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Bileaflet mechanical heart valves (BMHVs) have been related to the production of
unphysiological turbulent flow in the ascending aorta. These valves comprise a pair of rigid
blunt plates (leaflets), which are immersed in a confined flow with Reynolds numbers up to
10 000. They are prone to develop impinging leading-edge vortex (ILEV) instabilities [K.
Hourigan et al., J. Fluids Struct. 15, 387 (2001); S. Deniz and T. Staubli, ibid. 11, 3 (1997)]
on the leaflets because of their relatively large chord-to-thickness ratio and their low angle
of incidence. These instabilities can produce strong disturbances between the leaflets which
may contribute to the onset and intensity of turbulent flow in the wake of the valve. The
complex nature of the flow around BMHVs prevents a detailed theoretical analysis of the
underlying instability mechanisms. Therefore, we defined a two-dimensional submodel
of the flow with fixed leaflets, which renders the problem accessible to the rich toolbox of
hydrodynamic stability theory. High-order numerical simulations of this flow configuration
indicated the systolic development of unstable ILEVs on the inner side of the leaflets during
systolic acceleration of the flow. We found that the ILEV instabilities can only be observed
with sufficiently high spatial resolution, which may explain why these phenomena have
not been observed so far in most computational studies of BMHV flow. Orr-Sommerfeld
eigenmodes with high growth rates confirmed the unstable character of this flow. We
further identified a pocket of absolute instability which acts as a wave maker between
the leaflets. Finally, we confirmed that this wave-maker region has a direct effect on
the nonlinear breakdown in the wake of the valve. To this end, the leaflet geometry was
modified such that the ILEV (and the associated wave maker) was eliminated and it was
shown numerically that the wake remains laminar for the modified geometry. The results of
this study are a first step toward a detailed understanding of the hydrodynamic instability
mechanisms which lead to turbulent flow past BMHVs.

DOI: 10.1103/PhysRevFluids.4.123901

I. INTRODUCTION

A. Background

Native heart valves, such as the aortic or mitral valve, may fail due to stenosis or insufficiency.
In severe cases, the diseased valve has to be replaced by a mechanical or biological prosthetic
valve [1]. Mechanical valves feature rigid leaflets, unlike biological valves which possess soft tissue
cusps. Mechanical heart valves are superior to biological valves with respect to durability. However,
they create adverse flow conditions possibly leading to blood damage and thrombosis. Therefore,
recipients of mechanical heart valves receive lifelong anticoagulation therapy to reduce the risks of
thromboembolism and stroke [1,2]. Blood damage and thrombogenicity in a mechanical valve are
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(a) (b)

FIG. 1. (a) Leading-edge view of a St. Jude Medical Regent mechanical valve [17]. The valve leaflets are
hinged in a metal frame housing, which is sutured to the aortic root. (b) Leaflet kinematics of BMHV: (−)
numerical FSI simulation of Borazjani et al. [7] and (◦) experimental investigation of Dasi et al. [3].

believed to be correlated to critically elevated shear-stress levels in the blood flow, which is often
described as turbulent. Mitigation of the turbulent flow in the mechanical valve may reduce the need
for anticoagulation therapy.

B. State of the art

The fluid dynamics of bileaflet mechanical heart valves [BMHVs, Fig. 1(a)] has been largely
investigated by means of experiments [3–5] and numerical simulations [6–9]. All studies emphasize
the presence of unsteady flow events past the mechanical valve, where various hydrodynamic
instability waves emerge, evolve, and interact in a confined manner. One can observe, for example,
shear layer instabilities in the wake of the leaflets [3], flow oscillations in and over the sinuses
of Valsalva (cavities in the aortic wall downstream of the valve), as well as instabilities due to
flow pulsatility. More recent work highlighted the importance of small-scale structures on the
hemodynamic performance of BMHVs [5,9]. Bellofiore et al. [5] performed a series of high-
resolution particle image velocimetry (PIV) experiments in an up-scaled model of a fully open
BMHV model. Their instantaneous velocity fields showed large vortices coming from the region
between the two leaflets (central orifice) which enter the wake of the valve. They suspected that
the boundary-layer separation due to adverse pressure gradients between the leaflets might be the
primary mechanism for the generation of these vortices. It can be hypothesized that such vortices
may also be a result of the flow impingement at the blunt leading edge of the leaflets, similar to
the instabilities observed in the flow around blunt plates at moderate Reynolds numbers [10–12].
These instabilities, for blunt plates of high aspect ratio and at low angle of incidence, are known
as impinging leading-edge vortex (ILEV) instabilities [13,14]. ILEV instabilities are believed to
involve Kelvin-Helmholtz instabilities in the separated shear layers, and instabilities which are
responsible for large-scale shedding [13,15].

C. Bottom-up approach to study BMHV flow instabilities

A detailed understanding of the instability mechanisms in BMHVs is a prerequisite for under-
standing the laminar-turbulent transition in this valve. Nevertheless, the hydrodynamic stability of
BMHVs has received only limited attention, mainly due to the complex nature of the flow system
comprising fluid-structure interaction, laminar-turbulent transition, and turbulence. Most previous
investigations have tried to include as much complexity in their models as possible to reproduce all
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phenomena. Although this has resulted in a great body of quantitative and qualitative knowledge,
it has left several basic and important questions unanswered because multiple phenomena are
at work simultaneously, which makes it nearly impossible to isolate different mechanisms. As a
result, it remains unclear what types of flow instabilities are present and what role they play in the
laminar-turbulent transition process. Therefore, it remains also unknown where these instabilities
originate and how they could be suppressed. We propose to approach these questions in a bottom-up
approach which breaks down the full problem into submodels such that the phenomena can be
studied in an isolated and focused manner. In the same manner as results of hydrodynamic stability
theory for canonical boundary layers are successfully applied in the design of full airplane wings,
we hope that the present study of a BMHV submodel can be a first step toward establishing a solid
theoretical basis which can eventually contribute to a better understanding of the flow past heart
valves in its full complexity.

