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Stability of a static liquid bridge knowing only its shape
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The shape and the stability of a static liquid bridge under either pressure control or
volume control can be derived by knowing only the shape of a master liquid bridge. No
perturbation problems need be solved.
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I. INTRODUCTION

A static liquid bridge is a fluid body spanning two solid disks, pinned at their edges; cf. Fig. 1.
The equilibrium shape of a bridge is determined by its volume or its pressure, once the diameter of
the disks and their distance apart are set, given the surface tension and the density difference across
the bridge surface (cf. Refs. [1,2]). Figure 2 shows how a liquid bridge experiment might be run. By
increasing or decreasing the pressure above reservoir (1), fluid is added or removed from the bridge
submerged in reservoir (2).

The static equilibrium shape of a bridge is due to a balance between the mean curvature of its
surface and the pressure difference across the surface. This equilibrium shape may become unstable
as the volume of the bridge is decreased. If the density difference across the surface is zero, the
instability is a consequence of an imbalance between the transverse and longitudinal curvatures.
This was discovered by Rayleigh and Plateau in the case of liquid jets [3,4]. Extensions of their
work [5–13] have led to several observations on static bridge stability, described in reviews [14–16].
The observations, most important to us, obtained from perturbation calculations holding the volume
fixed are: (a) A liquid bridge suspended between two coaxial circular ends under volume control
and having no density difference across its surface can become unstable in two ways as its volume is
decreased, first to disturbances unsymmetric about the midplane, second to disturbances symmetric
about the mid plane. (b) The unsymmetric instability is a bifurcation point; i.e., the bridge has not
reached its theoretical least volume. (c) The symmetric instability is a turning point; i.e., the bridge
has reached its least volume. (d) If the density difference is not zero, then all critical points are
turning points [15].

We present a new view of the bridge stability problem: The shape and the stability of a liquid
bridge ought to be understood in terms of a special pressure-controlled problem. Notwithstanding
the fact that volume control is the case of most interest in the literature, it is a subset of a more
inclusive master problem. This problem corresponds to the tanks in Fig. 2 having large enough
cross sections that the hydrostatic head in each tank remains essentially constant.

Our plan is to present a model of a pressure-controlled experiment and then to identify the master
problem where given all the details of this problem we can derive all the details of every other bridge
problem. Our attention is directed to bridge shapes, then critical points and limits on the range of
the pressures possible.

Three results arise from our work which set it apart from all earlier studies. First, the stability of
every bridge problem, whether the density difference is zero or not and whether it is under volume or
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FIG. 1. A sketch of a bridge spanning two disks.

pressure control, can be determined merely by knowing the bridge shape corresponding to a master
problem. Second, no perturbation problem need be solved to determine the stability of any static
bridge. Finally, the distinction between the instability arising from pressure control versus volume
control can be lost when the density difference is made zero.

II. MODEL: THE NONLINEAR EQUATIONS

We direct the reader’s attention to the problem of predicting the shape and the stability of the
surface of a liquid bridge spanning two circular disks. The surface is pinned to the edges of the
disks, the disks are horizontal, they have the same diameter, denoted by D, and they lie a distance
2L apart. Their centers lie on a line parallel to the direction of gravity.

We denote by V , �ρ = ρ (1) − ρ (2), and γ the volume of the bridge, the density difference across
the surface, and its surface tension. Ordinarily, D, L, g, �ρ, and γ are input variables, and R(z), the
shape of the surface, is an output. We assume �ρ to be positive or zero.

Our view is that if an experiment is to be run, pressure ought to be the primary input, once the
values of L, D, �ρ, and γ are set. Thus, we sketch a possible experimental configuration to which
our results pertain. Figure 2 defines the notation where A(1) and A(2) denote the cross sectional areas
of the reservoirs. The volumes of fluids (1) and (2) are denoted V (1) and V (2). They are fixed. The
volume of the bridge, V , is part of V (1).

FIG. 2. A sketch of a bridge whose surface shape is being controlled by the pressure at the left-hand
reservoir.
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Assuming the volume in the connecting line is not important, we have

V (1) = A(1)(h(1) + H ) + V (1)

and

V (2) = A(2)(h(2) + H ) − V, (2)

whereupon we have

ρ (2)gh(2) − ρ (1)gh(1) = ρ (2)g

(
V (2)

A(2)
− H

)
− ρ (1)g

(
V (1)

A(1)
− H

)
+

(
ρ (2)g

A(2)
+ ρ (1)g

A(1)

)
V. (3)

Our model is hydrostatic, hence the pressures are

P(1) = P + ρ (1)g(h(1) − z) (4)

and

P(2) = Pref + ρ (2)g(h(2) − z), (5)

and the shape of the bridge, R(z), is the solution to the equation

P(1) + γ 2H = P(2), (6)

where 2H denotes twice the mean curvature of the surface. Whereupon, denoting

P − Pref −
{
ρ (2)g

(
V (2)

A(2)
− H

)
− ρ (1)g

(
V (1)

A(1)
− H

)}

by P, we have in scaled variables

−P + B∗V + Bz = 2H = d

dz

Rz(
1 + R2

z

) 1
2

− 1

R
(
1 + R2

z

) 1
2

(7)

and

R = 1 at z = ±L,

where lengths are scaled by 1
2 D, and pressures are scaled by γ

1
2 D

, where B∗ denotes

(
ρ (1)g

γ

1

A(1)
+ ρ (2)g

γ

1

A(2)

)(
1

2
D

)4

,

and B denotes the Bond number, �ρg
γ

( 1
2 D)

2

. The volume of the bridge, V , is given by

V =
∫ L

−L
πR2dz. (8)

Upon solving Eq. (7) we obtain the shape of the bridge. Setting the values of the inputs L, B, and
B∗, we wish to know how the shape depends upon P. We observe that neither B nor B∗ is negative
and that either may be the larger. If �ρ = 0, we have B = 0. If A(1) and A(2) are large, then B∗ is
small, but g remains present unless both B and B∗ vanish. Thus, if �ρ = 0, g remains in B∗. We set
the values of B, B∗, and L, then to each P the outputs are R(z) and V . We can solve Eqs. (7) and (8)
for R(z) and V whether or not the resulting shape is stable to small perturbations and we begin by
asking: are there limitations on the range of P?

