c)

This has the advantage over (22) that the position after n steps can be written explicitly as

X̃ n = a
n−1∑
k=0

(sin ϕkex + sin ψkey) +
√

2κnW , (29)

where W is a single Gaussian variable with zero mean and unit variance.
Replacing X n by X̃ n leaves the ensemble-averaged statistics unchanged, as Eq. (27) shows, while

making their computation straightforward. We can in particular compute vn and Kn by substituting
X̃ n for X n in (20) and (21) to obtain

vn = v = 0 and K n = K =
(

κ + a2

4

)
I2. (30)

An argument similar to that in Sec. III A but adapted the discrete-time setup can be used to show that
v = v and K = K so that Cn and 〈Cn〉 share the same diffusive approximation. We do not reproduce
this argument here. Instead, we confirm its conclusion numerically by sampling the random walk
(22) numerically, estimating vn and Kn, and verifying their convergence towards v and K in (30) as
shown in Fig. 3. This illustrates the equivalence between single-realization and ensemble-averaged
predictions in the diffusive approximation when only the first two cumulants matter. We next
investigate the behavior of higher-order cumulants by considering the large-deviation approximation
of the concentration.

IV. LARGE-DEVIATION APPROXIMATION

A. General formulation

The effective velocity v and effective diffusivity K characterize only the core of the scalar distri-
bution, occupying a O(

√
t ) range around the center of mass. At larger distances, the concentration
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field is generally not Gaussian; instead, it takes the large-deviation form

C(x, t ) � e−tg(x/t ), (31)

valid for |x − vt | = O(t ). Here g is the rate function (or Cramér function) and the symbol � denotes
the asymptotic equivalence of the logarithms of the expressions on both sides (this ignores a constant
multiple of t−d/2 which can be determined by mass conservation). The approximation (31) holds
for almost all realizations of the flow u for a broad class of flows. The Gaussian approximation is
recovered from (31) by Taylor expanding g around its minimum, ξ∗ say, to find

v = ξ∗ and K = 1
2 [∇∇g(ξ∗)]−1. (32)

Equation (31) goes beyond this and captures all the cumulants of the scalar function. Indeed, it
can be shown that the scaled (single-realization) cumulant generating function

f (q) ≡ lim
t→∞ t−1 logEeq·X (t ) (33)

is the Legendre transform of the rate function [6]:

f (q) = inf
ξ

[q · ξ − g(ξ)]. (34)

The Legendre duality implies that g is the Legendre transform of f . This provides a means
to evaluate g since f can be computed as the Lyapunov exponent of a random-in-time partial
differential equation. To see this, we note that the function

w(x, q, t ) ≡ E[eq·X (t )|X (0) = x] (35)

satisfies the backward Kolmogorov equation (e.g., Ref. [16], ch. 8)

∂tw = u · ∇w + κ∇2w. (36)

In view of the initial condition w(x, q, 0) = exp(q · x) and the spatial periodicity of u, the solution
of (36) can be sought in the form

w(x, q, t ) = exp (q · x)φ(x, q, t ), (37)

where φ(x, q, t ) has the same spatial periodicity as u. Introducing this into Eq. (36), φ is found to
satisfy

∂tφ = κ∇2φ + (u + 2κq) · ∇φ + (u · q + κ|q|2)φ. (38)

In the limit t → ∞, φ grows exponentially with t at a rate—the Lyapunov exponent of (38)—that
can be identified from Eqs. (33), (35), and (37) as f (q). From the theory of Lyapunov exponents in
finite [17] and infinite [18] dimensions, f (q) can be expected to be independent of the realization of
the flow under some assumptions of ergodicity. Thus we can obtain the rate function g governing the
large-deviation statistics of the scalar concentration in (almost all) single realizations of the velocity
field by solving (38) for φ with periodic boundary conditions and an arbitrary initial condition for a
range of values of q, identifying f (q) as the growth rate of φ, i.e., as

f (q) = lim
t→∞ t−1 log ‖φ‖ (39)

for some norm ‖ · ‖, then carrying out a numerical Legendre transform to deduce g. We note that the
independence of f (q) on flow realization implies that the scaled cumulant generating function and
hence all the cumulants of C themselves, when divided by t , are independent of the flow realization;
in other words, that they are self-averaging.