To this end, we define a two-dimensional submodel of a BMHV to resolve ILEV structures and
study their linear stability on the leaflets of BMHVs during the acceleration phase of systole. This
time window is believed to accommodate the early stages of laminar-turbulent transition in the
wake [8].

The limited complexity of this submodel allows one to use well-established tools of hydro-
dynamic stability theory, which can provide deeper insight into the basic mechanisms of the
underlying flow configuration. Moreover, the reduced complexity allows us to use very high
numerical resolution (see Sec. II), such that flow features can be resolved which have slipped
previously through the coarser meshes of complex top-down models of heart valves.

D. Outline

In this study, we performed two-dimensional direct numerical simulations (2D-DNS) of the flow
in this submodel of the BMHV. The simulation results showed vortex shedding on the inner side
(closer to centerline) of both leaflets. The shed vortical structures were observed to grow in size
while traveling downstream, and to drive the breakdown of Burgers-like vortices issuing from the
trailing edge of the leaflets. This breakdown resulted in a chaotic wake flow, rich in small- and
large-scale vortices. To better understand these processes, we studied the stability of ILEV structures
that were identified in the 2D-DNS using viscous parallel linear stability theory. Unstable temporal
eigenmodes were found in the area between the separation point and the first emergence of waviness
in the detached shear layer downstream of the leading edge. Remarkable agreement was found
between results from linear stability theory and 2D-DNS data with respect to the phase speed of
the most unstable eigenmodes. Inspired by the existence of reverse flow zones in the ILEV, the
absolute or convective nature of these instabilities was examined with the method of cusp maps
[16], which was applied to time-averaged separated flow profiles. This analysis revealed a pocket of
absolute instability located approximately three thickness lengths downstream of the leading edge
of the leaflets. To demonstrate the pivotal role of absolute instabilities in laminar-turbulent transition
in BMHVs, we proposed a modified leaflet geometry which eliminates the wave-maker region
between the leaflets of the BMHV. 2D-DNS of the systolic flow in this configuration showed no sign
of recirculation or flow oscillations between the leaflets. In the absence of ILEV instabilities, the
wake structures also remained laminar. The linear stability analysis of the boundary-layer profiles
in the modified model confirmed a linearly stable flow at the leading edge. Convective instabilities
with significantly lower growth rates than those in the original model were found only farther
downstream. This outcome supports the hypothesis that the elimination of absolute instabilities
in the ILEV results in less vorticity production behind a BMHV.

The remainder of this paper is organized as follows. In Sec. II, we define the governing equations,
the geometrical model, and the boundary conditions used for direct numerical simulations. In
Sec. III, we discuss the presence of ILEV structures on the inner surface of the leaflets, as well
as their interaction with other instability mechanisms. In Sec. IV, we investigate the temporal linear
stability of the flow profiles along the ILEV and compare them to 2D-DNS data. In Sec. V, we apply
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the method of cusp maps to investigate the absolute or convective instability of the time-averaged
flow profiles, where we identified pockets of absolute instability. We then propose an alternative
leading-edge geometry, which successfully eliminates the flow separation and absolute instability
between the leaflets, and also eliminates the breakdown of laminar structures behind the valve.
Section VI concludes this paper.

II. PROBLEM DEFINITION

A. Governing equations and flow solver

We model the flow with the nondimensional Navier-Stokes equations for incompressible flows,

∂ũ
∂ t̃

+ ũ · ∇̃ũ = −∇̃ p̃ + 1

Re
∇̃2ũ + f̃, ∇̃ · ũ = 0, (1)

where ũ denotes the velocity field, p̃ stands for pressure, and f̃ is the body force density. Note that
nondimensional quantities and operators are indicated by ·̃. The Reynolds number is defined as

Re = U0L0

ν
, (2)

where U0 = 0.75 m/s, L0 = 3 × rr = 36 mm, and ν = 2.7 × 10−6 m2/s are the velocity scale,
length scale, and the kinematic viscosity (ν = ρ/μ), respectively. The velocity scale U0 corresponds
to one-half of the inflow velocity at peak flow rate.

Equations (1) are solved using a sixth-order finite-difference scheme in space on a staggered
Cartesian grid, and a third-order explicit low-storage Runge-Kutta scheme in time [18]. The solver
has been exhaustively validated and used to study various transitional flows [19–23]. Sharp-interface
immersed-boundary techniques are used [24–26] for the integration of complex surfaces (e.g., valve
leaflets) into the Cartesian grid solver. The order of grid convergence close to the boundaries is
limited to second order due to the immersed-boundary method.

B. Two-dimensional BMHV submodel

1. Planar geometry

The problem geometry (Fig. 2) corresponds to a perpendicular cut through the valve and the
aortic root open in their plane of symmetry. This geometry is justified by the flat design of the
leaflets, the inherent symmetry of the BMHV, as well as the two-dimensional structure of ILEV
instabilities which were observed in the proximity of blunt plates [13]. Furthermore, this plane
features the highest local Reynolds numbers because of the high velocities near the centerline, and
is therefore a good candidate for studying ILEV instabilities.

