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Electrohydrodynamic generation of atmospheric turbulence
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Ionization produced by cosmic rays and atmospheric radioactivity creates charged
short life-time aerosol droplets in the upper troposphere. Inhomogeneities in the spatial
distribution of aerosol droplets lead to time-varying electric fields and space charge, which
can often be amplified by more than three orders of magnitude in extreme conditions, such
as thunderstorms. The nonlinear coupling between ionized air, charged aerosol droplets,
and the background electric field can result in electrohydrodynamic body forces that
augment atmospheric turbulence. In this paper, a theoretical and numerical study on
the electrohydrodynamic generation of atmospheric turbulence under fair weather and
thunderstorm conditions is presented. Linear stability shows that coupling between ionized
air and a background electric field acts to increase turbulent kinetic energy (TKE) in the
upper troposphere, albeit over long time durations. Direct simulations of charged droplets
in homogeneous shear flow demonstrate a nonlinear feedback mechanism capable of
accelerating the growth rate. Streamwise velocity gradients induce fluctuations in droplet
concentration and electric potential, resulting in a body force that generates vertical
velocity fluctuations. Pressure strain then transfers this energy to turbulent fluctuations
in the streamwise direction and the process repeats. This feedback mechanism was found
to augment TKE at late stages of the shear layer growth.

DOI: 10.1103/PhysRevFluids.4.123701

I. INTRODUCTION

Ionization produced by cosmic rays and atmospheric radioactivity creates charged short life-time
aerosols that have significant spatial and temporal variations in the troposphere [1–4]. In extreme
conditions, such as thunderstorms, this variability has been observed to amplify the local electric
field strength in the atmosphere by more than three orders of magnitude compared to typical
fair weather conditions [5,6]. In the presence of a background electric field, gradients in space
charge generate an electrohydrodynamic (EHD) body force if the gas is ionized. The EHD force
that arises due to coupling between an electric field, ionized air, and charged aerosols has been
shown experimentally to produce instabilities that trigger the onset of turbulent motion in quiescent
aerosol clouds [7]. While EHD instabilities are known to induce turbulence in ionized fluids, such as
electrolytic cells [8], liquid films [9], and electrostatic precipitators [10], and similar instabilities due
to magnetohydrodynamics exist in plasmas [11–13], its role in augmenting atmospheric turbulence
is less established.

Recent studies have shown that detailed interactions between turbulence and aerosol droplets
can give rise to preferential concentration of charged particles capable of self-inducing atmospheric
electricity [14,15], which might amplify the aforementioned effects. Depending on the sign and
magnitude of the charge each particle carries, these self-induced electrical fields can either mitigate
or enhance the level of clustering [15–17]. Preferential concentration describes the accumulation
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of inertial (heavy) particles or droplets away from highly vortical regions of the turbulent flow
[18–22]. When the timescale of the particles is on the same order as the turbulent eddies, particles are
directed by coherent vortical structures to create nonhomogeneities in concentration and the onset
of clusters. In the presence of gravity, preferential concentration by turbulence has been observed to
cause particles to accumulate near the downward moving side of vortices where the fluid velocity
aligns with the direction of gravity [23–25]. The gravitational settling of aerosol particles can be
enhanced by this preferential sweeping mechanism by as much as 50% [24]. The collision rate
between monodisperse particles is also considerably lower when gravity is present [26].

Wind shear (mean velocity gradient) ranging from O(10−3)/s to O(1)/s is common in the
atmosphere [27–29]. When particles or droplets are placed within a mean velocity gradient, the
anisotropy of the velocity fluctuations induces a preferential orientation of particle clusters and
modifies their turbulent transport characteristics [30,31]. Recently, a new preferential concentration-
driven instability has been identified for inertial particles suspended in sheared turbulence [32],
showing that two-way coupling between the phases in the presence of mean shear and gravity can
lead to the onset of turbulence.