Thus, having a solution R(z) and V at P, we can increase or decrease P and find a nearby
solution if, at P, we can find Ṙ = dR

dP , where Ṙ, obtained by differentiating Eq. (7), is the solution to
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Eq. (9),viz.,

−1 + B∗
∫ L

−L
2πRṘdz = 1

R

d

dz

ṘzR(
1 + R2

z

) 3
2

+ 1

R2
(
1 + R2

z

) 1
2

Ṙ ≡ L(Ṙ) (9)

and

Ṙ = 0 at z = ±L.

This is a linear inhomogeneous problem which may or may not have a solution. If it does not, then
we have reached a limiting value of P.

Along the way as P is increasing or decreasing toward its limiting values, the bridge shape may
become unstable and we may not be able to reach the limits of P. To find out, we denote a small
perturbation to the shape by R1(θ, z) and, holding B, B∗, L, and P fixed, R1 must satisfy Eq. (10),
viz.,

B∗
∫ L

−L
R

∫ 2π

0
R1dθdz = 1

R

d

dz

RR1z(
1 + R2

1

) 3
2

+ 1

R2
(
1 + R2

1

) 1
2

(10)

and

R1 = 0 at z = ±L.

This homogeneous problem has the solution R1 = 0. If R1 = 0 is the only solution, then the bridge
is stable to a small perturbation; otherwise, if there are solutions not zero, then the bridge shape
has reached a critical condition. The bridge-shape problem is hydrostatic, so too the perturbation
problem. A static bridge shape signals that the bridge has reached a least potential energy,
whereupon the bridge is stable if every perturbation raises the potential energy (cf. Appendix A).

To find out whether or not Ṙ exists and whether or not R1 is zero, we solve the eigenvalue
problem, Eq. (11), for the eigenvalues, λ2, and the eigenfunctions, ψ , viz.,

B∗
∫ L

−L
R

∫ 2π

0
ψdθdz = 1

R

d

dz

Rψz(
1 + R2

z

) 3
2

+ 1

R2
(
1 + R2

z

) 1
2

(ψ + ψθθ ) + λ2ψ (11)

and

ψ = 0 at z = ±L.

If there is an eigenvalue equal to zero, then the homogenous part of Eq. (9) has a solution other than
zero and Eq. (10) has a solution that is not zero. The bridge is at a critical pressure and the pressure
may be at its limiting value.

We can restrict the perturbations of interest. Thus, the eigenfunctions can be written

ψ = ψ (z), m = 0 (12)

and

ψ = ψ̂ (z) cos m θ, m = 1, 2, .... (13)

If m = 1, 2, ...., we have

0 = 1

R

d

dz

Rψ̂z(
1 + R2

z

) 3
2

+ 1

R2

1(
1 + R2

z

) 1
2

(1 − m2)ψ̂ + λ2ψ̂ (14)

and

ψ̂ = 0 at z = ±L,
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and upon multiplying Eq. (14) by Rψ̂ and integrating over (−L, L), we have

0 = −
∫ L

−L

Rψ̂2
z(

1 + R2
z

) 3
2

dz + (1 − m2)
∫ L

−L

ψ̂2

R
(
1 + R2

z

) 1
2

dz + λ2
∫ L

−L
ψ̂2dz. (15)

Hence, all λ2’s must be positive if m = 1, 2, . . ..
Thus, only perturbations corresponding to m = 0 may lead to critical shapes of the bridge and

our eigenvalue problem is

2πB∗
∫ L

−L
Rψdz = L(ψ ) + λ2ψ (16)

and

ψ = 0 at z = ±L.

Multiplying Eq. (16) by Rψ and integrating, we have, at m = 0,

2πB∗

(∫ L

−L
Rψdz

)2

= −
∫ L

−L

Rψ2
z(

1 + R2
z

) 3
2

dz +
∫ L

−L

ψ2

R
(
1 + R2

z

) 1
2

dz + λ2
∫ L

−L
ψ2dz. (17)

The second term on the right-hand side, accounting for transverse curvature, presents the possibility
of negative eigenvalues and hence critical points.

Thus, having set the values of B, B∗, and L, we may be increasing or decreasing P in search of a
critical point. And assuming all the eigenvalues begin positive corresponding to a stable bridge (cf.
Appendix A), we may come upon a value of P where the least eigenvalue reaches zero. We have
arrived at a critical point, i.e., R1 �= 0, and we observe that the homogeneous Ṙ problem has the
nonzero solution Ṙ = ψ . To learn if the inhomogeneous Ṙ problem has a solution, we multiply
Eq. (9) by Rψ , Eq. (16) by RṘ, subtract and integrate over (−L, L). Doing this, we have the
solvability condition. It is ∫ L

−L
(1)Rψdz = 0, (18)

and ordinarily it is not satisfied, i.e., the critical point is a turning point, Ṙ does not exist, and we
have reached a limiting value of P. In fact, Eq. (17) at λ2 = 0 is

2πB∗

(∫ L

−L
Rψdz

)2

= −
∫ L

−L

R(
1 + R2

z

) 3
2

ψ2
z dz +

∫ L

−L

1

R
(
1 + R2

z

) 1
2

ψ2dz, (19)

where the right-hand side is ordinarily not zero and so
∫ L
−L Rψdz is not zero.