2. Kinematic assumptions

Leaflet kinematics of the BMHV [Fig. 1(b)] include a rapid opening (�t ≈ 20 ms) at the onset of
systole [27], a longer phase (�t ≈ 350 ms for a typical heart rate at rest) where the leaflets remain
fully open, and an abrupt closing (�t ≈ 25 ms) [3,7,28]. The valve leaflets remain in the fully
open position at a low angle of incidence (5◦) during a large part of systole, which is the suitable
configuration for creating ILEV instabilities, as for larger angles of incidence the flow phenomena
will be different than ILEV [29]. From the time period that the leaflets are fully open, we narrow
our focus to the systolic acceleration phase, which spans approximately 200 ms.

The angle of incidence for the fully open BMHV is fixed at 90◦ − θ = 5◦, which corresponds
to the opening angle of a widely used type of BMHV. Experimental studies have confirmed that
this angle remains fixed and stable throughout systole [3,27]. Modifications of the BMHV design to
reduce this angle are known to interfere with the valve kinematics [30].

The ILEV development at the leading edge is observed to be a rapid process; therefore, its
instabilities are expected to be active nearly as long as the valve is fully open. The early dynamics
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FIG. 2. (a) Submodel of the BMHV in the aortic root. The 2D cross sections of leaflets in their plane of
symmetry are shown in (1) open and (2) closed states. Cavities AEB (deeper) and CFD (shallower) represent
aortic sinus and valve commissure, respectively. All geometrical parameters of the model are given in Table I.
(b) Acceleration wave form used in the 2D-DNS. The horizontal dashed line marks the peak flow rate,
corresponding to a mean flow velocity Uin = 2U0.

of these instabilities might be affected by the valve opening process, which involves a few transient
vortices which are created during opening and then convected away quickly past the valve [31].
Given the short presence of these structures near the leading edge, we proceed to neglect these
effects in our study. Therefore, we assume leaflets in the fully open position in our model, similar
to the model with fixed leaflets used by [5].

3. Aortic root model

We define our two-dimensional model based on the aortic root model proposed by Haj-Ali et al.
[32]. In the aortic root model, we placed the leaflets of a St. Jude Medical Regent valve [Fig. 1(a)]
in the fully open position [red in Fig. 2(a)]. The bigger cavity on the left side (∂�s) represents the

TABLE I. Geometrical parameters of the two-dimensional model.

Parameter Notation Value

Root radius rr 12 mm
Sinus radius rs 1.40rr

Commissure radius rc 1.25rr

Ascending aorta radius ra 1.10rr

Cavity downstream length h1 0.60rr

Cavity upstream length h2 0.80rr

Leaflet length ll 1.15rr

Leaflet thickness δl 0.09rr

Hinge longitudinal position xh −1.57rr

Hinge radial position rh −0.11rr
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sinus of Valsalva, while the shallower cavity on the right represents a valve commissure (∂�c). The
base of the aortic root (∂�r) is modeled by two parallel walls upstream of the cavities. Downstream
of the cavities, two parallel walls model the ascending aorta, which has a larger diameter than the
aortic root [32]. Throughout this paper, we refer to the sides of the leaflets facing the centerline
as the inner side, and to those facing the cavities as the outer side. Since our model is designed to
capture instabilities close to the leaflets, which are relatively far from the aortic wall, we neglect
aortic wall distensibility and assume that the root geometry is rigid.

4. Boundary conditions and flow forcing

The flow is smoothly accelerated from zero to the mean velocity of Uin = 2U0 at t = 200 ms
[Fig. 2(b)]. No-slip boundary conditions are imposed on the rigid valve leaflets and aortic root
boundaries. Periodic boundary conditions are used in the flow direction, and the systolic wave form
is forced using a fringe region technique [33] upstream of the valve,

f̃ = λ(x)(̃u − û(t )), (3)

where λ(x) is the fringe function and û(t ) is a uniform flow profile. The amplitude of û(t ) and the
fringe function λ(x) are tuned ad hoc to yield the desired systolic acceleration [Fig. 2(b)]. The fringe
forcing enforces the given inflow profile, while it simultaneously damps out the outflow disturbances
reentering the domain at the inflow, due to periodic boundary conditions.

C. Grid resolution

A very high grid resolution with approximately 5.1 M (1024 × 5120) grid points in a rectangular
domain of size 3rr × 15rr was used to deal with the nonconforming geometry of the leaflets and
also to resolve the spatiotemporal instability waves and their interactions. The grid accommodated
31 grid points along the blunt edge of each leaflet (corresponding to a uniform grid spacing of δh ≈
35 μm) to ensure that the flow impingement is fully resolved. A Courant-Friedrichs-Lewy (CFL)
number of 0.1 has been set. We chose a low value for the CFL number to reduce time-integration
errors. This resulted in an average time-step size of dt ≈ 5 × 10−6 s. The computations required
6000 core × hours on a Cray XC40/50 supercomputer to simulate 200 ms of the cardiac cycle.

III. INSTABILITIES IN THE BMHV SUBMODEL

A. Evolution of vorticity fields

Figure 3 shows three snapshots taken from 2D-DNS of the flow throughout the systolic
acceleration, illustrating the evolution of vorticity (ωωω = ∇ × u). These snapshots indicate the
following phenomena:
(1) an instability starting at the trailing edge of each leaflet which leads to an array of Burgers-like
vortices [34, p. 272];
(2) vortex sheet roll-up in both cavities without notable interaction with the bulk flow structures,
except at late stages;
(3) stable Falkner-Skan-type boundary layers with favorable pressure gradients on the outer side of
the leaflets;
(4) unstable impinging leading-edge vortices (ILEVs) developing on the inner side of the leaflets,
which involves self-sustained oscillations between the leaflets; and
(5) breakdown in the wake due to nonlinear interaction of the vortices emanated from the ILEVs,
with both arrays of Burgers vortices.

