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Settling inertial aerosols dispersed at high enough concentration modulate the structure
of the suspending turbulent flow. The present study addresses this modulation in a
canonical flow, which is homogeneously sheared turbulence (HST). Eulerian-Eulerian (EE)
and Eulerian-Lagrangian (EL) simulations are conducted in the semidilute regime, i.e.,
such that the particulate phase is sufficiently dilute to neglect particle-particle interaction
but sufficiently concentrated to be strongly coupled with the carrier flow. Four cases are
considered for which the Stokes number based on the Kolmogorov timescale is Stη = 0.06
or 0.19 and mass loading is M = 0.125 or 0.5. Turbulence is initialized with a Taylor
microscale Reynolds number Reλ,0 = 29 and is strongly sheared, resulting in a shear
number S∗

0 = 27. Simulations of the suspension with Stη = 0.06 and M = 0.125 show
no turbulence modification compared with single-phase HST. However, when the mass
loading is increased to M = 0.5 the aerosols cluster, despite their small inertia, and
measurably modify the carrier flow. These aerosols enhance turbulence in the carrier
phase, causing an increase of the growth rates of the turbulent kinetic energy (TKE) and
dissipation rate among other effects. The opposite behavior emerges when the Stokes
number is Stη = 0.19. These aerosols cause the attenuation of turbulence by reducing
the growth rates of the TKE and dissipation rate in HST. This attenuation is weaker
for the larger mass loading case M = 0.5 due to stronger forcing by the particles on
the gas in the gravity direction. Turbulence modulation in the EE simulation is verified
to hold excellent agreement with EL simulations. In the former approach, simulating a
few integral lengths of turbulence leads to a large number of Lagrangian particles, up to
1.7 × 109 particles in the present work. Eulerian-Eulerian simulations are performed with
a positivity-preserving kinetic-based formulation that assumes an anisotropic-Maxwellian
distribution of the subgrid particle velocity probability distribution function. The excellent
agreement with EL simulations shows that this EE simulation strategy is a robust and
predictive method in the semidilute regime.

DOI: 10.1103/PhysRevFluids.4.124308

I. INTRODUCTION

Many environmental and technological flows involve dispersed particles or droplets at concen-
trations large enough to modulate the carrier flow. In the two-way coupling regime, the structure
of particle-laden turbulence can differ significantly from its single-phase counterpart [1–7]. The
coupling between the two phases renders the derivation of particle-laden turbulence models a
challenging task [8]. Understanding how this modulation takes place in canonical flows will help
define and validate two-phase models.
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In the study of turbulence, homogeneously sheared turbulence (HST) is a fundamental flow and
a unit block in many turbulence models [9–11]. The flow, in which turbulence is driven by a mean
linear shear, is a step up in complexity from the classical homogeneously isotropic turbulence (HIT)
and one of the simplest flows that have a generation mechanism of turbulence. It was previously
demonstrated that this flow reproduces many of the features of turbulent boundary layers without
the added complexity of bounding walls, such as the presence of off-diagonal Reynolds stresses,
the generation of hairpin vortices [12–14], and the sweep and ejection mechanisms [15,16]. When
inertial aerosols are dispersed in HST, the mean shear may lead to much stronger clustering than
would be the case in homogeneous isotropic turbulence, resulting in stronger flow modulation [17].
This is due to the fact that shear is the precursor of the route to clustering [18], a cascade of
instabilities in the semidilute regime triggered by shear and one that results in significant clustering.
Hence, settling inertial aerosols are expected to cause significant anisotropic forcing on the carrier
flow that can lead to a different turbulence structure than in a single-phase flow.

Turbulence modulation by the dispersed phase is complex and remains to be fully understood.
In turbulent channel and pipe flows where additives are used to increase the flow throughput by
reducing skin-friction drag [19], inertial particles may either increase it [20], decrease it [21,22], or
have no significant effect [19,23]. The type of modulation obtained depends on the mass loading M
and Stokes number Stη = τp/τη, where τp is the particle response time and τη is the Kolmogorov
timescale. The studies of Tanaka and Teramoto [13] and Ferrante and Elghobashi [24] show that
particles with Stη > 1 reduce the turbulence intensity by reducing the growth rate of the turbulent
kinetic energy (TKE) in HST and increasing its decay rate in HIT. However, very small particles
having Stη < 0.1 and massive particles larger than the integral length scale may increase the TKE
[24,25]. In the present work, both regimes of turbulence enhancement and attenuation are obtained
within the range Stη = 0.06–0.19 and M = 0.125–0.5 in high-shear-number HST.