We plan to present our results as curves of V versus P, where P implies R(z) and R(z) implies V .
Each curve corresponds to set values of B, B∗, and L. Now we need to do this for only one value of
B∗, viz., B∗ = 0, to obtain curves for any value of B∗. And B∗ = 0 is the easiest problem to solve, it
is the master problem, given L and B.

At B∗ = 0 our R, Ṙ and ψ , λ2 problems are,
first,

P + Bz = d

dz

Rz(
1 + R2

z

) 1
2

− 1

R

1(
1 + R2

z

) 1
2

(20)

and

R = 1 at z = ±L,
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FIG. 3. The V vs P∗ curve on the right at B∗ > 0 is obtained from the V vs P curve on the left at B∗ = 0
without solving Eq. (7). L = 3

4 π, B = 1
100 , B∗ = 1

20 .

second,

−1 = 1

R

d

dz

RṘz(
1 + R2

z

) 3
2

+ 1

R2

1(
1 + R2

z

) 1
2

Ṙ (21)

and

Ṙ = 0 at z = ±L,

and third,

0 = 1

R

d

dz

Rφz(
1 + R2

z

) 3
2

+ 1

R2

1(
1 + R2

z

) 1
2

φ + μ2φ = L(φ) + μ2φ (22)

and

φ = 0 at z = ±L,

where we have renamed ψ and λ2, φ and μ2 at B∗ = 0. Equation (22) is a Sturm-Liouville problem,
whereupon the fundamental eigenfunction, φ1, is singly signed (cf. Ref. [17]).

Assume we set the values of B and L and we solve our bridge-shape problem at B∗ = 0 and then
obtain a curve of V versus P. At each point along the curve we have the bridge shape R(z) and the
eigenvalues μ2

1 < μ2
2 < · · ·.

Now at any value of B∗ not zero, we can derive the volume versus pressure curve from the curve
at B∗ = 0. Thus, at any B∗ not zero, we rename our variables P∗, R∗(z), and V∗. Then, at the point
(P,V ) on the curve V versus P at B∗ = 0, we set P∗ = P + B∗V , V∗ = V and at the point (P∗,V∗) we
have R∗(z) at B∗, equal to R(z) at B∗ = 0 (cf. Fig. 3), where the scaling factor, VCYL, VCYL = 2πL,
denotes the volume of a cylindrical bridge at the same value of L.

At the value of B∗ of interest, at set values of L and B, we can obtain the eigenvalues without
solving the eigenvalue problem at B∗. Thus, at a point (P,V ) at B∗ = 0 we have R(z) and we can
obtain the eigenvalues μ2

1 < μ2
2 < · · ·, which are the λ2’s at B∗ = 0. Then at L, B, V , B∗ �= 0 and

P∗ = P + B∗V we have the same bridge shape and we can obtain the eigenvalues λ2
1 < λ2

2 < · · ·.

123904-6



STABILITY OF A STATIC LIQUID BRIDGE KNOWING …

FIG. 4. Graphs of the solutions to Eq. (27), where the eigenvalues, λ2
1, λ

2
2, · · ·, at B∗ > 0 are obtained from

the eigenvalues, μ2
1, μ

2
2, · · ·, at B∗ = 0. The values of L, B, and V are L = 3

4 π, B = 1
10 ,V = 0.976.

To do this we expand ψ in the set of φ j’s and we have

ψ =
∑

c jφ j, c j =
∫ L

−L
ψRφ jdz, where

∫ L

−L
Rφ2

j dz = 1, (23)

whereupon we obtain from Eqs. (17) and (23)

2πB∗

(∫ L

−L
Rψdz

) ∫ L

−L
Rφ jdz = (

λ2 − μ2
j

) ∫ L

−L
ψRφ jdz, (24)

and hence we have

2πB∗
∫ L

−L
Rψdz Ij = (

λ2 − μ2
j

)
c j, where I j =

∫ L

−L
Rφ jdz (25)

and

2πB∗
∫ L

−L
Rψdz

∑ I2
j(

λ2 − μ2
j

) =
∫ L

−L
Rψdz. (26)

Thus, we derive the eigenvalues at B∗ from those at B∗ = 0 by solving

∑ I2
j(

λ2 − μ2
j

) = 1

2πB∗
. (27)

The solution is sketched in Fig. 4, and at any B, L, and V we not only have μ2
1 < λ2

1 < μ2
2 < λ2

2 <

· · · for all B∗ but for any B∗ we have the values of λ2
1, λ

2
2... corresponding to the point (P + B∗V,V )

on the V versus P∗ curve at B∗.
We can make some predictions. At fixed values of B and L and at each point along the V versus

P curve at B∗ = 0 we can find the μ2’s. Likewise at B∗ > 0, at each point along the V versus P∗
curve, we can derive the λ2’s from the μ2’s. The stable ranges, μ2

1 > 0, λ2
1 > 0, appear where the

slopes of the V , P or V , P∗ curves are positive. The stable range of P∗ increases as B∗ increases.
Wherever μ2

1 = 0 or λ2
1 = 0 we have a turning point. Thus, in Fig. 5, at B∗ = 0 we have two turning

points. And if μ2
1 = 0 at (P, V ), λ2

1 is not zero at (P + B∗V,V ). It is positive there. The slope of the
V versus P∗ curve at (P + B∗V,V ) must be positive. In fact, at (P + B∗V,V ) we have

Ṙ = Aφ1 (28)

and

−1 + 2πB∗
∫ L

−L
RAφ1dz = 0, (29)
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FIG. 5. A sketch of the least eigenvalues along the V vs P curve at B∗ = 0, solid line, and along the V vs
P∗ curve at B∗ > 0, dashed line. The eigenvalues, λ2

1, derive from the eigenvalues, μ2
1, as indicated in Fig. 4.