The motivating hypothesis of the present study is that charged aerosols within the atmosphere
couple nonlinearly with the background electric field and ionized air, resulting in the production
of TKE. We refer to this as a three-way coupling process, whereby velocity fluctuations induce
nonhomogeneities in droplet concentration, resulting in gradients in electric potential that increase
the electric field strength and in turn amplify the gas-phase velocity fluctuations. We seek to identify
under what conditions EHD-induced turbulence is relevant. To this end, a linear stability analysis is
performed for sheared flow in the presence of a background electric field to understand the stability
criteria, relevant nondimensional numbers, and timescales associated with EHD-induced turbulence.
Then direct numerical simulations are carried out with relevant atmospheric parameters at 6 km
altitude to understand the effect of added nonlinearity by aerosol dynamics on turbulence generation.
The TKE budget and growth rate are then reported to assess the significance of EHD for a range of
particle loadings.

II. LINEAR STABILITY OF THE UPPER TROPOSPHERE

A. Governing equations

In this work, the fluid dynamics in the troposphere is modeled according to the incompressible
Navier-Stokes equations, given by

∂u
∂t

+ u · ∇u = − 1

ρ
∇p + ν∇2u + 1

ρ
Fe − �z

∂u
∂x

− �wex, (1)

where ρ is the gas-phase density, u = [u v w]T is the velocity, p is pressure, ν is the kinematic
viscosity, and Fe is an EHD body force. The last two terms on the right-hand side of Eq. (1) are
introduced to account for mean velocity gradients due to wind shear, where � is the shear rate, z is
the vertical position, and ex is the unit vector in the streamwise direction.

Within the upper troposphere, the electric permittivity is close to the vacuum permittivity (ε ≈
ε0 = 8.854 × 10−12 F/m) and can be assumed constant. As a consequence, the EHD body force can
be expressed as Fe = q f E, where the electric field, E = −∇φ, is determined by solving a Poisson
equation for the electric potential φ, given by

∇2φ = −(q f + qp)/ε, (2)

which accounts for both the effect of space charge density in the fluid, q f , and charge density of
aerosol droplets, qp. In the remainder of this study, the terms aerosols, droplets, and particles will be
used interchangeably. Within the first 20 km of the troposphere, there exists a vertical gradient in air
conductivity that gives rise to finite space charge density [33,34], even under fair weather conditions
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FIG. 1. Fair weather atmospheric conditions [37] used to define the background state in the stability
analysis.

(see Fig. 1). We model the transport of space charge as

∂q f

∂t
+ ∇ · (μI q f E − DI∇q f + q f u + q f �zex ) = 0, (3)

where μI ≈ 10−4 m2 V−1 s−1 is the ion mobility at 6 km altitude based on balloon-borne measure-
ments [35] and DI = μI kBT/e is the molecular diffusion coefficient based on the Einstein relation
[36]. Here kB is the Boltzmann constant, T is temperature, and e = 1.6 × 10−19 C is the elementary
charge. Within the first few kilometers of the atmosphere DI ≈ 2 × 10−6 m2 s−1.

B. Linear stability analysis

The flow quantities q f , φ, p, u, and E can be decomposed into a base state and a fluctuating
component as A = A + A′, where

A′ = A0(z) exp(iκxx + iκyy) exp(ωτ ), (4)

with A0 the fluctuation amplitude, κx and κy the horizontal wave numbers, ω the growth rate, and
τ = (μIφ t )/L2 the timescale normalized over a vertical span L. Linearizing (1)–(3) and enforcing
∇ · u = 0, the following set of ODEs of total order 7 can be obtained to find solutions for the
nondimensional fluctuation amplitudes of vertical velocity, f (z) = w0(z)L/[μIφ(z)], and potential,
g(z) = φ0(z)/φ(z), according to[

ω

Pr
− (D2 −α2)

]
(D2 − α2) f = −R

dq f

dz

L3

εφ
α2g− R

EL

φ
(D2− α2)α2g− Sẑβ(D2− α2) f −2SβD f .