Part of the challenges in addressing turbulence modulation by inertial particles is the limitation
of numerical tools. Current simulation approaches include Eulerian-Lagrangian (EL) and Eulerian-
Eulerian (EE) methods. In the former approach, individual particles are tracked and their effect on
the gas is accounted for individually. In the semidilute regime, characterized by a volume fraction
〈φ〉 in the range 10−5–10−3 and an order-one mass loading M, the relatively high particle volume
fraction is such that simulating a few integral lengths of a turbulent flow may result in an excessively
large number of particles. For this reason, the EL method has been primarily used in particle-laden
turbulent flows where the particle concentration is very dilute and the particle feedback on the
carrier flow is negligible, i.e., in the one-way coupling regime [26]. Eulerian-Eulerian simulations
have the potential to scale better and cost less computationally than EL simulations, but it remains
to be shown that they yield correct physics in the semidilute regime, where the multivaluedness of
the particle velocity field [27] invalidates classical approaches such as two-fluid methods [18,28].
Recently, a new approach based on kinetic theory was developed [18,29,30] to extend Eulerian
methods to the semidilute regime. The method relies on the assumption that the local particle
velocity distribution follows an anisotropic-Maxwellian function [31,32]. Kasbaoui et al. [18]
showed that this approach reproduces all key features of the route to clustering, including the
multivaluedness of the particle velocity field. In the present paper, this EE strategy is employed
to simulate particle-laden HST and compared with EL simulations.

The present study has two scopes. The first one is to characterize the effect of semidilute
inertial aerosols on the carrier gas in strongly sheared HST, with an initial Taylor microscale
Reynolds number Reλ,0 = 29 and high shear number S∗ = 27. The second scope of this study is the
verification of a kinetic-based Eulerian-Eulerian simulation strategy against Eulerian-Lagrangian
strategy.

The paper is organized as follows. Governing equations and numerical strategies are presented
in Secs. II and III, respectively. The simulation setup and parameters are introduced in Sec. IV. To
help understand the role of particles in the modification of the carrier turbulence, a discussion of
single-phase flow HST is presented in Sec. V. Simulations of HST with particles are then analyzed,
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with results pertaining to the gas phase presented in Sec. VI and those pertaining to the dispersed
phase presented in Sec. VII. A summary is given in Sec. VIII.

II. GOVERNING EQUATIONS

Consider an incompressible Newtonian gas of density ρg and viscosity μg loaded with monodis-
perse solid particles (or liquid droplets) of density ρp and diameter dp at the average volume fraction
〈φ〉. In the semidilute regime, the carrier gas satisfies the Navier-Stokes equations

∇ · ug = 0, (1)

ρg
∂ug

∂t
+ ρgug · ∇ug = −∇p + μg∇2ug + ρgg + F, (2)

where ug is the gas velocity, p is the pressure, g is the gravitational acceleration, and F represents
the momentum exchange between the two phases.

For a discrete particle i, the equations of motion given by Maxey and Riley [33] read

dxi
p

dt
= ui

p, (3)

dui
p

dt
= ug

(
xi

p, t
) − ui

p

τp
+ g, (4)

where xi
p and ui

p are the Lagrangian position and velocity of the particle and τp = ρpd2
p/18μg

is the particle response time. Equations (3) and (4) state that the suspended particles experience
a hydrodynamic force equal to the Stokes drag and the gravitational force. Other hydrodynamic
forces are neglected due to the large density ratio between solid (or liquid) particles and gas.
Particle-particle interactions such as collisions, aggregation, and coalescence are also negligible
in the regime considered.

The hydrodynamic forces applied on a particle lead to the interphase exchange term

F = ρpφ
up − ug

τp
, (5)

where up is the Eulerian particle velocity field and φ the local volume fraction. In the Eulerian-
Lagrangian formalism, these quantities are determined a posteriori from the positions and velocities
of individual particles tracked using the equations of motion (3) and (4).

In the Eulerian-Eulerian formalism considered here, the dispersed phase is described with a set
of conservation equations derived from kinetic theory of gases [34–40]. Within this formalism, the
particle velocity distribution f is subject to a Boltzmann equation in phase space

∂n f

∂t
+ ∇x · (cn f ) + ∇c ·

[(
ug − c

τp
+ g

)
n f

]
= 0, (6)

where n represents the particle number density. Computationally, it is often more advantageous to
consider transport equations for moments of f [41]. The first three moments yield conservation
equations for the dispersed phase mass, momentum, and energy

∂ρpn

∂t
+ ∇ · (ρpnup) = 0, (7)

∂ (ρpnup)

∂t
+ ∇ · (E) = ρpng + ρpnug − (ρpnup)

τp
, (8)

∂E
∂t

+ ∇ · (Q) = g(ρpnup) + (ρpnup)g + (ρpnup)ug + ug(ρpnup) − 2E
τp

, (9)
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FIG. 1. Illustration of the subgrid particle velocities with the anisotropic-Maxwellian distribution as
closure. Arrows represent the particle fluctuating velocity c − up, where c is the particle velocity and up is
the cell averaged velocity. (a) In general, the anisotropic-Maxwellian distribution allows particle-trajectory
crossing (Pp �= 0). (b) In regions of the flow where the particle pressure Pp vanishes, the velocity fluctuations
vanish (Pp → 0) and the anisotropic-Maxwellian collapses onto the monokinetic distribution. (c) In regions
where Pp becomes isotropic, the anisotropic-Maxwellian collapses onto a Maxwellian distribution (Pp →
�δi j).

where ρpup = ∫
ρpn f dc, E = ∫

ρpncc f dc, and Q = ∫
ρpnccc f dc represent the average (local)

particle momentum, energy tensor (second order), and heat flux tensor (third order). In this
formulation, the coupling term (5) can be readily built from the Eulerian velocity up obtained by
solving the particle momentum equation (8) and the local particle volume fraction determined from
the local number density solution to Eq. (7).