Where μ2
1 or λ2

1 is zero, turning points appear. The values of L, B, and B∗ are L = 1
2 π, B = 1

100 , B∗ = 1
100 .

whereupon

dV

dP∗
= 2π

∫ L

−L
RṘdz = 1

B∗
(30)

and the slope of the curve must be positive.
In place of pressure control, it may be that a bridge shape is under the control of the bridge

volume and that stability would then depend on perturbations at constant volume. There are many
experiments thought to be run this way (cf. Refs. [18,19]) and many stability predictions made
holding volume constant.

In this case where R(z) derives from V , Eq. (7) must be replaced by

−P + Bz = d

dz

Rz(
1 + R2

z

) 1
2

− 1

R
(
1 + R2

z

) 1
2

, R = 1 at z = ±L, (31)

and ∫ L

−L
πR2dz = V,

where (−P + B∗V ) in Eq. (7) is replaced by −P in Eq. (31), a constant to be determined.
The Ṙ problem, where now Ṙ = dR

dV , is

−Ṗ = 1

R

d

dz

RṘz(
1 + R2

z

) 3
2

+ 1

R2
(
1 + R2

z

) 1
2

Ṙ = L(Ṙ), Ṙ = 0 at z = ±L, (32)

and ∫ L

−L
2π ṘRdz = 1,
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and the perturbation problem at constant V is

−P1 = 1

R

d

dz

RR1z(
1 + R2

z

) 3
2

+ 1

R2
(
1 + R2

z

) 1
2

R1 = L(R1), R1 = 0 at z = ±L, (33)

and ∫ L

−L
RR1dz = 0,

where again only m = 0 perturbations need to be taken into account. Critical points correspond to
solutions R1 not zero, turning points to Ṙ failing to exist. The variable B∗ plays no role.

The eigenvalue problem is

−C = L(ψ ) + λ2ψ, ψ = 0 at z = ±L, (34)

and ∫ L

−L
Rψdz = 0,

and we denote its solutions ψ , C, and λ2.
If, at any point along our V versus P curve, at input values of L and B, we have λ2 = 0, then

R1 = ψ , P1 = C and that point is a critical point. And it is also a turning point, now in V , i.e., V has
reached a limiting value, because the solvability condition that must be satisfied for Ṙ to exist, viz.,

−C
∫ L

−L
RṘdz = −C

2π
= 0, (35)

is not satisfied because C is ordinarily not zero. In fact, if C were zero at λ2 = 0, then we would have
ψ = φ, λ2 = μ2, and

∫ L
−L Rφdz = 0, which is ordinarily not possible and certainly not possible at

μ2
1 = 0 because φ1 is singly signed.

Because the points on the V versus P curve at V control are the points on the V versus P curve
at P control, at B∗ = 0, at any point we can again expand the ψ’s in the φ j’s, whereupon we have

C
∫ L

−L
Rφ jdz = (

λ2 − μ2
j

) ∫ L

−L
ψRφ jdz, (36)

C
Ij(

λ2 − μ2
j

) = c j, (37)

and

C
∑ I2

j(
λ2 − μ2

j

) = 0, (38)

and thus, due to C not zero, we have

∑ I2
j(

λ2 − μ2
j

) = 0, (39)

where the curves, left-hand side versus λ2, are the same as before and the λ2’s here are the λ2’s
earlier at B∗ → ∞. These λ2’s are known in terms of the μ2’s and lie to the right of the earlier λ2’s,
but in the same intervals.

Setting B and L and increasing or decreasing V in search of a critical point we may have all
λ2’s positive before arriving at a critical value of V where λ2

1 = 0. At this point the homogeneous Ṙ
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FIG. 6. Turning points and therefore points where the least eigenvalue is zero can be read directly off base
curves, B∗ = 0, L = 1

2 π, B = 1
100 .

problem has the solution Ṙ = ψ1, Ṗ = C1, and a solvability condition must be satisfied. It is

−Ṗ
∫ L

−L
Rψ1dz

︸ ︷︷ ︸
zero

+C1

∫ L

−L
RṘdz

︸ ︷︷ ︸
1

2π

= 0, (40)

and it is not satisfied. The critical point is a turning point and we have reached a limiting value of V .
We observe that turning points can be read directly off the base curve (cf. Fig. 6).
We have come to the point where, if B is not zero, no matter whether V or P is the input and no

matter the value of B∗ we have:
First, given B and L: (1) All the V versus P∗ curves at B∗ derive from the V versus P curve at

B∗ = 0; (2) All critical points are turning points and can be read off the base curves. No eigenvalue
problems need to be solved to obtain critical points; (3) The bridge shapes depend on V , independent
of B∗.

Second: (1) Only m = 0 perturbations need to be taken into account (2) The λ2’s at B∗ can be
obtained from the μ2’s at B∗ = 0. (3) The λ2’s at B∗ and the μ2’s at B∗ = 0 are nested, viz., μ2

1 <

λ2
1 < μ2

2 < …
To this point we have assumed B is not zero. But B = 0 may be achieved by setting �ρ = 0.