Burgers vortices behind the valve sustain their symmetric laminar structure prior to the arrival
and interaction of high-speed vortices, which are detached from the inner side of the leaflets. This
observation is in line with stability characteristics of Burgers vortices, which has been investigated
both asymptotically [35] and at all Reynolds numbers [36]. They were shown to be stable to
three-dimensional perturbations, despite the possibility of transient growth. Therefore, it can be
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FIG. 3. Snapshots of vorticity (left to right: t = 35, 57, 79 ms). Dark blue and light yellow show the
vorticity extrema. Present flow instabilities include (i) Burgers vortices straining in the wake, (ii) vortex sheet
roll-up in the cavities, (iii) Falkner-Skan-type boundary layers (FSBLs) with favorable pressure gradient on the
outer side of the valve leaflets, (iv) stretched ILEV on the inner side of the leaflets, and (v) nonlinear breakdown
in the wake, due to the interaction of vortices shed from the ILEV with Burgers vortices.

speculated that their breakdown can be avoided by the elimination of ILEV instabilities. This
speculation is based on the present 2D theoretical model and it is not unlikely that ILEV may
evolve to 3D structures downstream of their initial growth zone [13]. Nevertheless, Hourigan et al.
[13] suggest that the separating shear layer is invariant in the spanwise direction in the vicinity
of the leading edge; therefore, we assume that the initial instability is two dimensional. Secondary
instability of the ILEV disturbances and exact dynamics of their interaction with the wake structures
will be the subject of future work.

A closer inspection of the impinging flow at the leading edge (Fig. 4, right panel) shows that
an ILEV features velocity profiles similar to those in a separation bubble on aircraft wings at
moderate Reynolds numbers [37–41]. To describe the flow near the leading edge, we introduce
local coordinates ξ and η, which originate on the centerline at the x coordinate of the inner corner
of the leading edge of the leaflet (Fig. 4, left panel). The streamwise coordinate ξ is aligned with the
direction of the bulk flow and the cross-stream coordinate η is perpendicular to ξ . In the following,
we will use the local distance η∗(ξ ) between the leaflets to define the nondimensional coordinate
η̃ = η/η∗(ξ ), such that the inner sides of the leaflets are at η̃ = ±1/2.

The temporal evolution of streamwise velocity profiles taken at ξ = 0.54 mm is shown in the
left panel of Fig. 5 at different times t . At later times (t > 20 ms), the velocity profiles attain
a self-similar shape. On the right panel of Fig. 5, normalized streamwise velocity profiles are
illustrated at four streamwise locations (ξ1 = 0.54, ξ2 = 1.08, ξ3 = 1.62, ξ4 = 2.16 mm). With
increasing distance from the separation point, these profiles become flatter and more self-similar.
The profiles were taken at t = 29 ms when vortex shedding had already started farther downstream.
In general, the ILEV zone rapidly grows and stretches as the flow accelerates. The ILEV flow
becomes oscillatory at approximately two-plate-thickness lengths downstream of the separation
point. This waviness is more pronounced farther downstream and finally results in the shedding
of larger vortices into the bulk flow, which travel nearly half as fast as the mean flow velocity.
The streamwise and temporal evolution of vorticity waves obtained from 2D-DNS is illustrated in
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FIG. 4. Right: Fully resolved flow impingement resulting in an ILEV on the inner side of the leaflet near
the leading edge. The stagnation point (◦) is closer to the outer side than the inner side of the leaflets, where the
ILEV is located. Falkner-Skan boundary layers (FSBLs) remain attached on the outer side of the leaflets. The
curved dashed line on the inner side shows the extent of the ILEV. The oscillatory tail of the ILEV is not shown
here. The vertical dash-dotted line shows the centerline. Left: Local coordinate system used for the stability
analysis within the laminar part of the ILEV. ξ is the streamwise axis whose origin is on the centerline at the x
position of the separation point. η is the cross-stream axis, which extends between the two leaflets. U (η) shows
a typical local streamwise velocity profile, which comprises a zone of reverse flow (U < 0) near the leaflet
surface and a zone of forward flow (U > 0) towards the centerline.

FIG. 5. Left: The temporal evolution of streamwise velocity profiles taken at ξ1 = 0.54 mm downstream
of the separation point (ξ = 0). The arrow with label t shows progress in time, starting from t = 1.4 ms to t =
36 ms, with marching step of 4.3 ms. Right: Streamwise velocity profiles taken at t = 29 ms at four locations:
ξ1 = 0.54 mm, ξ2 = 1.08 mm, ξ3 = 1.62 mm, and ξ4 = 2.16 mm.
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Fig. 7. It shows vorticity data that were extracted from 2D-DNS along a line parallel to the ξ axis
and originating at the separation point.