The conservation equations for the moments of f require closure of the heat-flux term. This can
be done by modeling the distribution itself. An appropriate model for semidilute suspensions is
given by the anisotropic-Maxwellian (or anisotropic Gaussian) distribution

f (c) = 1

[2π det(Pp)]2/3
exp

(
−1

2
(c − up) · P−1

p (c − up)

)
, (10)

where Pp = (E/ρp − upup)/n represents the particle pressure tensor. Note that the anisotropic-
Maxwellian distribution is a versatile one. When the particle pressure tensor becomes isotropic
Pp = �δi j , � being the particle granular temperature, the distribution f in Eq. (10) collapses
onto the Maxwellian distribution f → (2π�)−3/2 exp[−(c − up)2/2�], which holds for dense
particle-laden flows [37]. When the particle pressure tensors vanishes Pp = 0, the distribution (10)
collapses onto a monokinetic distribution f → δ(c − up). This is true for very dilute suspensions
[18] and the set of conservation equations for the first three moments become the two-fluid model
[3]. These behaviors are illustrated in Fig. 1. The anisotropic-Maxwellian distribution has the
property of maximizing entropy given the first three moments [31,32]. Based on recent progress
[18,29–32,42], there is growing evidence that closure with the anisotropic-Maxwellian distribution
may be an appropriate model of the particle velocity distribution across the full range of dilute to
dense suspensions.

It should be noted that other closures have been formulated. Koch [34] closed the equations with
a Grad moment expansion about the Maxwellian distribution. Various models based on a quadrature
method of moments have been proposed [27,28,41,43–46]. Other closures were based on algebraic
relationships between the low-order moments, which are similar in principle to Reynolds-averaged
Navier-Stokes modeling but may yield unphysical moments [47,48].

In the present work, turbulence is driven by a mean homogeneous shear flow such that the total
velocity is uq = �x2e1 + u′

q, where � is the shear rate, u′
q is the fluctuating velocity, and q = p or g
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FIG. 2. Sketch of the geometrical configuration. A background base shear �x2e1 drives a turbulent gas
loaded with particles. Gravitational acceleration aligned with the shear direction, i.e., g = −ge2, causes the
particles to settle.

represents either the particulate or gas phase. A sketch of the configuration is shown in Fig. 2. Note
that gravity is parallel to the shear direction x2 and causes particles to settle. Introducing the velocity
decomposition into base shear and fluctuations in the governing equations leads to the emergence
of shear distortion terms [�x2∂ (·)/∂x1] and bulk shear forcing terms (remaining terms proportional
to �) [18,49]. For the gas phase, the Navier-Stokes equations expressed for the fluctuations read

∇ · u′
g = 0, (11)

ρg

∂u′
g

∂t
+ ρgu′

g · ∇u′
g = −∇p + μg∇2u′

g + ρgg + F − �x2
∂u′

g

∂x1
− �u′

g,2e1. (12)

Similarly, the shear decomposition is introduced in the dispersed phase Eulerian equations

∂ρpn

∂t
+ ∇ · (ρpnu′

p) = 0 = −�x2
∂ρpn

∂x1
, (13)

∂ (ρpnu′
p)

∂t
+ ∇ · E′ = ρpng + ρpnu′

g − ρpnu′
p

τp
− �x2

∂ρpnu′
p

∂x1
− �ρpnu′

p,2e1, (14)

∂E′

∂t
+ ∇ · Q = g(ρpnu′

p) + (ρpnu′
p)g

(ρpnu′
p)u′

g + u′
g(ρpnu′

p) − 2E′

τp

−�x2
∂E′

∂x1
− �(E′ · e2)e1 − �(E′ · e1)e2. (15)

In the remaining of this paper, the superscript denoting deviation from the base shear will be
dropped.

To maintain a true unbounded homogeneous shear, shear-periodic boundary conditions are used
in the shear direction x2 [49] and regular periodicity is used in the streamwise and spanwise
directions x1 and x3, respectively. For a simulation box that extends from x2 = 0 to L2 in the shear
direction, shear periodicity applied to an Eulerian quantity q requires

q(x1, x2 = L2, x3) = q(x1 − �tL2, x2 = 0, x3). (16)

The Lagrangian equivalent is the well-known Lees-Edwards conditions and applies to Lagrangian
particles.
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TABLE I. Simulation parameters for the four cases of particle-laden HST considered.