And many experiments have been run where �ρ is made as near to zero as possible [18]. This is an
important limit to which we now direct our attention and we can say much more about the problem.
In fact if B is not zero, critical points correspond to λ2

1 equal to zero. But if B is zero μ2
2 must also

be taken into the account.

III. THE CASE B = 0

At B = 0 there is a special case that can be worked out by hand. At any L and B∗ it is

R = 1 for all z, V = π2L,

123904-10
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FIG. 7. Graphs of the solutions to Eq. (41), showing the first two eigenvalues, (λ2
1, μ2

2), at a small value at
B∗ and (μ2

2, λ2
1) at a large value of B∗. L = 3

4 π,V = 0.975.

and

P∗ = 1 + B∗V.

The bridge shape is a cylinder and we may increase or decrease the pressure from the cylindrical
bridge value causing the surface to move inward or outward. The cylindrical bridge problem is
worked out in Appendix B.

At B = 0 our equations are again: Eqs. (7), (9), (10), and (11), but with B now set to zero. Eq. (7)
has solutions R(z) even in z. And, assuming R(z) is even, the eigenvalue problems have solutions
either even or odd in z, e.g., at B∗ = 0, φ1 is even, φ2 is odd, etc. Due to this symmetry, at B = 0
critical points need not be turning points.

At input values of L and B∗ and at any V we have two series of eigenvalues, viz., μ2
2 < μ2

4 < · · ·
corresponding to odd eigenfunctions. These are independent of B∗ and are called odd eigenvalues
for short. The other series, λ2

1 < λ2
3 < · · ·, corresponding to even eigenfunctions (called even

eigenvalues for short) satisfy

∑
j=1,3,5,··

I2
j(

λ2 − μ2
j

) = 1

2πB∗
(41)

or

∑
j=1,3,5,··

I2
j(

λ2 − μ2
j

) = 0, (42)

according to whether pressure or volume is held fixed. A sketch is presented in Fig. 7 to illustrate
that, due to symmetry, λ2

1 may be on either side of μ2
2.

The sketch in Fig. 7 is at pressure control for set values of L and V . It depicts the least eigenvalue
corresponding to an even eigenfunction at two values of B∗. The least eigenvalue corresponding to
an odd eigenfunction lies at μ2

2 and is independent of B∗. The volume control case is obtained as
B∗ → ∞ and is marked on the figure.

We see that at small values of B∗ the least eigenvalue corresponds to an even eigenfunction, at
large values of B∗ it corresponds to an odd eigenfunction.

What is now new at B equal to zero, is, at B∗ > 0, we do not know whether λ2
1 or μ2

2 is the least
eigenvalue.

We observe that there is a value of B∗ where λ2
1 = μ2

2 at our given L and V . What is more, at
a given L and another V we ought to find another B∗ where λ2

1 = μ2
2. For a given L, we expect

to find a special (B∗,V ) pair such that λ2
1 = 0 = μ2

2. For greater B∗’s holding V fixed only odd
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eigenvalues are the first to reach zero. The special B∗ is denoted B†
∗. It has experimental significance

(cf. Appendix C).

IV. OBTAINING BIFURCATION POINTS AT B = 0

At input values of L and B∗ we suppose we have a stable bridge at a certain value of P∗. We may
then increase or decrease P∗ until we reach a critical value, a value of P∗ where the least eigenvalue
reaches zero. If the eigenvalue is odd, i.e., λ2 = μ2

2, ψ = φ2, then we have, because R is even and
φ2 is odd,

∫ L

−L
Rψdz =

∫ L

−L
Rφ2dz = 0, (43)

whereupon Ṙ exists because the solvability condition Eq. (19) is satisfied. Thus, we can increase
P∗ through its critical value and continue to find even solutions, R(z), to the bridge-shape problem,
though these solutions ought to be unstable. This critical point is not a turning point. It is called a
bifurcation point and we ought to expect new bridge shapes branching from this point, though not
shapes even in z. Bifurcation points do not appear if B is not zero. They require the symmetry of
R(z) attending B equal to zero.

If, however, the least eigenvalue is even, then R and ψ being even, we ordinarily have
∫ L

−L
Rψdz �= 0. (44)

The solvability condition is not satisfied, Ṙ does not exist and we have reached a limiting value of
P∗, i.e., a turning point.

Having the V versus P curve at B∗ = 0 we can obtain the V versus P∗ curve at any B∗ �= 0
and turning points can be read off these curves. We can also obtain bifurcation points by knowing
only bridge shapes along the V versus P or V versus P∗ curve. To do this we need to know that at
bifurcation points the least eigenvalue reaching zero corresponds to an odd eigenfunction and we
need to know that Rz(±L) = 0. At input values of L and B∗ and at any P∗ we have R(z) and V and
we obtain an equation for Rz by differentiating Eq. (7) with respect to z, viz.,

0 = 1

R

d

dz

R(
1 + R2

z

) 3
2

(Rz )z + 1

R2

1(
1 + R2

z

) 1
2

Rz. (45)

Now at a bifurcation point where
∫ L
−L Rψdz = 0 we have

0 = 1

R

d

dz

R(
1 + R2

z

) 3
2

ψz + 1

R2

1(
1 + R2

z

) 1
2

ψ. (46)

Multiplying Eq. (46) by RRz, Eq. (45) by Rψ , subtracting and integrating over (−L, L) we have

0 = RzRψz(
1 + R2

z

) 3
2

∣∣∣∣∣∣
L

−L

,

where R(L) = 1 = R(−L) and where R is even, Rz is odd, ψ is odd and ψz is even. And because
ψz(L) cannot be zero we conclude

Rz(L) = 0 = Rz(−L).