Flow separation at the leading edge of blunt flat plates has been addressed in several studies
[10,12,13,29,42]. Cherry et al. [42] were among the first to measure the velocity and pressure
fluctuations due to flow separation near the leading edge of blunt plates at Reynolds numbers
as high as 32 000. They reported stretched bubbles forming downstream of the separation point,
which maintained self-similar profiles until nearly 60% of the bubble length. Downstream of the
bubble, they observed departures from self-similarity, which they attributed to reattachment effects.
Nakamura et al. [10] have studied the flow around square-edged flat plates, with chord-to-thickness
ratios ranging from 3 to 16, at Reynolds numbers (based on plate thickness) in the range of 1000
to 3000. Their smoke visualizations showed pronounced vortex shedding on the surface of the
blunt plates, which they related to impinging shear-layer instability, that is, the instability of the
separated shear layer due to interaction with a sharp trailing-edge corner. They also showed that for
the chord-to-thickness ratio of 8, the structure of the separated shear layers near the blunt edge is
first laminar and two dimensional. Ohya et al. [12] studied a similar problem at Re = 1000, and
chord-to-thickness ratio ranging from 3 to 9 using two-dimensional numerical simulations. They
confirmed that the impinging shear layer instability agrees well with experiments of Nakamura
et al. [10]. It is worth mentioning that according to Stokes and Welsh [11], a nonsmooth leading
edge featuring sharp corners is not the primary cause of flow separation, as that can also be triggered
by smoothed leading-edge geometries. The mechanism of trailing-edge vortex shedding and the role
it plays in completing a feedback loop by triggering the leading-edge instabilities was examined by
Hourigan et al. [13]. These studies motivate similar investigations for the BMHV model, although
there are several differences between the flow configurations, e.g., the nonzero angle of incidence,
the nonsquare shape of the leading edge, the number of the plates, and their confinement within a
bounded geometry.

B. Role of spatial resolution on ILEV structures

Although ILEV structures are well documented by numerical simulations of canonical flows
around blunt plates with aspect ratios similar to that in BMHVs (e.g., [13]), they have not been
observed so far in the most numerical simulations of BMHVs (e.g., [6,9]), which may be due to
insufficient spatial resolution around the leaflets. To the best of our knowledge, ILEV structures
have been shown for BMHVs so far only by Zbavitel and Fialová [43], who demonstrated that
these structures can only be captured with sufficiently resolved direct numerical simulations. They
showed, in particular, that the unsteady Reynolds averaged Navier-Stokes (URANS) approach as
opposed to DNS fails to resolve the flow instabilities between the valve leaflets. They further
discussed the pronounced effect that these leading-edge instabilities have on the velocity magnitude
in the wake, yet did not study the type and quantitative behavior of the instabilities (for instance,
spatial and temporal frequencies) that they observed. In agreement with their finding that these
structures are difficult to resolve numerically, we were able to confirm that ILEV instabilities are
suppressed for too coarse spatial resolutions. Convergence (based on the local half wavelength
of instability waves within the ILEV zone) was only found for at least 31 grid points per leaflet
thickness, which corresponds to a uniform grid spacing of δh = 35 μm (Fig. 6, left). The ratio of the
converged grid spacing to the wavelength of the local ILEV instability (2κξ ) was found to be δ̃h,κ =
δh/2κξ ≈ 0.035. Coarse simulations did not exhibit any waviness in the ILEV structures (cf. inset of
Fig. 6, left). Likewise, we observed convergence for impinging streamwise velocity profiles taken
at a cross section shortly upstream of the leading edge for similar levels of resolution (Fig. 6, right).

IV. LINEAR STABILITY OF THE ILEV

A. Viscous temporal instability

We proceed to investigate the linear temporal stability of the local velocity profiles in the
ILEV. To make progress, we idealize the flow configuration and assume locally parallel flow. This
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FIG. 6. Left: Effect of spatial resolution on the development of instability waves in the ILEV. This panel
demonstrates the convergence of the local half wavelength κξ in the function of the grid spacing δh. The
inset shows transversal velocity profiles for the converged simulation (δh = 35 μm) and for the coarsest grid
(δh = 280 μm) slightly after the onset of oscillations at t = 35 ms. Profiles are taken along a streamwise line
extending from ξ = 3 to 5 mm at a radial position of r = −1.08 mm. κξ is quantified in the same interval. No
waviness is observed for the coarse simulation. Right: Convergence of the streamwise velocity profile slightly
upstream of the separation point (ξ = −1.4 mm) at t = 27 ms.

assumption is justified here by the small angle of incidence of the leaflets (5◦) and the high aspect
ratio of the stretched recirculation zone between the leaflets. It will be further justified a posteriori
by the good agreement between the results from local stability analysis with the nonlinear simulation
data.

Substituting the parallel flow profile Ũ = u(ξ1, η, t1)/Umax,ξ1 at a given streamwise location ξ =
ξ1 and at time t = t1 in the linearized Navier-Stokes equation leads to the classical Orr-Sommerfeld
equation,

{D4 − 2α̃2D2 + α̃4 − ĩαReη[(Ũ − c̃)(D2 − α̃2) − Ũ ′′]}v̂ = 0, (4)

where D = d/d η̃. α̃ = 2π/̃λ and c̃ = ω̃/α̃ are the complex wave number and phase speed in
the disturbance ansatz [û(̃η), v̂ (̃η)]eĩα(ξ−c̃t ). The reference velocity Umax,ξ is the local maximum
streamwise velocity at ξ . The local Reynolds number Reη is then defined as

Reη = Umax,ξ η
∗

ν
. (5)

We seek temporal instability waves with Im(̃c) > 0 and α̃ ∈ R. To this end, we discretize Eq. (4)
using sixth-order finite differences, which results in a complex generalized eigenvalue problem of
the form

A(Reη, Ũ , α̃)v̂ = −ĩcB(̃α)v̂. (6)

Homogeneous boundary conditions

v̂ (̃η) = ∂̃ηv̂ (̃η) = 0, η̃ ∈
{

0,−1

2

}
, (7)

are discretized and integrated in A and B. To save computational time and owing to the prominent
symmetry of the velocity profiles (cf. Fig. 5), only half of the profile is considered which is also
reflected by the symmetry boundary condition at η̃ = 0. We have computed the Orr-Sommerfeld
(OS) spectrum for a few base flows spanning the full profile and verified that nearly double
eigenvalues are recovered.
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FIG. 7. Left: Vorticity waves evolving in time t and space ξ near the leading edge. Vorticity data are taken
from 2D-DNS results along a line extending in the ξ direction from the separation point (ξ, η) = (0, 0 mm)
to ξ = 16 mm. The light yellow and dark blue colors on the background illustrate positive-maximum and
negative-minimum vorticity, respectively. Solid white points indicate six base flows, e1,2,3,4,5,6. The slopes of the
solid white lines indicate the phase velocity of the corresponding least stable eigenmodes. Right: Dimensional
local growth rates ωi = αci (◦, right axes) and wave numbers α (•, left axes) of the most unstable modes for
base flows taken along the ξ axis at times t = 60, 70, 80 ms.