Parameter d50L d50H d90L d90H

dp (μm) 50 50 90 90
ρp (kg/m3) 1200 1200 1200 1200
ρ f (kg/m3) 1.2 1.2 1.2 1.2
μ f (kg/ms) 1.8 × 10−5 1.8 × 10−5 1.8 × 10−5 1.8 × 10−5

〈φ〉 1.25 × 10−4 5.0 × 10−4 1.25 × 10−4 5.0 × 10−4

M 0.125 0.5 0.125 0.5
Stη 0.06 0.06 0.19 0.19
St� 0.09 0.09 0.21 0.21
τpg/uη 9.4 9.4 30.4 30.4
Reλ,0 29 29 29 29
S∗

0 27 27 27 27
L1/�

−1τpg 68.0 68.0 41.6 41.6
L2/�

−1τpg 34.0 34.0 20.8 20.8
L3/�

−1τpg 34.0 34.0 20.8 20.8
n1 512 512 512 512
n2 256 256 256 256
n3 256 256 256 256
N 0.327 × 109 1.308 × 109 0.438 × 109 1.752 × 109

III. NUMERICAL METHODS

The simulations are performed with the finite-volume flow solver NGA [50]. The Navier-Stokes
equations are discretized with fully conservative second-order schemes on a staggered mesh. The
shear forcing terms and shear-periodic boundary conditions are implemented in physical space with
a stable mass-, momentum-, and energy-conserving algorithm. Further details of the implementation
can be found in Ref. [49].

In Eulerian-Lagrangian simulations, the particle solver follows the method described by Capece-
latro and Desjardins [51]. The Lagrangian equations for particle position and velocity are advanced
using a second-order Runge-Kutta scheme. The method of Ireland and Desjardins [52] is used to
find the unperturbed gas velocity at the particle location. The particle volume fraction is computed
from Lagrangian data using a Gaussian filter of width equal to the mesh spacing. Particles that
exit the domain in the x2 direction are reintroduced at a shifted position on the opposite side in
accordance with the Lees-Edwards boundary conditions.

In Eulerian-Eulerian simulations, Eqs. (13)–(15) are discretized on a collocated mesh with
second-order spatial schemes. Time advancement is performed with a third-order strong-stability-
preserving Runge-Kutta scheme. The particle-conservation equations are closed by assuming that
the particle velocity distribution is an anisotropic-Maxwellian one [31,32,42,53]. The latter is
built with a quadrature method [29,31] using information from the first three moments (number
density, mean velocity, and energy tensor). It is then used to close the heat flux term. Overall, the
schemes have the realizability property, which ensures the stability of the solver when clustering is
significant. This approach captures particle-trajectory crossing effects [18]. The distortion by mean
shear is treated in the same manner as in Ref. [49].

IV. RUNS

A series of simulations that explore the role of particle size and mass loading in the modulation
of sheared turbulence in the semidilute regime were conducted, and a discussion of the results
will now be presented. A summary of the simulation parameters is given in Table I. The carrier
gas is air at standard temperature and pressure conditions. The particles considered in this work
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FIG. 3. Evolution of (a) the product of the largest wave number resolved by the grid and the Kolmogorov
scale and (b) the normalized integral length scale during the integration time �t � 4.

have a density ρp = 1200 kg m−3 and a diameter dp = 50 or 90 μm. The average volume fraction
〈φ〉 is varied from 1.25 × 10−4 to 5 × 10−4, which results in a number of Lagrangian particles
N between 327 × 106 and 1.7 × 109. The turbulent Stokes number varies between Stη = τp/τη =
0.06–0.19, where τη is the Kolmogorov timescale at the beginning of the simulation. The shear
Stokes number St� = �τp varies from 0.09 to 0.021 and is such that the inertial response of particles
to shear is as large as their response to turbulent fluctuations (St� ∼ Stη). The mass loading varies
from M = 0.125 to 0.5. At these values, the two-way coupling is significant, although it may be
weak for M = 0.125. All simulations were performed with the EL and EE approaches. Turbulence
modulation is assessed by comparison with additional simulations of HST without particles, i.e.,
single-phase flow turbulence.

In all cases considered, the initial turbulence in the carrier gas is unchanged. The initial Taylor
microscale Reynolds number is Reλ,0 = 29. The flow is sheared at the constant rate � = 7 s−1,
yielding a shear number S∗

0 = 2�k0/ε0 = 27, where k0 and ε0 are the turbulent kinetic energy and
dissipation rate at t = 0, respectively. Note that at such high shear number, the early evolution of
turbulence will be strongly impacted by the shear distortion. The evolution of the sheared particle-
laden flow is considered until a total deformation �t = 4.

The resolution selected for the present simulations is driven by the need to strike a compromise
between (a) resolving the smallest scales of the flow, (b) having coarse enough cells to encompass a
sufficient number of Lagrangian particles for proper statistical sampling, (c) having a large enough
computational box that allows the unconstrained elongation of vortical structures and particle
clusters, and (d) having a small enough computational box such that the number of Lagrangian
particles remains trackable. A good compromise can be achieved with a uniform grid of size
512 × 256 × 256 and the box sizes listed in Table I. In all cases selected, the grid resolution ensures
that the smallest features of the flow are captured as shown by kmaxη � 1 in Fig. 3(a), where kmax

is the largest wave number supported by the grid. With the given computational box dimensions,
the large scales of the flow are also resolved as evidenced by the small ratio of the integral
length scale l ≡ 〈u2

1〉3/2/ε [54] to the longitudinal dimension L1 shown in Fig. 3(b). Additionally,
by maintaining L2/Lg > 20, where Lg ≡ �−1τpg is the characteristic particle settling distance in
homogeneous shear [55], one ensures enough space in the computational domain to allow the
elongation of particle clusters by gravity. In Eulerian-Lagrangian simulations, the resolution thus
selected yields an average number of particles per cell between 9.7 for case d50L and 52.2 for case
d90H. Although among the largest to date, the total count of Lagrangian particles remains trackable.
Further information on the grid convergence properties of the particle-phase solvers is provided in
Ref. [30].
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FIG. 4. Snapshots of isocontours of vorticity magnitude in the x1-x2 plane at �t = 4 from a single-phase
flow simulation of homogeneously sheared turbulence.