(5)

−εE

L2
(D2 − α2)Dg + dq f

dz
Dg + εφ

L3
ω(D2 − α2)g + 2q f

L
(D2 − α2)g = dq f

dz
f . (6)

Here ẑ = z/L, β = L d/dx, and D = L d/dz are the normalized derivative operators, and α =
L
√

κ2
x + κ2

y is the normalized wave number. This analysis yields the following nondimensional

numbers:

R = εφ

μμI
, Pr = μ

ρφμI
, S = ρ�L2

μ
, (7)
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FIG. 2. Critical value of the electric Rayleigh number as a function of vertical span L for different shear
Reynolds numbers S. The system is unconditionally stable when L � 0.707 km (denoted by the vertical dashed
line).

which dictate stability and growth rate. Details on the derivation of the linearized equations and
associated boundary conditions employed in the analysis are given in Appendix B, and a similar
formulation can be found in Schneider and Watson [38] for a charged dielectric liquid film. R is
sometimes referred to as the electric Rayleigh number [10] and represents the competition between
turbulence production due to charge density fluctuations and dissipation due to viscosity. When R
is greater than a critical value Rc, velocity fluctuations will increase with the Coulomb force, and
below Rc the EHD-induced turbulence is damped by viscosity. Pr is the electric Prandtl number, a
measure of electric timescale to the hydrodynamic timescale [38]. S is the shear Reynolds number
that characterizes the importance of mean shear inertial forces to viscous forces over the vertical
span L. Note that since φ is also a function of L, all three nondimensional numbers are functions
of L.

C. Effects of vertical span and shear rate

The ODEs reported in Sec. II B are solved numerically using a fourth-order Runge-Kutta scheme
for a vertical thickness of the atmosphere z0 � z � z0 + L with a base altitude z0 = 6 km. We first
consider base state values corresponding to fair weather conditions within the troposphere [37] (see
Fig. 1). Figure 2 shows the minimum values of Rc such that the flow remains stable over all wave
numbers, α, as a function of vertical span L. It can immediately be seen that the flow becomes more
unstable as the vertical span increases. It is interesting to note that R ≈ 100 in the troposphere, which
corresponds to a vertical span of L ≈ 1 km, consistent with typical cloud thicknesses observed at
those elevations [39].

Wind shear is also known to play an important role in atmospheric dynamics and is responsible
for Kelvin-Helmholtz instabilities that influence the turbulence energy budget [40]. Figure 2 shows
that the system is unconditionally stable for L � 0.707 km regardless of wind shear, but for
L > 0.707 km, Rc decreases with increasing shear rate, demonstrating shear acts to destabilize the
flow, as expected. Even modest values of wind shear, i.e., � > 1 × 10−3 s−1, will lead to values
of S significantly larger than those considered in Fig. 2, affirming that atmospheric electricity
(even in fair weather conditions) is a destabilizing mechanism in the troposphere. We note that
the stability analysis neglects gravity, and thus these findings isolate the role of electric body forces
on atmospheric stability.

Of key interest in the present study is the rate at which small disturbances in the velocity field
grow due to EHD. The growth rate, ω, is obtained using prescribed values of α, R, and Pr. Using
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FIG. 3. Normalized growth of vertical velocity fluctuations under varying shear rates predicted by linear
stability analysis under fair weather (solid fill) and thunderstorm (hatch fill) conditions.

typical fair weather conditions (Pr ≈ 2.5 × 10−6), Fig. 3 shows that the maximum growth of vertical
velocity fluctuations, w′, by EHD is slow, taking approximately 109 s to amplify the fluctuations by
two orders of magnitude. Using values relevant to thunderstorm conditions (E = 3 × 105 V/m and
φ = 2 × 108 V), similar growth is achieved in approximately 103 s. However, despite this enhanced
growth rate, the timescales are still relatively slow, even as the shear rate varies by several orders
of magnitude. It is important to note that the present linear stability analysis does not take into
account detailed aerosol dynamics that are known to be significant in turbulent flows. Numerical
simulations that explicitly take these dynamics into account will be presented in the following
section.