The large-deviation characterization of the concentration C(x, t ) in single realizations of the
velocity has a counterpart for the ensemble-averaged concentration 〈C(x, t )〉. Specifically, there is
an ensemble-average large-deviation rate function g such that

〈C(x, t )〉 � e−tg(x/t ). (40)
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Its Legendre dual is the ensemble-average cumulant generating function

f (q) ≡ lim
t→∞ t−1 log 〈E eq·X (t )〉. (41)

Note that its single-realization counterpart can be rewritten as

f (q) = lim
t→∞ t−1〈logE eq·X (t )〉, (42)

on ensemble averaging Eq. (33) since (33) applies to almost all realizations of u. Thus the difference
between the two generating functions stems from the lack of commutation between ensemble
average and logarithm. Note that the definitions (41)–(42), the concavity of the log and Jensen’s
inequality imply that f � f , which guarantees that

g � g (43)

using the order-reversing property of the Legendre transform. Thus, the ensemble-averaged scalar
field always overestimates the tail concentration in single realizations of the flow at large time.

A focus of this paper is the relationship between f and f and, correspondingly, between g and g
The equalities v = v and K = K established in the previous sections imply that Taylor expansions
at ξ = ξ∗ of g and ḡ are identical up to and including quadratic terms. The same is true for f
and f by virtue of the Legendre duality with g and g. The equalities do not, however, hold for
higher order terms: in general, g �= g and f �= f . Thus the single-realization and ensemble-averaged
concentration fields, which are identical in the diffusive approximation, differ, leading to differences
in the cumulants of order greater than 2. Physically, this means that the tails of the concentration in
single realizations, unlike the core, cannot be predicted on the basis of ensemble-averaged statistics.
We next demonstrate this explicitly for the alternating sine flow.

B. Application to the alternating sine model

For the alternating sine flow, we use the discrete version of the large-deviation rate functions g
and g, such that

Cn � e−ng(x/n) and 〈Cn〉 � e−ng(x/n) (44)

and

f (q) = lim
n→∞

1

n
〈logEeq·X n〉 and f (q) = lim

n→∞
1

n
log 〈Eeq·X n〉. (45)

The ensemble-averaged f can be computed explicitly, replacing the positions X n by X̃ n in Eq. (29),
exploiting their statistical equivalence (27). This gives

f (q) = 1

n
log

(
n−1∑
k=0

〈ea(qx sin ϕk+qy sin ψk )〉 + Ee
√

2κnq·W
)

(46a)

= log I0(aqx ) + log I0(aqy) + κ|q|2, (46b)

where q = (qx, qy), on using the integral definition of the modified Bessel function of the first kind
I0 [see Ref. [19], Eq. (10.32.1)]. Note that a Taylor expansion using that I0(aqx ) ∼ 1 − a2q2

x/4 as
qx → 0 and similarly for I0(aqy) recovers the diffusive approximation (30).

Obtaining the single-realization f is not as straightforward: this requires estimating numerically
the Lyapunov exponent of the discrete-in-time equivalent of (38), namely,

∂tφ =

⎧⎪⎨⎪⎩
4a sin (y + ϕn)(qx + ∂x )φ for t ∈ [n, n + 1/4)

4a sin (x + ψn)(qy + ∂y)φ for t ∈ [n + 1/4, n + 1/2)

2κ (∇2 + 2q · ∇ + |q|2)φ for t ∈ [n + 1/2, n + 1)

. (47)
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This can be integrated in time to obtain the three-step discrete map

φn+ 1
4
(x, y) = φn(x + a sin(y + ϕn), y)eqxa sin(y+ϕn ), (48a)

φn+ 1
2
(x, y) = φn+ 1

4
(x, y + a sin(x + ψn)) eqya sin(x+ψn ) (48b)

φn+1 = K̃ ∗ φn+ 1
2
, (48c)

where φn(x, y) = φ(x, y, n), K̃ (x) = (4πκ )−1eq·x−|x|2/(4κ ) and the asterisk denotes the convolution
product.

For a given q, we estimate f (q) by iterating (48) numerically for n up to 105, starting from
φ0(x, y) = 1. The function φn(x, y) is discretized on a 1282 uniform spatial grid. The first two
steps, (48a)–(48b), are performed in a semi-Lagrangian fashion, as a circular permutation of the
spatial grid indices; the third step, (48c), is performed spectrally, in Fourier space. The growth rate
f (q) is approximated as n−1 log ‖φn‖ for n large enough that the approximation has converged.
The convergence is rather slow, with n = 105 iterations required here. We carry out this numerical
estimation of f (q) for 1002 values of (qx, qy) linearly spaced in [0, 1]2, using symmetries to obtain
f (q) in [−1, 1]2.