V. SINGLE-PHASE HST

The reference flow of this study is single-phase HST. In this section, the evolution of turbulence
will be discussed qualitatively. Thorough quantitative analyses have been discussed in previous
studies [49].

Figure 4 shows isocontours of vorticity magnitude from �t = 0 to �t = 4. Initially, the flow is
isotropic and periodic in all directions. As time progresses, a strongly anisotropic flow develops
characterized by long vortical structures oriented in the streamwise direction. The imposed linear
shear stretches vortical tubes and sheets and causes them to become nearly parallel to the x1

direction. The linear shear also causes the compression of vortex sheets in the shear direction x2. It
is noteworthy that the vorticity magnitude increases over time in Fig. 4. This is due to the energy
injection by mean shear, which causes the turbulent kinetic energy and dissipation rate to grow at
an exponential rate for large-shear-number flows [49,56,57].

The early-stage evolution of the flow (up until �t ∼ 1) can be described by rapid distortion
theory [49,58–61]. During this phase, the shear distortion terms vastly exceed the nonlinear inertial
terms. As such, the flow is amenable to analytical treatment and it can be shown that the turbulence
evolution is solely controlled by the shearing motion.

Rapid distortion ends when the compression of vortical sheets becomes so large that the nonlinear
inertial terms become significant. At large times (�t > 20), a balance is established between the
nonlinearities and distortion leading to a universal self-similar state [49,54,62–65]. In the case of
particle-laden HST, it may be expected that the dispersed phase will break the self-similar behavior
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FIG. 5. Isocontours of vorticity magnitude in the x1-x2 plane at �t = 4 from EL and EE simulations in
Table I.

as it introduces new timescales and length scales [17]. In the present work, we stop the simulations
at �t = 4, after the rapid distortion ends and well before the establishment of a self-similar regime.

VI. TURBULENCE MODULATION

The addition of settling particles to the gas leads to an evolution of particle-laden HST that
may be different from the evolution in the single-phase flow case. The coupling between the two
phases can change the structure of turbulence in the carrier gas. The degree to which turbulence
is modulated depends on the Stokes number Stη and mass loading M. The effects of these two
quantities are investigated in the following. For the four two-phase flow cases considered, snapshots
of the vorticity magnitude at �t = 4 are shown in Fig. 5. Images from the Eulerian-Lagrangian and
Eulerian-Eulerian simulations are shown side by side to facilitate visual comparison. Comparing
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with the single-phase flow in Fig. 4, it is clear that the presence of particles leads to a varying degree
of modification of the vortical structures. Qualitatively, case d50L (Stη = 0.06 and M = 0.125)
displays the most similarity with the single-phase flow case, while case d90H (Stη = 0.19 and M =
0.125) displays the largest modulation of the turbulence structure. The nature of the turbulence
modulation depends on the mass loading and Stokes number. These will be discussed in further
detail in Secs. VI A–VI D.

Before going further, it is worthwhile to address a point regarding results obtained with Eulerian-
Eulerian and Eulerian-Lagrangian methods. It was found that the two simulation methods predict
a similar amount of turbulence modulation by the dispersed phase. This may be seen from the
isocontours of vorticity magnitude that appear substantially similar regardless of the method used.
The analysis of turbulence modulation by the particle phase lends itself to the same conclusions
about the physics of the flow regardless of the particle-phase framework considered. Hence, when
discussing statistics of the carrier phase in Secs. VI A–VI D, no distinction will be made between
Eulerian-Eulerian or Eulerian-Lagrangian simulations. The quantitative differences from the two
methods will be addressed in Sec. VI E.

A. Small Stokes number and small mass loading

Consider the case of dp = 50 μm particles dispersed in air at 〈φ〉 = 1.25 × 10−4 (run d50L in
Table I). In this flow, the mass loading is M = 0.125 and the Stokes number is Stη = 0.06.

Here the dispersed phase has no significant effect on the carrier turbulence. The isocontours of
vorticity magnitude in Fig. 5 show little difference with the particle-free case in Fig. 4. Turbulence
statistics shown in Fig. 6 depict an evolution of particle-laden HST that closely follows the evolution
of single-phase HST. The growth rates of the dissipation rate ε and TKE k remain unchanged
[see Figs. 6(a) and 6(b)], suggesting that the two-way coupling effects are negligible and that the
turbulence evolution is controlled primarily by the linear shear. This is further confirmed by the
shear production term P = −�〈u1u2〉 in Fig. 6(c), which evolves similarly to single-phase HST.