III. NUMERICAL SIMULATIONS

A. Simulation configuration

Direct numerical simulations are performed to study the role of nonlinearities associated with
aerosol dynamics not accounted for in the linear stability analysis. We consider charged particles
suspended in homogeneous shear flow in the presence of a background electric field (see Fig. 4).
The flow field and space charge are initialized using simple turning wave vectors referred to as
Kelvin modes. These wave vectors are initially oriented as upstream waves that rotate as the flow is
being sheared and transform into downstream waves. Kelvin modes are known to first experience a
transient algebraic growth (a bypass transition) to turbulence and decay after they pass the turning
point to downstream waves [41,42]. Nonlinear effects may couple with the initial transient growth
leading to a “bootstrapping” mechanism [43]. If the electrostatic timescale is significantly smaller
than the fluid timescale, heterogeneity in charge distribution may give rise to local EHD body forces
during the transient period and prevent or postpone the fluid TKE from decaying.

We consider a triply periodic domain of length 0.256 m in each direction, discretized using 2563

grid points. The maximum amount of charge each particle can carry is dictated by the Rayleigh
limit, QR = π

√
8εγ d3

p , where γ = 0.0738 N/m is the surface tension coefficient for water droplets
and dp is the particle diameter. The particle charge is taken to be Qp = ± 0.1QR, and the average
particle volume fraction varies between 0 � �v � 2 × 10−3, corresponding to typical aerosol
properties observed in thunderstorm conditions [37,44]. The root-mean-square EHD fluctuations,

(q f E )rms ≡
√

〈(q f E − q f E )
2〉, is fixed as the particle loading varies, where angled brackets denote
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FIG. 4. Simulation configuration for �v = 1 × 10−4. Grayscale shows fluid velocity magnitude, ranging
from 0 (black) to its maximum value (white). Particles are colored by charge: positive (red) and negative
(blue).

a volume average. Given that E is constant and q f = 0, (q f E )rms = 〈q2
f E ′2〉. Since the self-induced

electric field E ′ is proportional to the local particle-phase charge density qp, (q f E )rms ∼ 〈q2
f q2

p〉
is held constant for each simulation. This is done to avoid a trivial solution (e.g., increasing the
effect of EHD with increasing volume fraction) and isolate the effect of particle dynamics on TKE
production. Therefore, as �v increases, q f decreases accordingly (see Table I).

B. Numerics

The fluid-phase equations (1)–(3) are solved on a staggered grid with second-order spatial
accuracy for both the convective and viscous terms, and the second-order accurate semi-implicit
Crank-Nicolson scheme is used for time advancement [45]. Periodic shear boundary conditions
are enforced in the z direction using a discretely conservative algorithm recently proposed by
Kasbaoui et al. [42]. Individual aerosol particles are tracked in a Lagrangian manner [46] governed
by Newton’s second law of motion

dx(i)
p

dt
= v(i)

p and mp

dv(i)
p

dt
= F (i)

drag + F (i)
c , (8)

TABLE I. Parameters used in the homogeneous shear simulations. qf 0 is varied with �v such that

(qf E )rms ∼ √〈q2
pq2

f 〉 is held constant. All simulations are performed with conditions of dp/�x = 0.1 and
� = 1.5.

�v Mean volume fraction 0 1 × 10−4 4 × 10−4 1 × 10−3 2 × 10−3

Np Number of particles 0 3.2 × 106 1.3 × 107 3.2 × 107 6.4 × 107

qf 0 [C/m3] Space charge fluctuation 2 × 10−8 1 × 10−8 5 × 10−9 3.2 × 10−9 2.2 × 10−9

dp Particle diameter 100 μm
Qp Particle charge ± 7.27 × 10−13 C
ρp/ρ f Density ratio 1000
E Background electric field 3.0 × 105 V/m
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where x(i)
p and v(i)

p are the instantaneous position and velocity of particle “i,” respectively, and mp

is its mass. The drag force is modeled according to the standard drag correlation of Schiller and
Naumann [47] as

F (i)
drag = mp

τp

(
u
[
x(i)

p

] − v(i)
p

)(
1 + 0.15Re0.687

p

)
, (9)

where u[x(i)
p ] is the fluid velocity interpolated to the center position of the ith particle, Rep =

|u[x(i)
p ] − v(i)

p |dp/ν is the particle Reynolds number, and τp = ρpd2
p/(18ρν) is the particle response

time. The electrostatic force is given by

F (i)
c = Q(i)

p E
[
x(i)

p

]
, (10)

where Q(i)
p is the charge of the ith particle and E[x(i)

p ] is the electric field at the particle position.
The particle concentrations are low enough such that interparticle collisions and direct two-way
coupling due to interphase momentum exchange can be neglected. Instead, aerosols affect the gas
phase indirectly via their charge distribution.