It is not straightforward to extract base flow profiles from 2D-DNS in regions where strong
instabilities and vortex shedding are present. This is the case on the downwind side of the ILEV
(e.g., ξ > 3 mm in Fig. 7) and we will investigate the origin of such oscillations later in this paper.
Meanwhile, we apply local temporal theory for the flow states where temporal flow oscillations are
sufficiently small (less than 5% oscillations due to flow development or weak flapping). We have
confirmed that these small oscillations have no significant effect on the computed growth rates of the
instabilities. Figure 7 illustrates results for six different base flows obtained at six different positions
ξ and times t (white points e1,...,6 on the left panel).

The phase speeds (cr) of the most unstable temporal eigenmodes are indicated by the white
lines extending from the corresponding white points. A comparison of these results to the 2D-
DNS data in Fig. 7 shows that parallel linear theory can offer a remarkably good prediction of
the flow oscillations initiating after the separation point, as the white lines are well aligned with
the adjacent vorticity traces observed in 2D-DNS. Numerical data for these modes are summarized
in Table II.
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FIG. 8. Eigenvalue spectra (left) and the disturbance velocity field corresponding to the most unstable
modes for base flows e1 (middle, top) and e4 (middle, bottom). ξ̃b is the streamwise location of the base flow.
The light yellow and dark blue colors on the background illustrate positive-maximum and negative-minimum
streamwise velocity, respectively. The white lines show streamlines. Normalized base flow profiles are shown
for e1 (right, top) and e4 (right, bottom). The location of inflection points (U ′′ = 0) is marked with circles on
the right panel.

In general, we find that nearly all base flows past the separation point are linearly unstable. This
is illustrated in the right panel of Fig. 7, which shows growth rates ωi = αci and wave numbers α

for various profiles along the ξ axis at three different points in time (t = 60, 70, and 80 ms). These
results show that wave number and growth rate of the least stable mode decrease while moving
downstream.

Note that the base flow e1 has been taken at a much earlier stage than the other base flows, where
unsteady and oscillatory effects of the developing flow were quite strong. Nevertheless, the local
stability analysis still produced results in good agreement with 2D-DNS data. The different stability
characteristics of e1 are further illustrated in Fig. 8, where eigenvalue spectra and the streamwise
disturbance velocity field corresponding to the most unstable eigenmodes of base flows e1 and e4

are shown on the left and middle panel, respectively (eigenfunctions and spectra for e2,3,5,6 are
qualitatively the same as for e4). On the right panel of this figure, the base flow profiles for e1 and
e4 are given. The middle and right panels of Fig. 8 show that the inflection point in the base flow
profile U coincides in location with the maximum value of the streamwise velocity disturbance
for e4 (as opposed to e1). This suggests that the unstable eigenmode for the e4 base flow has
inviscid character (free shear-layer eigenmode), whereas the unstable eigenmode for the e1 base
flow is probably of viscous character (Tollmien-Schlichting-type eigenmode). Such differences in
the instability character have been attributed by Rist and Maucher [44] to the influence of the wall
on the instabilities in the shear layer.

TABLE II. Characteristics of the base flows e1,2,3,4,5,6 and their associated most unstable modes (cf. Fig. 7).

Base flow t (ms) ξ (mm) Reη α (m−1) α̃ ωi,max (s−1) ω̃i,max cr (m/s) c̃r

e1 29 3.78 2536 1250 5 310 0.72 0.30 0.17
e2 43 0.54 2564 4294 18 2120 3.55 0.92 0.45
e3 51 1.08 2779 4142 14.5 1847 3.02 1.00 0.46
e4 57 1.61 2990 3611 13 1678 2.69 1.05 0.47
e5 67 1.80 3103 3243 12 1575 2.54 1.07 0.47
e6 76 2.16 3322 3571 12.5 1635 2.49 1.12 0.46
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B. A posteriori analysis for sufficient timescale separation

The applicability of the Orr-Sommerfeld equation is not guaranteed per se because it assumes
that the base flow U is steady, whereas the studied base flow is accelerated. Therefore, here we
demonstrate a posteriori that there exists sufficient timescale separation between the base flow and
the growth of the unstable modes such that the base flow can be considered quasisteady for the
stability analysis. The remarkable alignment of the theoretical results with 2D-DNS data can be
taken as a supporting evidence that sufficient timescale separation of the perturbation modes occurs
in this case. In addition to this qualitative evidence, we attempt to define a quantitative necessary
criterion for ensuring timescale separation. Our analysis starts with the linear decomposition of the
velocity field u to a base flow U and a perturbation u′,

u = U + u′, (8)

with ‖u′‖ = ε‖U‖ and 0 < ε 	 1; ‖ · ‖ is defined here as

‖ f (̃η)‖ =
√∫ 1/2

−1/2
f (̃η) f ∗ (̃η)d η̃, (9)

where f ∗ denotes the complex conjugate of f . Introducing the normal-mode ansatz for a perturba-
tion at ξ = ξb leads to

u(ξb, η, t ) = U (ξb, η, t ) + û(ξb, η)e−iωt . (10)