The stretching of vortical structures in the streamwise direction can be quantified using the
streamwise Taylor microscale λ11. Aerosols in the case d50L do not lead to any more or less
stretching of the vortical structures in the x1 direction, as evidenced by the nearly identical evolution
of λ11 [see Fig. 6(d)] in the one-phase and two-phase cases. Additionally, none of the diagonal
components of the anisotropic Reynolds stresses bi j = 〈uiu j〉/〈uiui〉 − δi j/3 shown in Fig. 7(a) are
altered by the inertial aerosols.

The absence of turbulence modulation in this case is expected due to the small values of Stokes
number and mass loading (Stη = 0.06 and M = 0.125). Due to their small inertia, the particles
tend to mostly follow the gas path lines. It should be noted that, despite the small value of Stη,
these particles should not be considered as tracer particles since the presence of a persistent mean
shear motion may still lead to non-negligible preferential concentration effects. In this case, the
mass loading M = 0.125 is too small for any significant interphase coupling effects to manifest by
�t = 4.

B. Small Stokes number and moderate mass loading

In the case d50H, the dispersed phase is characterized by the pair of nondimensional numbers
(Stη = 0.06 and M = 0.5). The higher mass loading is achieved by an increase of the volume
fraction to 〈φ〉 = 5 × 10−4, thus leaving the Stokes number identical to the previous case.

With higher mass loading (M = 0.5), turbulence modulation becomes significant. Figure 5 shows
a modification of the flow structures, wherein the gas flow vorticity attains a higher magnitude at
�t = 4 compared with the single-phase flow case in Fig. 4. The strengthening of vorticity indicates
an enhancement of turbulence in this case. There is also evidence of a modulation of the flow
anisotropy since the vortical structures appear less elongated in the presence of particles.
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FIG. 6. Turbulence statistics from EL (open symbols), EE (closed symbols), and single-phase HST (lines)
simulations for the two cases with Stη = 0.06 particles: (a) normalized dissipation rate, (b) normalized
turbulent kinetic energy, (c) ratio of shear production to dissipation rates, and (d) normalized streamwise Taylor
microscale. Symbols and refer to case d50L having a mass loading M = 0.125. Symbols and refer
to case d90H having a mass loading M = 0.5.

The dispersed phases enhances turbulence in this case. The TKE k and dissipation rate ε shown in
Figs. 6(b) and 6(a) grow at a faster rate compared with single-phase HST and case d50L (Stη = 0.06
and M = 0.125). The increase of k is due to the forcing that settling particles exert on the flow [55].
As Elghobashi and Truesdell [4] explain, particles force the flow on a scale comparable to the
viscous dissipation scale, thus causing an increase of dissipation rate. Kasbaoui et al. [55] show
from linear stability analysis that the interplay between shear and preferential concentration leads
to a forcing of the flow that occurs primarily on a scale

√
ν/� = η

√
Stη/St� ∼ η. Fluctuations at

the Kolmogorov scale increase the dissipation rate, thus reducing the ratio of shear production P to
ε in Fig. 6(c).

The coupling with the dispersed phase changes the structure of anisotropy in the flow. The extent
of turbulent structures in the streamwise direction is reduced, as can be seen from the snapshots in
Fig. 5 and from the decrease of λ11 [see Fig. 6(d)]. This can also be seen from the diminishing
anisotropic Reynolds stress component b11 in Fig. 7(b). Conversely, the flow anisotropy in the
direction of gravity (which is also the shear direction), measured by b22, is increased, a result of
the strengthening effects of particle settling on the carrier gas due to the larger mass loading. There
is also an extension of turbulent structures in the spanwise direction characterized by an increase in
b33. These results show that there is a competition between the anisotropy induced by the shear and
the one induced by particle settling.
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FIG. 7. Diagonal components of the anisotropic Reynolds stress tensor from EL (open symbols), EE
(closed symbols), and single-phase HST (lines) simulations for the two cases with Stη = 0.06 particles:
(a) M = 0.125 and (b) M = 0.5.

C. Moderate Stokes number and small mass loading

In the case d90L, the Stokes number is increased to Stη = 0.19 by increasing the particle diameter
to dp = 90 μm. The particle volume fraction is 〈φ〉 = 1.25 × 10−4, resulting in a mass loading
M = 0.125.

Here the dispersed phase causes an attenuation of turbulence. Evidence of lower turbulence
intensity can be immediately seen from the drop of vorticity magnitude in Fig. 5. Note that this
modulation is a consequence of the increase of particle inertia, since there was no turbulence
modulation for the case d50L with the same mass loading M = 0.125 and lower Stokes number
Stη = 0.06. Quantitatively, the turbulence attenuation is a result of the reduced growth rates of
TKE and ε shown in Figs. 8(b) and 8(a). In single-phase HST, the TKE growth rate is exclusively
controlled by the ratio of shear production to dissipation rate. However, here P/ε increases despite
a slowing k [see Fig. 8(c)]. This trend suggests a strengthening of the energy transfer between the
two phases and weakening of energy injection by mean shear.