The aerosol charge density, qp, is obtained by projecting the particle charge to the Eulerian grid
according to

qp(x, t ) =
Np∑
i=1

Q(i)
p W

[
x − x(i)

p (t )
]
, (11)

where W is a second-order accurate polynomial weighting function and Np is the number of
particles. A second-order Runge-Kutta scheme is used for updating each particle’s position and
velocity. Further details about the numerical implementation can be found in Yao and Capecelatro
[15].

Because the simulation domain is periodic, q f and E must be decomposed into mean and
fluctuating components and only q′

f and E ′ are solved for. Equation (2) can be rewritten as
∇2φ′ = −(q′

f + qp)/ε, and the electric field fluctuation can be solved via E ′ = −∇φ′. We note that
particles are assigned equal and opposite charge such that 〈qp〉 = 0 and the Poisson equation is well
posed. The total electric field is then reconstructed as E = E ′ + E, and similarly q f = q′

f + q f , with

E = [0 0 E ]T. In each simulation, q f = 0 and the amplitude of q′
f is prescribed as q f 0. Parameters

are chosen to correspond to thunderstorm conditions at an altitude of 6 km as summarized in Table I.

C. Evolution and growth of TKE

The aerosol droplets are initially randomly distributed throughout the domain. As shown in
Fig. 5, horizontal wind shear combined with the background electric field leads to the onset of
particle clustering in high-strain regions, which eventually generates fluctuations in fluid velocity
via coupling with the charge density. Particle clustering arises from a similar mechanism identified
by Kasbaoui et al. [32], except here the body force is due to the electric field instead of gravity,
and the momentum coupling exists through the charge density instead of the drag force. In the
absence of charged droplets, the initial Kelvin modes are rotated and decay without introducing any
fluctuations. Gas-phase velocity fluctuations become more intense with increasing droplet loading.
To identify the mechanisms responsible for this, we evaluate the evolution of Reynolds stresses,
governed by

d〈u′
iu

′
j〉

dt
= Pi j + Ri j − εi j + Ei j, (12)
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(a) Φv = 0, t = 1 s (b) Φv = 0, t = 2 s (c)

(d) (e) (f)

(g) (h) (i)

Φv = 0, t = 6 s

Φv = 1 × 10−4, t = 1 s Φv = 1 × 10−4, t = 2 s Φv = 1 × 10−4, t = 6 s

Φv = 4 × 10−4, t = 1 s Φv = 4 × 10−4, t = 2 s Φv = 4 × 10−4, t = 6 s

FIG. 5. Temporal evolution of the gas and particle phases with volume fraction increasing from top to
bottom and time increasing from left to right. Color scheme same as Fig. 4.

where Pi j , Ri j , and εi j denote mean-gradient production, pressure strain, and viscous dissipation,
respectively [48], given by

Pi j ≡ −〈u′
iu

′
k〉

∂〈u j〉
∂xk

− 〈u′
ju

′
k〉

∂〈ui〉
∂xk

, (13)

Ri j ≡
〈

p′

ρ

(
∂u′

i

∂x j
+ ∂u′

j

∂xi

)〉
, (14)

εi j ≡ 2ν

〈
∂u′

i

∂xk

∂u′
j

∂xk

〉
(15)
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FIG. 6. Normalized TKE evolution for particle loading �v = 0 (–), 1 × 10−4 (· · · ), 4 × 10−4 (− -), 1 ×
10−3 (−), and 2 × 10−3 (- -).