We show the results for the rate functions g and g, obtained from f and f by numerical Legendre
transform, in Fig. 4. The two functions are markedly different away from the center ξ = ξ∗ = 0
where the diffusion approximation applies and around which they are approximately equal. The
function g grows substantially faster than g [cf. Eq. (43)]. Consequently, the ensemble-averaged 〈Cn〉
considerably overestimates the tail concentration in single realizations of the flow. The departure
from axisymmetry, present for both g and g, is the result of the flow geometry: fast dispersion
stems from particles experiencing maximum advection at each step, which can lead to the maximum
displacements (±a,±a) at each time step (ignoring diffusion). This indicates that for sufficiently
large ξ (and sufficiently small κ), the contours of g and g are approximately square as would
be the case for advective displacements randomly chosen from (±a,±a) at each iteration (e.g.,
Ref. [20]). This effect is much more marked for the ensemble-averaged concentration than for single
realizations.

The broad conclusion is that the ensemble-averaged concentration is a poor predictor of the
behavior of dispersing passive scalars when it comes to their low-concentration tails. While the
tail behavior might seem of marginal interest, it plays a crucial role in the presence of chemical
reactions, in particular by determining the dynamics of some reaction fronts. In this instance, the
differences between single-realization and ensemble-averaged dynamics can be dramatic as we
discuss next.

V. APPLICATION TO REACTIVE FRONT PROPAGATION

A. FKPP model

We now consider the dynamics of a reacting scalar governed by the classical FKPP model of
Fisher [21] and Kolmogorov et al. [22], which, in the presence of advection, reads

∂tC + u · ∇C = κ∇2C + γC(1 − C), (49)

where γ > 0 is the reaction rate and the concentration C has been normalized so that its saturation
value be 1. According to this model, in an infinite domain, an initially localized patch of scalar
spreads behind a reaction front.

For u = 0 and for t � 1, the front is circular in two dimensions (spherical in three) with a
radius growing at the constant speed s = 2

√
κγ . For a spatially periodic flow, the front can be

approximated by a self-similar convex curve (or surface) defined by

g
(x

t

)
= γ , (50)
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FIG. 4. Comparison of the single-realization and ensemble-average large-deviation rate functions g and g
for the alternating sine model with a = π and κ = 10−2. Left panels: contours of g (top) and g (bottom) (using
the same contour levels for both panels). Right panels: g and g along the x axis (top) and along a diagonal axis
(bottom). The diffusive approximation is also shown (dashed).

where g is the large-deviation rate function introduced in (31) for the passive scalar problem (1)
[i.e., γ = 0 in (49)] [8,9,23–25]. The remarkable connection between the large-deviation tail of a
passive scalar and the FKPP reaction front embodied by (50) can be understood heuristically as
follows. The front’s propagation is controlled by its leading edge, where C � 1 so that (49) can be
linearized about C = 0; the solution is then that of the passive-scalar problem (1), approximately
exp [−tg(x/t )], multiplied by the factor exp(γ t ) associated with the (linearized) reaction, hence

C(x, t ) � et (γ−g(x/t )). (51)

Equation (50) follows by observing that the front marks the transition between exponential growth
and exponential decay.

For the random-in-time flows considered in this paper, g is clearly the single-realization rate
function, so the shape of the front can be determined from (50) using that g is the Legendre transform
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FIG. 5. Evolution of the concentration for the reacting alternating sine model in Sec. V B with a = π , κ =
0.1 and γ = 2. The prediction of the front location according to (54), with the single-realization g estimated
as in Sec. IV B is shown as the solid blue line; its counterpart using the ensemble-averaged g is shown as the
dashed black line. The computation uses a 40962 discretization of a [−64π, 64π ]2 domain.

of the Lyapunov f exponent of the random partial differential equation (38). The ensemble-averaged
g, while easier to evaluate, is relevant only to the front problem in the limit of small reaction rate
γ � 1, when the diffusive approximation applies, g ≈ g, and the front is the ellipse (or ellipsoid)

(x − vt )TK−1(x − vt ) = 4γ t2 (52)

as follows from Taylor expanding (50).