Thus, at a bifurcation point the bridge shape must be such that Rz = 0 at z = ±L.
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FIG. 8. The solid curve is the base curve V vs P∗ at B∗ > 0. The dot-dash curve is 1
2L

∫ L
−L

1
R

1

(1+R2
z )

1
2

dz +
B∗V vs P∗ and the dot-dot curve is Eq. (49). Their intersection identifies the point (P∗,V ) where μ2

2 = 0, i.e., a
bifurcation point. The values of L and B∗ are L = 3

4 π and B∗ = 1
100 .

Now integrating Eq. (7) over (−L, L) we have

(−P∗ + B∗V )2L = − Rz(
1 + R2

z

) 3
2

∣∣∣∣∣∣
L

−L

−
∫ L

−L

1

R

1(
1 + R2

z

) 1
2

dz, (47)

whereupon at a bifurcation point we must have

1

2L

∫ L

−L

1

R

1(
1 + R2

z

) 1
2

dz + B∗V = P∗. (48)

Hence along with a plot of V versus P∗ we can plot 1
2L

∫ L
−L

1
R

1

(1+R2
z )

1
2

dz + B∗V versus P∗. Then if we

also plot the straight line,

1

2L

∫ L

−L

1

R

1(
1 + R2

z

) 1
2

dz + B∗V = P∗, (49)

which is a locus of bifurcation points, the intersection will be a bifurcation point, i.e., a point along
the V versus P∗ curve where μ2

2 = 0. The two curves must cross if R(z) = 1 for all z. But this is the
case of a cylindrical bridge where Rz(±L) is always zero; cf. Appendix B.

Because μ2
2 is independent of B∗ we now have, given L, the volume at which a bifurcation point

appears for all B∗ and we obtain this knowing only the base shape, R(z), at B∗ = 0.
From the base shape at any B∗ we derive both the turning points and the bifurcation points.

At B∗ = 0 and at the value of V where μ2
2 = 0, μ2

1 is already negative. Holding this V fixed and
increasing B∗, λ2

1 is negative at first and increases to zero whereupon λ2
1 = 0 = μ2

2 at B†
∗. At larger

B∗’s, the instability is always a bifurcation point.
The construction is illustrated in Fig. 8, where 1

2L

∫ L
−L

1
R

1

(1+R2
z )

1
2

dz + B∗V is denoted I .
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FIG. 9. At two values of B∗ viz., B∗ = 0 and B∗ = .01, we obtain bifurcation points, μ2
2 = 0 at the same

value of V . The value of L is 3
4 π .

At the same value of L we can carry out the construction at any other value of B∗ and obtain the
bifurcation point on the corresponding V versus P∗ curve at the same value of V .

In particular we can do this at B∗ = 0. Thus, at B∗ = 0 we plot V versus P and 1
2L

∫ L
−L

1
R

1

(1+R2
z )

1
2

versus P obtaining the bifurcation point on the V versus P curve and hence the bifurcation point on
the V versus P∗ curve for any B∗ not zero; cf. Fig. 9.

The idea is, at L and V and for any B∗ we have the same R(z) and the same μ2
2 as we do at

B∗ = 0, and the point where μ2
2 = 0 on the V versus P curve at B∗ = 0 is also a bifurcation point

for a bridge under volume control.
At B = 0 we now have the possibility of bifurcation points. Like turning points they can be

derived from the base shape. Only the base shape at B∗ = 0 is needed.
We present selected results in Appendix C. Upon setting the value of L we can obtain the V versus

P curve at B∗ = 0. At each V along the curve we have the eigenvalues μ2
1 < μ2

2 < μ2
3 · ··. Then upon

increasing B∗ at V , at each value of B∗ we have the eigenvalues λ2
1 < λ2

3 < · · · and μ2
2 < μ2

4 · ··. Of
most interest is whether the least eigenvalue corresponding to an even eigenfunction, viz., λ2

1, or
to an odd eigenfunction, viz., μ2

2 reaches zero first. As B∗ increases, λ2
1 increases, starting at μ2

1 at
B∗ = 0. However, μ2

2 is obtained at B∗ = 0 and does not change as B∗ increases. If μ2
1 is positive,

then all μ2’s and λ2’s are positive. If μ2
1 is zero, then we have a turning point at B∗ = 0, but all other

μ2’s and all λ2’s are positive. Hence, the results presented in Appendix C all correspond to μ2
1 < 0

and different possibilities for μ2
2, positive, zero, or negative.

V. CONCLUSIONS

There is one and only one liquid bridge problem of interest. It is obtained by controlling the
pressure and building reservoirs of large cross sections. It is the simplest problem to solve being
completely constraint-free. Thus, from the solution to a completely constraint-free problem we can
derive the solution to all other bridge problems, necessarily constrained, without further calculation.
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The fundamental classification is in terms of the Bond number. If the Bond number is not zero,
then all critical points are turning points corresponding to limiting values of pressure. If the Bond
number is zero, then bifurcation points may arise. No eigenvalues need to be obtained, not even the
unconstrained μ2’s at B∗ = 0.

We can now see how to design an experiment to measure the surface tension between two liquids
having nearly the same density.