Increasing the Stokes number to Stη = 0.19 leads to a different effect on the flow anisotropy.
In this case, the vortical structures are further elongated in the x1 direction, resulting in a larger
λ11, seen in Fig. 8(d). Compared with single-phase HST, the anisotropic Reynolds stress component
b22 remains unaffected by the dispersed phase [see Fig. 9(a)]. However, there is an increase in
the component b11 and a decrease in b33. Hence, the effect of turbulence attenuation is larger in
the spanwise direction x3. Overall, the dispersed phase aids shear in concentrating the carrier flow
energy in the streamwise direction.

D. Moderate Stokes number and moderate mass loading

For this final case d90H, the Stokes number is Stη = 0.19, while the mass loading is increased
to M = 0.5. Similarly to the previous cases, the increase of mass loading is achieved through an
increase of the average volume fraction, thus maintaining the same Stokes number as in d90L (Stη =
0.06 and M = 0.125).

The turbulence modulation in this case is qualitatively similar to the case d90L with lower mass
loading. Compared with single-phase HST, there is an attenuation of turbulence characterized by a
drop in vorticity magnitude (see Fig. 5) and a reduction in the growth rates of the turbulent kinetic
energy and dissipation rate [see Figs. 8(b) and 8(a)]. However, the larger mass loading leads to less
turbulence attenuation than in the case d90L. The quantities ε and k grow faster at M = 0.5 than
at M = 0.125, due to the strengthening of the energy transfer mechanism from the particulate to
gas phase. Note that there is a strong reduction of b33 accompanied by a significant increase of
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FIG. 8. Turbulence statistics from EL (open symbols), EE (closed symbols), and single-phase HST (lines)
simulations for the two cases with Stη = 0.19 particles: (a) normalized dissipation ratio, (b) normalized
turbulent kinetic energy, (c) ratio of shear production to dissipation rates, and (d) normalized streamwise Taylor

microscale. Symbols and refer to case d90L having a mass loading M = 0.125. Symbols and refer
to case d90H having a mass loading M = 0.5.

b22. This may be due to the formation of particle clusters (see Fig. 10) that exert a stronger forcing
on the gas as they settle in the gravitational direction x2. These clusters damp fluctuations in the
spanwise direction where there is no gravity or shear to aid the gas in displacing these heavier
particle structures.

E. Differences in the carrier phase statistics between Eulerian-Eulerian
and Eulerian-Lagrangian simulations

The statistics of the carrier gas discussed so far show similar turbulence modulation and trends
in both Eulerian-Eulerian and Eulerian-Lagrangian methods. Quantitatively, the agreement holds
very well for quantities based on the Reynolds stresses 〈uiu j〉, such as TKE, shear production, and
anisotropic stresses bi j (see Figs. 8 and 6). Growth of these terms matches well between Eulerian-
Eulerian and Eulerian-Lagrangian simulations, since the gas Reynolds-stress tensor components are
primarily produced at the integral scale [8] where the two methods perform similarly.

The largest deviation between the two simulation approaches is seen for the dissipation rate.
Simulations with the Eulerian-Lagrangian method generally display larger ε. As noted by Ahmed
and Elghobashi [7], Lagrangian particles create small local velocity gradients that increase the
local strain rate, which in turn leads to an increase of the dissipation rate. Various investigators
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FIG. 9. Diagonal components of the anisotropic Reynolds stress tensor from EL (open symbols), EE
(closed symbols), and single-phase HST (lines) simulations for the two cases with Stη = 0.19 particles:
(a) M = 0.125 and (b) M = 0.5.

[7,66–68] showed that small-Stokes-number Lagrangian particles induce fluctuations at or below the
Kolmogorov length scale. Due to resolution limits, fluctuations at these scales cannot be produced
in Eulerian-Eulerian simulations, which may explain the lower dissipation rate. However, one
needs to acknowledge that the dissipation rate in Eulerian-Lagrangian simulations is subject to
uncertainty. As explained by Xu and Subramaniam [69], the accurate approximation of particle
drag in Eulerian-Lagrangian methods does not guarantee an accurate gas-phase dissipation rate in
the presence of particles. The fact that the two simulation approaches lead to similar trends for
the dissipation rate with limited quantitative difference, in all four cases presented, is a satisfactory
result.

VII. PARTICLE PHASE

In the semidilute regime, the inhomogeneous particle distribution impacts significantly the
forcing exerted on the gas momentum. As it may be seen from the interphase coupling term [Eq. (5)],
regions with higher local particle volume fraction φ create stronger forcing on the gas compared
with regions with lower φ. This is in addition to the fact that regions where particles accumulate, i.e.,
particle clusters, usually have larger slip velocity [6,70,71]. It follows that the turbulence modulation
depends strongly on the way inertial aerosols are distributed and cluster in the domain.