B. Reacting alternating sine model

We illustrate how (50) predicts the shape of a reacting front by considering a reacting version of
the alternating sine model (6). This adds the reaction step

Cn+1 = Cn+ 3
4
/
(
Cn+ 3

4
+ (

1 − Cn+ 3
4

)
e−γ

)
, (53)

where Cn+ 3
4

= K ∗ Cn+ 1
2
, to the advective and diffusive steps in (6), corresponding to the time-1

map associated with the FKPP reaction ∂tC = γC(1 − C). The front location is determined by the
discrete-time equivalent of (50):

g
(x

n

)
= γ . (54)

Note that this equation makes it possible to interpret the contours of g in Fig. 4 as giving the shape
of fronts for different values of γ .

Figure 5 shows the concentration field obtained by direct numerical integration of the reacting
alternating sine model starting from a localized patch with a = π , κ = 0.1, and γ = 2. The result
is compared with the prediction (54) for the front location. The prediction which substitutes the
ensemble-averaged g (computed in Sec. IV B) is also shown. The figure confirms the validity of
(54) and illustrates the inadequacy of the prediction based on g.

VI. SUMMARY AND CONCLUSION

This paper investigates the large-time statistics of passive scalars dispersing under the combined
action of molecular diffusion and advection by single realizations of flows taken to be spatially
periodic and random-in-time. The focus is on the instantaneous release of a localized patch of scalar
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in an unbounded domain. After some time, the scalar patch extends over many flow periods and
has sampled many flow correlation times such that it is well represented using a coarse-grained
description, and the velocity v and diffusivity K are identical in almost all flow realizations (that
is, self-averaging applies). This happens for times large compared to both the correlation time of
the flow, and the typical time for dispersion across a periodic cell which depends on both molecular
diffusivity value and flow strength.

The single-realization statistics are compared to their ensemble-averaged counterparts which are
more easily accessible to analysis and prominently studied in the literature. Under the assumption
of a vanishing spatial average of the flow, we show that the Gaussian cores of the ensemble-
average and single-realization scalar distributions are identical. We introduce a large-deviation
description which captures the tails of the concentration, hence higher-order cumulants, and show
that these are in general overestimated by the ensemble-average prediction. In the single-realization
problem, we demonstrate that the large-deviation rate function can be obtained by computing the
largest Lyapunov exponent for the spatially periodic solution of a family of partial differential
equations with coefficients that are random-in-time. We illustrate these results by computing the
single-realization rate function for the widely used alternating sine flow and comparing it with its
ensemble-average counterpart, which is obtained analytically.

The tail behavior of the concentration of a dispersing passive scalar has a zeroth-order man-
ifestation in the presence of a chemical reaction of FKPP type. This is because the large-time
dynamics of the reaction front that is then formed is directly related to the large-deviation
rate function characterizing the dispersion. We consider this problem which further highlights
the importance of the distinction between ensemble-average and single-realization predictions for
the scalar-concentration tails of the scalar distributions. For the random alternating sine flow, we
successfully predict the location of the reaction front using the single-realization rate function
computed for the nonreacting scalar. The corresponding prediction based on the ensemble-average
rate function fails.

In conclusion, we emphasized the existence of a hierarchy of behaviors for scalars dispersing
in random flows: at the most basic level, the self-averaging of the cumulants scaled by t−1 (v,
K, and higher order) can be expected to hold for typical flows. Next, the equivalence between
single-realization and ensemble-average statistics in a diffusive approximation (that is, the equalities
v = v and K = K) is more delicate but applies to periodic flows with vanishing spatial average. We
expect it to also hold for spatially random flows with finite correlation length and vanishing spatial
average. Finally, the analogous equivalence for higher-order cumulants, which characterized the
large-deviation approximation, does not hold, even for such a well-behaved model as the alternating
sine flow. We also note that the ensemble average overestimates the value of the scaled cumulants
of order 3 and higher; in physical terms, it overestimates the concentration in the tails of the scalar
distribution.

We finally observe that the distinction between single-realization and ensemble-average pre-
dictions of scalar concentrations is an issue of broad interest, arising whenever stochastic models
are used to represent complex velocity fields. While ensemble-averaged statistics are usually
more amenable to analysis, single-realization statistics are often more meaningful for practical
applications such as risk assessment. In view of this broad interest, it would be desirable to extend
the analysis of the present paper to other classes of flows, and in particular to flows that are random
in space [26]. We also note that the problem posed here in unbounded domains has a counterpart in
bounded domains, in which case the focus will be on the differences between the rate of decay of
the scalar concentration in single realization and in ensemble averages [6].
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