Taking the time derivative of this equation gives

∂t u = ∂tU − iωûe−iωt . (11)

In order to have sufficient timescale separation, the first term on the right-hand side must be much
smaller than the second term,

‖∂tU‖ 	 ‖ − iωûe−iωt‖. (12)

Dividing both parts of this inequality by ‖U‖ results in

‖∂tU‖
‖U‖ 	 ‖−iωûe−iωt‖

‖U‖ � |ωi| ‖ûe−iωt‖
‖U‖ = |ωi| ‖u′‖

‖U‖ = |ωi|ε. (13)

Therefore, for a disturbance to grow much faster than the base flow, it is necessary to have

G = ‖∂tU‖
|ωi|‖U‖ 	 ε 	 1. (14)

We compute G for the base flows e1,...,6. The results are plotted in Fig. 9. If we choose, for example,
ε = 0.1, we find that G 	 ε 	 1 is satisfied for all base flows except for e1, where G ≈ 0.2. As
mentioned before, this result is likely due to the rapid development of the ILEV at e1. Nevertheless,
a good agreement with 2D-DNS data was also found for this base flow (cf. Fig. 7). Therefore,
we conclude from this a posteriori analysis that there is sufficient timescale separation between
the base flow acceleration and hydrodynamic instabilities, and this justifies the applicability of the
Orr-Sommerfeld equation (4).

V. ABSOLUTE INSTABILITY OF THE ILEV

A. A brief overview

Hourigan et al. [13] conjectured that the weak flapping of the separated shear layer from the
leading edge of blunt plates [42] might be caused by local absolute instabilities. Even though Soria
and Wu [45] showed that the instabilities in the ILEV are predominately of a convective nature,
even a small pocket of absolute instability can act as a wave maker, which then contaminates the
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FIG. 9. The timescale separation parameter G for six base flows, e1,2,3,4,5,6.

flow with disturbances in downstream and upstream directions. We therefore study the absolute or
convective nature of the flow instabilities in the ILEV developing in BMHVs.

B. Mean flow calculation and the cusp map procedure

We aim at obtaining unperturbed base flow profiles of the extended ILEV region. Such base
flow profiles must be extracted with great care from DNS or experimental data of a flow containing
absolute instabilities because the flow fields are typically contaminated with strong fluctuations.
Here, the stability analysis is performed on a mean flow field instead of an actual steady-state base
flow because we were unable to achieve artificial stabilization of the ILEV in the BMHV model
by selective frequency damping [46]. Several other studies have used mean flow fields as the base
flow with excellent results (e.g., [47,48]), and some authors even preferred a mean flow over a
steady-state base flow arguing that it factors in some nonlinear effects [49,50]. We obtain the mean
flow by averaging the flow fields u over time after normalizing them with respect to the maximum
velocity Umax,ξ=0(t ) at the streamwise location ξ = 0,

u(ξ, η) = 1

T

∫ t0+T

t0

u(ξ, η, t )

Umax,ξ=0(t )
dt . (15)

Accordingly, we modify the Reynolds number Reη [Eq. (5)] by using Umax,ξ=0(t ) as the reference
velocity. Statistical invariance of the normalized averaged velocity fields is confirmed by comparing
velocity fields which were averaged over different time intervals. The time-averaged flow field and
velocity profiles taken at two locations within the ILEV are shown in Fig. 10. Slight asymmetries in
the velocity profiles can be attributed to the cavities (∂�s,c), which are not symmetric. There exists
a small secondary recirculation at ξ ≈ 3.5 mm.

For the absolute instability analysis, Eq. (4) is used as dispersion relation for the instability waves
[D (̃α, ω̃) = 0]. The method of cusp maps [16] is utilized to identify the absolutely unstable profiles
within the larger pool of convective instabilities. The cusp map procedure requires mapping from
the α plane to the ω plane. To this end, a set of purely imaginary and parallel rays are selected in
the complex α plane such that their mappings in the ω plane are located beneath the mapping L of
the Fourier-inversion contour F , which is the contour obtained for α̃i = 0. The mappings of the α

rays eventually lose their angle-preserving property, which marks the presence of a branch point.
Branch points with positive ω̃i indicate an absolute instability, whereas negative ω̃i correspond to
convective instabilities.
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FIG. 10. Top: Time-averaged streamwise (ū) and transversal (v̄) velocity profiles taken at ξ = 3.24 mm
(left) and ξ = 4.75 mm (right). Bottom: Time-averaged normalized flow field used for the absolute instability
analysis. Colors show the streamwise velocity (red: negative velocities). Dotted lines are the contours of zero
streamwise velocity. Averaging is performed from t = 57 to 100 ms.

Branch points were obtained for base flow profiles at multiple locations along the ILEV. The
flow profiles taken in the range from ξ = 2.8 to ξ = 4.7 mm were found to be absolutely unstable.
Although this range includes the secondary recirculation zone, we verified that the secondary
circulation is not a necessary condition for the absolute instability. Exemplary cusp maps for two

FIG. 11. Cusp maps for an absolutely unstable (left, α̃0 = 10.0 − 6.8i, ω̃i,0 = 0.22) and a convectively
unstable (right, α̃0 = 10 − 8.3i, ω̃i,0 = −0.4) flow profile. The base flows for the left and right panels are taken
ξ = 3.2 mm and 2.7 mm, respectively.
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FIG. 12. Snapshots of vorticity (left to right: t = 35, 57, 79 ms) when the leaflets’ leading and trailing
edges are rounded to circular profiles. Dark blue and light yellow show the vorticity extrema. The occurrence
of the ILEV instability on the inner side of the leaflets is delayed and the location of oscillations is shifted
farther downstream, but the instability is not eliminated.

base flows featuring convective and absolute instability are shown in Fig. 11. These results indicate
the existence of a relatively large wave-maker region between the valve leaflets, which is collocated
with the vortex shedding area observed in 2D-DNS.