Snapshots of the local volume fraction are shown in Fig. 10. By the time �t = 4, the degree
of clustering varies sharply between the four cases considered. Case d50L (Stη = 0.06 and M =
0.125) displays only a mildly inhomogeneous particle distribution, likely due to the small Stokes
number and weak coupling between the two phases. Despite the similarly low Stokes number in
case d50H (Stη = 0.06 and M = 0.5), the larger mass loading causes a strengthening of preferential
concentration effects. In this case, particle clusters adjacent to nearly depleted regions can be seen
in the Eulerian-Lagrangian simulations and to a lower degree in the Eulerian-Eulerian simulations.
These structures are elongated in the streamwise direction, similarly to the way vortical structures
are stretched. The regions of highest concentration have a volume fraction that is over twice the
average. Previous studies performed in homogeneous isotropic turbulence concluded that particles
with very low Stokes number display weak clustering [6,68,72]. Here it is clear that persistent shear
amplifies clustering significantly. In cases d90L (Stη = 0.19 and M = 0.125) and d90H (Stη = 0.19
and M = 0.5) the particles are also found to be distributed inhomogeneously. Weak clustering is
found for the case with lower mass loading, although the structures appear longer than in the case
d50L. The longest clusters are found in case d90H, where these structures are tilted towards the
streamwise direction.
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FIG. 10. Isocontours of volume fraction in the x1-x2 plane at �t = 4 from EL and EE simulations in Table I.

Figures 11(a) and 11(b) show the evolution of volume fraction fluctuations for the four particle-
laden HST simulations. The growth of volume fraction fluctuations reflects the development of in-
homogeneities in the particle distribution. Qualitatively, Eulerian-Eulerian and Eulerian-Lagrangian
simulations predict similar evolutions, with a quantitative agreement that extends until �t ∼ 2 for
the cases with Stη = 0.06 and �t ∼ 1 for the cases with Stη = 0.19. As the simulations approach
�t = 4, one can see a large departure between the volume fractions fluctuations predicted by the
two simulation strategies.

It is clear that the differences in the rms of particle volume fraction fluctuation between EE and
EL simulations do not translate into different turbulence modulation. The anisotropic Reynolds
stresses shown in Figs. 7(a), 7(b), 9(a), and 9(b) show excellent agreement between the two
simulation strategies. This suggests that the differences in particle volume fraction fluctuations may
be related more to differences in the numerical approaches rather than physical processes.
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FIG. 11. Volume fraction fluctuations in EL (open symbols) and EE (closed symbols) simulations for
(a) Stη = 0.06 and (b) Stη = 0.19. Symbols are the same as in Figs. 6 and 8.

Where clustering is strong and the particle structures are thin, a difference between the Eulerian-
Eulerian and Eulerian-Lagrangian simulations can be seen. In the former approach, the discrete
particles, which are collisionless in this study, may concentrate into arbitrary thin structures. Thus,
the volume fraction computed from the particle positions may display very sharp gradients near
particle clusters [30]. In the Eulerian-Eulerian simulation strategy, the volume fraction obtained
from solving the particle conservation equations is limited by the mesh resolution and the order
of accuracy the schemes used, second order in space here. Hence, the volume fraction field
obtained this way is unable to display gradients as sharp as those found from Eulerian-Lagrangian
simulations.

VIII. CONCLUSION

In the semidilute regime, the forcing exerted by particles on the gas may lead to substantial
modification of the suspending turbulence. The analysis of the canonical homogeneously sheared
turbulence loaded with inertial aerosols has revealed that the dispersed phase may either enhance or
weaken turbulence, depending on the particle Stokes number Stη and mass loading M. The particles
also cause a modification of the topology of the vortical structures and a reorganization of the
turbulence anisotropy. The present work has illustrated the complexity of flow modification with
inertial spherical particles.

The case where Stη = 0.06 and M = 0.125 shows little modification of turbulence, under-
standably due to the weak particle inertia and coupling between the two phases. However, when
the mass loading increases to M = 0.5, the suspended particles cluster and lead to a measurable
augmentation of turbulence. Particles in this regime inject momentum fluctuations at a scale η [55],
which enhances the dissipation rate and turbulent kinetic energy. The persistent linear shear and
strong coupling lead to an activation of clustering (route to clustering in Ref. [18]) and formation of
void bubbles greater than typically observed in the absence of strong mean shear. Particle settling
modifies the anisotropic Reynolds stresses, causing an increase of the component in the direction of
gravity.

The introduction of larger particles with Stη = 0.19 in HST leads to an attenuation of kinetic
energy and dissipation rate even for the low mass loading M = 0.125. The particles significantly
alter the vortical structures, causing them to stretch more in the streamwise direction, which leads
to an increase of the streamwise anisotropic Reynolds component. The clusters also appear larger
and more elongated in the x1 direction. Increasing the mass loading M = 0.5 reduces the turbulence
attention due to stronger clustering and more turbulent fluctuations along the gravity direction.
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This paper also addressed the suitability of a recent kinetic-based Eulerian-Eulerian numerical
strategy [18,29–32] for simulations of strongly sheared particle-laden flows in the semidilute
regime. Comparison with Eulerian-Lagrangian simulations showed similar turbulence modulation
trends. Despite some differences in the gas-phase dissipation rate, both methods predicted the
modulation of anisotropic Reynolds stresses, with excellent agreement in all four cases considered.
However, the rms of particle volume fraction fluctuations was larger in EL simulations, due to
the emergence of particle features smaller than the mesh resolution, which cannot be reproduced
in EE simulation [30]. These differences do not result in any significant changes in the clustering
patterns or flow modulation, hence showing that the EE simulation methodology used here performs
excellently in the semidilute regime.
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