APPENDIX A: POTENTIAL ENERGY CHANGE ON PERTURBATION

Our aim is to establish the result that: If a base solution is given a perturbation which is a
multiple of an eigenfunction, then the sign of the change in the potential energy is the sign of the
corresponding eigenvalue. Thus, to have a stable base solution, all the eigenvalues must be positive.

Assume we have set the values of L and B and we have a base solution R = R0(z). Now the
base problem and the perturbation problem are static problems and we imagine the bridge is under
volume control, hence the value of V is set, and we know that the only perturbations that can lead
to a critical condition are axisymmetric.

The base solution is such that the potential energy of the bridge is least among all the possible
bridge shapes satisfying the constraint, viz., the values of L, B, and V , and the solution is stable if
all allowable perturbations cause the potential energy to increase.

The potential energy of a bridge having a shape R(z) is

PE =
∫ L

−L
dz

{
2πR

(
1 + R2

z

) 1
2 + BzπR2

}
(A1)

and its volume is

V =
∫ L

−L
πR2dz. (A2)

We impose a perturbation on a base shape R0(z), viz., R(z) = R0(z) + εR1(z) + 1
2ε2R2(z) and we

calculate the change in the potential energy,viz., PE (ε) − PE (ε = 0). The result, divided by 2π , is

ε

∫ L

−L
dz

⎧⎨
⎩

R0R0zR1z(
1 + R2

0z

) 1
2

+ (
1 + R2

0z

) 1
2 R1 + BzR0R1

⎫⎬
⎭

+ 1

2
ε2

∫ L

−L
dz

⎧⎨
⎩

R0R2
1z(

1 + R2
0z

) 3
2

+ R0R0zR2z(
1 + R2

0z

) 1
2

+ 2
R0zR1R1z(
1 + R2

0z

) 1
2

+ (
1 + R2

0z

) 1
2 R2 + Bz

(
R2

1 + R0R2
)⎫⎬
⎭.

Integrating by parts we have

ε

∫ L

−L
dz

⎧⎨
⎩− d

dz

⎛
⎝ R0R0z(

1 + R2
0z

) 1
2

⎞
⎠R1 + (

1 + R2
0z

) 1
2 R1 + BzR0R1

⎫⎬
⎭

+ 1

2
ε2

∫ L

−L
dz

⎧⎨
⎩− d

dz

⎛
⎝ R0R1z(

1 + R2
0z

) 3
2

⎞
⎠R1 − d

dz

⎛
⎝ R0R0z(

1 + R2
0z

) 1
2

⎞
⎠R2 − d

dz

⎛
⎝ R0z(

1 + R2
0z

) 1
2

⎞
⎠R2

1

+ (
1 + R2

0z

) 1
2 R2 + Bz

(
R2

1 + R0R2
)⎫⎬
⎭,
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where upon we have

ε

∫ L

−L
dz

⎧⎨
⎩− d

dz

⎛
⎝ R0z(

1 + R2
0z

) 1
2

⎞
⎠ + 1

R0
(
1 + R2

oz

) 1
2

+ Bz

⎫⎬
⎭R0R1

+ 1

2
ε2

∫ L

−L
dz

⎡
⎣

⎧⎨
⎩− 1

R0

d

dz

⎛
⎝ R0R1z(

1 + R2
0z

) 3
2

⎞
⎠

⎫⎬
⎭R0R1

+
⎧⎨
⎩

1

R0
(
1 + R2

0z

) 1
2

− d

dz

⎛
⎝ R0z(

1 + R2
oz

) 1
2

⎞
⎠ + Bz

⎫⎬
⎭R0R2 +

⎧⎨
⎩− d

dz

⎛
⎝ R0z(

1 + R2
0z

) 1
2

⎞
⎠ + Bz

⎫⎬
⎭R2

1

⎤
⎦.

Then using

Bz − d

dz

⎛
⎝ R0z(

1 + R2
0z

) 1
2

⎞
⎠ = − 1

R0
(
1 + R2

0z

) 1
2

+ P0, (A3)

we obtain

ε

∫ L

−L
dz(P0)R0R1 + 1

2
ε2

∫ L

−L
dz

⎡
⎣

⎧⎨
⎩− 1

R0

d

dz

R0R1z(
1 + R2

0z

) 3
2

− 1

R2
0

R1(
1 + R2

0z

) 1
2

⎫⎬
⎭R0R1

+ {
(P0)

(
R2

1 + R0R2
)}⎤⎦,

where the terms in P0, a constant, vanish due to∫ L

−L
dzR0R1 = 0 =

∫ L

−L
dz

(
R2

1 + R0R2
)
, (A4)

a result of holding V constant.
The change in potential energy is then

1

2
ε2

∫ L

−L
dz(−1)

⎧⎨
⎩

1

R0

d

dz

R0R1z(
1 + R2

0z

) 3
2

+ R1

R2
0

(
1 + R2

0z

) 1
2

⎫⎬
⎭R0R1,

and we can choose R1 to be any solution to the eigenvalue problem, say ψ, and find the change is
given by

1

2
ε2λ2

∫ L

−L
R0ψ

2dz.

We conclude that the bridge is stable or unstable to a perturbation ψ depending on whether λ2 is
positive or negative. If all λ2 are positive, then the bridge is stable. If the least λ2 is zero, then the
bridge is critical.

APPENDIX B: CYLINDRICAL BRIDGE

At B = 0, we have a solution R = 1 for all z to Eq. (7). The corresponding bridge is called a
cylindrical bridge and many cylindrical bridge experiments have been run [18]. The length, 2L, is
the main input whereupon V = π2L and P∗ = 1 + B∗V .