and

ρEi j = 〈Ej〉〈q′
f u′

i〉 + 〈Ei〉〈q′
f u′

j〉 + 〈q′
f E ′

ju
′
i〉 + 〈q′

f E ′
i u

′
j〉 (16)

are contributions from EHD. In the present configuration, 〈E1〉 = 〈E2〉 = 0 and 〈E3〉 = E . Also
note the last two terms on the right-hand side of Eq. (16) containing triple correlations were found
to be negligible compared to the first two terms. Taking one-half the trace of (12) yields a transport
equation for the TKE, defined as 〈u′

iu
′
i〉/2 (repeated indices imply summation). The contributions

from EHD, Eii/2, contain two terms. EP = E〈q′
f w

′〉/ρ represents production due to the background
electric field and correlation between charge density and vertical velocity fluctuations. The second
contribution, ET = 〈q′

f E ′
i u

′
i〉/ρ is found to be negligible in the present study.

The temporal evolution of TKE is shown in Fig. 6. All cases exhibit similar algebraic growth
at early times. An analytic solution for this early time behavior is provided in Appendix A, which
is shown to independent of the aerosol distribution. It can immediately be seen that increasing
particle loading enhances TKE after the initial algebraic growth (t � 1 s). By transferring the charge
density from the carrier phase to aerosol particles, the TKE is amplified by as much as a factor of
6 for the highest loading under consideration. It should be noted that the size of the simulation
domain is constrained by the high computational cost in tracking O(108) individual particles. Based
on the linear stability analysis performed in Sec. II C, larger domain sizes should result in greater
enhancement of TKE. Moreover, a scaling analysis by Di Renzo and Urzay [14] demonstrated that
while clustering occurs at the microscale (at the same scale as the smallest turbulent eddies), the
self-induced electric field can span much larger scales. Thus, the effects reported here are anticipated
to be greater under more relevant length scales.

D. Reynolds stress budget

After the initial algebraic growth is complete, turbulence modulation by charged aerosols is
apparent. The temporal evolution of Reynolds stresses is shown in Fig. 7. When aerosol particles
are absent (�v = 0), the vertical component of Reynolds stress, 〈w′w′〉, initially grows due to
production by EHD (E33 = 2E〈q′

f w
′〉/ρ). This term then contributes to mean-gradient produc-

tion (P13 = −〈w′w′〉�) that increases 〈u′w′〉. Next, the energy is transferred to the streamwise
component 〈u′u′〉. Because there is no mechanism to sustain TKE when charged aerosol droplets
are absent, all three components decay to zero at late times due to viscous dissipation, as
shown in Fig. 6. When charged droplets are introduced, the Reynolds stresses follow a similar
trend at early times and deviate at later times. Only the vertical component 〈w′w′〉 approaches
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FIG. 7. Evolution of the Reynolds stresses normalized by w2
0 for (a) �v = 0, (b) 1 × 10−4, (c) 4 × 10−4,

and (d) 1 × 10−3.

zero, while 〈u′w′〉 levels off to a negative value, and the streamwise component, 〈u′u′〉, is
seen to increase. This effect is enhanced with increasing particle volume fraction as shown in
Figs. 7(b)–7(d).

The Reynolds stress budgets are reported for �v = 1 × 10−4 in Fig. 8 to further understand
how energy is transferred between the separate components. We note that the trends reported
here are consistent at other values of �v . The initial sinusoidal fluctuation in space charge and
vertical velocity together with the background electric field generate a nonzero EHD source
E33 = 2E〈q′

f w
′〉/ρ. As a result, the vertical component of Reynolds stress, 〈w′w′〉, grows due to this

production terms [see Fig. 8(a)]. A significant portion of this energy is also transferred to the corre-
sponding pressure strain, R33 = 〈 2p′(∂w′/∂z)/ρ 〉, and consequently 〈w′w′〉 decays to zero at late
times.