C. Absolute versus convective instabilities

1. Making a simple case to eliminate the wave-maker region

As discussed earlier, Ref. [11] showed that vortex shedding at the leading edge of blunt plates
can also occur for rounded geometries. We also show here by means of 2D-DNS that a circular
shape for the leading edge only moves the ILEV instabilities farther downstream, but it does not
eliminate the instability (Fig. 12). Therefore, the sharp edges of the BMHV leaflets may not be
the primary cause for ILEV instabilities. We confirmed this in numerical experiments where the
leading edges of the leaflets were smoothed. We found, for example, that a circular leading-edge
geometry fails to eliminate the ILEV instabilities. Alternatively, we modified the leaflet geometry
as shown in Fig. 13, with the aim of decreasing the cross-stream component of the impinging flow.
To this end, the wedge geometry of the leading edge extends to ξ = ll/2, which corresponds to the
approximate time-averaged length of the ILEV. This modified geometry moves the sharp corner C
farther downstream beyond the wave-maker region identified in the previous section. Similar to the
ξ axis defined in Fig. 4, we introduce a coordinate ζ with an origin located at C′.

We show in the following that this modification successfully eliminates the vortex shedding
between the leaflets. It will also be shown that this stabilization of the flow between the leaflets
leads to a sustained laminar flow in the wake of the leaflets.

2. Simulation of the flow in the modified geometry

We perform a 2D-DNS of the flow in the modified leaflet geometry using the same pulse form
shown in Fig. 2(b) and using the same spatial resolution as for the original geometry.
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FIG. 13. Original (top) and modified (bottom) leaflet geometries for passive control of ILEV instabilities.
The leaflet body is more streamlined, such that the separation point C is moved nearly one-thickness-length
downstream of the wave-maker zone, to point C′.

The flow in the modified geometry showed no sign of flow separation between the leaflets.
Reverse flow zones (U < 0) adjacent to the leaflets were no longer presented (Fig. 14) and no
vortices can be observed between the leaflets.

Figure 15 shows that the absence of the vorticity waves originating from the ILEV resulted
in maintained laminar vortex structures in the wake of the leaflets. It is seen, however, that the
vorticity profiles have evolved from Burgers-like structures (Fig. 3) to von Kármán–type vortex
streets [Fig. 15(b)] due to continuous viscous straining. It is verified that the vortex streets remain
structured and exhibit spatial decay.

Finally, we examine the linear stability of the flow between the modified leaflets. We resort to the
same assumptions made in Sec. IV to study the temporal instability of the emerging flow profiles
downstream of point C′ in Fig. 13. No growing temporal modes were found up until approximately
0.6 mm downstream of C′ [Fig. 15(c)]. Instability modes were identified farther downstream, which
were all found to be of the convective type. The lack of absolute instabilities may explain why the
modified geometry did not produce any vorticity between the leaflets.

VI. CONCLUSIONS

The linear instability of the impinging leading edge vortices (ILEVs) developing at the leading
edge of the blunt leaflets of a bileaflet mechanical heart valve has been investigated. A two-

FIG. 14. Left: The evolution of streamwise velocity profiles taken at ζ1 = 0.54 mm. The arrow with label
t shows progress in time, starting from t = 1.4 to t = 36 ms, with marching step of 4.3 ms. Right: Normalized
streamwise velocity profiles are taken at t = 29 ms, for four locations: ζ1 = 0.54, ζ2 = 1.08, ζ3 = 1.62, and
ζ4 = 2.16 mm.
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(a) (b) (c)

FIG. 15. Vorticity fields for the (a) current design and (b) proposed leaflet geometry of the BMHV. The
modification has resulted in complete elimination of the ILEV, its instabilities, and the breakdown behind the
valve model. (c) Growth rates ωi (hollow symbols) and their associated wave numbers α (solid symbols) are
plotted for the least-stable modes at various locations downstream of the roughness point C′, at times t = 60 ms
(
), t = 70 ms (◦), and t = 80 ms (�).

dimensional submodel of the valve is defined to be able to study the systolic ILEV instabilities close
to the center of the leaflets. By means of high-order direct numerical simulations performed on very
high-resolution grids, an unstable ILEV has been identified on the inner side of the valve leaflets.
The stretched ILEV caused active vortex shedding between the leaflets. These vortical structures
grew in size and interacted with organized Burgers-like vortices in the wake of the leaflets. This
interaction resulted in the full breakdown of otherwise stable wake structures into disorganized
small-scale vortices. The temporal instability of the ILEV was investigated using viscous parallel
theory, where Orr-Sommerfeld eigenmodes were calculated for locations within the laminar part
of the ILEV. Base flow profiles were extracted from 2D-DNS. Orr-Sommerfeld eigenmodes of
positive growth have been obtained for all profiles along the laminar part of the ILEV. Despite
several idealizations, the results of local linear stability theory agreed well with 2D-DNS. The
method of cusp maps was then applied to time-averaged flow profiles along the ILEV, where pockets
of absolute instability were identified. A modification in the leading-edge geometry was shown
to eliminate ILEV instabilities, which resulted in maintained laminar flow behind the valve. The
present study clearly illustrates the potential of applying the tools of hydrodynamic stability theory
and laminar flow control to heart valve design.
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