Perturbations can be carried out at constant pressure where L and B∗ are held fixed.
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FIG. 10. The least even eigenvalues for three values of B∗ and the least odd eigenvalue plotted vs π2

L2 .

At constant pressure, where pressure is not perturbed, the eigenvalue problem, at B∗ equal to
zero, is

0 = d2φ

dz2
+ (1 + μ2)φ, φ = 0 at z = ±L. (B1)

It has odd and even solutions, where the odd eigenvalues are μ2
2, μ

2
4, · · ·, viz.,

π2

L2
− 1,

4π2

L2
− 1, . . . ,

and the even eigenvalues are μ2
1, μ

2
3, · · ·, viz.,

1

4

π2

L2
− 1,

9

4

π2

L2
− 1, . . .

and where μ2
1 = 0 if and only if L = 1

2π and μ2
2 = 0 if and only if L = π .

At a value of B∗, greater than zero, the eigenvalue problem is

2πB∗
∫ L

−L
ψdz = d2ψ

dz2
+ (1 + λ2)ψ,ψ = 0 at z = ±L. (B2)

The odd eigenvalues are μ2
2, μ

2
4, · · · as above and the even eigenvalues, λ2

1, λ
2
3, · · · are the

solutions to the equation

tan(1 + λ2)
1
2 L

(1 + λ2)
1
2 L

= 2πB∗2L − (1 + λ2)

2πB∗2L
. (B3)

In Fig. 10 we present a plot of the least even eigenvalues versus π2

L2 for three values of B∗. We have

not plotted the B∗ = 0 eigenvalue, μ2
1 = 1

4
π2

L2 − 1. But we have plotted μ2
2, the least odd eigenvalue.

It is independent of B∗. As L increases the graphs are read from right to left.
At constant pressure short bridges become unstable to even perturbations if B∗ is low enough.

Upon increasing the length of the bridge, every bridge becomes unstable to an odd perturbation at
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L = π and thereafter, whether or not it is stable to an even perturbation. Thus, for large values of
B∗, where the bridge is stable to even perturbations, it is already unstable to an odd perturbation and
the critical length is L = π , no matter the value of B∗. Thus, no matter whether pressure or volume
is being controlled the critical value of L must be π if B∗ is large enough, viz., greater than 1

4π2 .
In the case of a cylindrical bridge μ2

2 = 0 = λ2
1 at L = π , B∗ = 1

4π2 . Now, a cross over point is
of interest if an experiment is being planned. We denote values of B∗ where λ2

1 = 0 = μ2
2 by B+

∗ . A
graph of B+

∗ vs L is given in Appendix C for noncylindrical bridges.

APPENDIX C: NONCYLINDRICAL BRIDGE

Each of Figs. (11), (12), and (13) presents volume versus pressure curves for several values of
B∗. On each figure a value of V is selected and the corresponding value of λ2

1 is indicated at each
of the several values of B∗ at the selected V . In Fig. 11, V is chosen so that μ2

2 is positive. In Fig.
12 μ2

2 is zero, and in Fig. 13 μ2
2 is negative, where μ2

2 does not depend on B∗. On each figure
a plot of

∑
j=1,3,5,··

I2
j(

λ2 − μ2
j

) vs λ2 (C1)

is presented for the values of L and V corresponding to that figure. The construction of λ2
1 for a

selected B∗ is then shown.
Figure 14 presents the value of B∗, where λ2

1 = 0 = μ2
2, as a function of L. The limiting value of

L is about 1.89, below which the bridge can only break symmetrically. It corresponds to the volume-
controlled bridge. We can make use of what we have found to design an experiment to measure
the surface tension between two liquids of nearly equal density. By running pressure-controlled
experiments we have a variable, B∗, which we do not have running volume-controlled experiments.

FIG. 11. Volume vs Pressure Curves at B∗ = 0, 0.15, 0.30. A value of V is chosen so that μ2
2 > 0.
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FIG. 12. Volume vs pressure curve at B∗ = 0, 0.1, 0.25, 0.30. A value of V is chosen so that μ2
2 = 0.

To take a simple example, assume upon setting L we have μ2
1 < 0 all along the V versus P curve at

B∗ = 0 and μ2
2 = 0 at one point on the curve. Except for the value of γ , B∗ is known once we have

agreed on an experiment.

FIG. 13. Volume vs pressure curve at B∗ = 0, 0.15, 0.30. A value of V is chosen so that μ2
2 < 0.
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FIG. 14. A graph of B†
∗ as a function of L. Note that λ2

1 = 0 = μ2
2 at each point on the curve and that V

changes along the curve.

Now what we know is that for each V there is a value of B∗ such that λ2
1 = 0 and as we decrease

V the value of B∗ increases until we arrive at V , say V †, such that B∗ = B†
∗, i.e., λ2

1 = 0 = μ2
2. Thus,

for any L we can plot B∗ versus V at λ2
1 = 0 i.e, the locus of turning points, where B∗ is less than

B†
∗, and V is greater than V †, and where B†

∗ and V † depend on L.
Then the measurement is V at critical i.e., at λ2

1 = 0, along with the shape of the critical
eigenfunction, whereupon V implies B∗ implies γ .

[1] D. Myshkis, V. Babskii, N. Kopachevskii, L. Slobozhanin, and A. Tyuptsov, Low-Gravity Fluid Mechanics
(Springer-Verlag, Berlin, 1987).

[2] K. Braake, The surface evolver, Exp. Math. 1, 141 (1992).
[3] J. Rayleigh, On the instability of jets, Proc. London Math. Soc. s1-10, 4 (1878);
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