The EHD production term, E33, then decays as a result of diffusion of space charge, at which
time pressure strain, R13 = 〈 p′(∂u′/∂z + ∂w′/∂x)/ρ 〉, acts to redistribute the energy to 〈u′w′〉.
Figure 8(b) reveals that while the streamwise velocity fluctuations increase, a new EHD source
term, E13 = E〈q′

f u′〉/ρ, emerges, further augmenting 〈u′w′〉. At late time, pressure strain continues
to transfer energy from 〈u′w′〉, similar to 〈w′w′〉, and the corresponding mean-gradient production,
P13 = −〈w′w′〉�, is negative and acts as a sink of 〈u′w′〉. As a result, 〈u′w′〉 eventually decays and
approaches a negative value when production and dissipation balance.
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FIG. 8. Budget of (a) 〈w′w′〉, (b) 〈u′w′〉, and (c) 〈u′u′〉 normalized by �w2
0 for �v = 1 × 10−4. (d) 〈u′u′〉

normalized by �w2
0 in the absence of particles.

Figure 8(c) shows the budget for the streamwise component of the Reynolds stress, 〈u′u′〉. As
energy is transferred to the streamwise components, 〈u′u′〉 is first augmented by the corresponding
pressure strain, R11 = 〈2p′(∂u′/∂x)/ρ〉, during the early stage, then mean-gradient production,
P11 = −2〈u′w′〉�, acts as a source when 〈u′w′〉 reaches a negative equilibrium that later sustains
〈u′u′〉. Note that unlike the other two components of Reynolds stress, the streamwise component
always has nonzero production and therefore continues to increase even at late time. Comparing
Figs. 8(c) and 8(d), it can be seen that this nonzero equilibrium state of production (P11) occurs
only when charged aerosols are present.

A schematic summarizing the energy transfer is illustrated in Fig. 9. As depicted by the solid
lines, a background electric field combined with fluctuations in velocity and space charge yields
production of TKE that is eventually dissipated into heat. In the absence of charged droplets,
no other mechanism exists to further produce TKE. However, when aerosol droplets are present,
turbulence can be sustained through two additional processes: (1) turbulence preferentially concen-
trates charged particles, resulting in fluctuations in electric potential that self-induces an electric
field, enhancing E33 and TKE, and (2) the space charge fluctuation induced by the electric field
contributes to another EHD source term, E13, which enhances 〈u′w′〉, contributing to mean-gradient
production (P11) that further augments TKE. This three-way coupling gives rise to a feedback loop
that enhances TKE beyond the initial algebraic growth.
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FIG. 9. Energy transfer due to three-way coupling between turbulence, charged particles, and a background
electric field. The dashed lines represent energy transfer when aerosol particles are present. Fluctuations in
vertical velocity and space charge give rise to an EHD source term, E33, that produces TKE. In the absence
of charged aerosol particles, TKE is eventually dissipated to heat. When particles are present, preferential
concentration by the turbulence generates inhomogeneities in particle distribution and consequently gradients
in electric potential. This further contributes to the EHD source term E33 in addition to E13 that generates TKE
via mean gradient production.

IV. CONCLUSION

We presented a theoretical and numerical study on the electrohydrodynamic generation of
atmospheric turbulence under fair weather and thunderstorm conditions. The focus of this study
was on the three-way coupling between turbulence, charged aerosol droplets, and a background
electric field. A canonical flow configuration was presented to simulate the upper troposphere, in
which a random distribution of charged particles was placed in homogeneous shear flow with a
uniform electric field.

Linear stability analysis was performed using base state parameters relevant to fair weather
conditions in the upper troposphere. Atmospheric stability was characterized by the electric
Rayleigh number, which was found to be a function of vertical span and shear rate. The stability
analysis revealed that the atmospheric fluid dynamics are most unstable over a vertical span
consistent with typical cloud thicknesses observed at these elevations. The growth rate in velocity
fluctuations was estimated using both fair weather and thunderstorm parameters, which was found
to be slow even under thunderstorm conditions.

Direct numerical simulations revealed a nonlinear feedback mechanism that acts to accelerate
turbulence production under thunderstorm conditions. It was found that horizontal wind shear
combined with EHD body forces led to the onset of particle clustering that generated fluctuations in
charge density. These fluctuations acted to augment turbulent kinetic energy (TKE) after the initial
algebraic growth. TKE was initially produced in the vertical direction and was later transferred to
the streamwise (shear) components. The streamwise velocity gradients acted to induce fluctuations
in aerosol concentration and consequently generated gradients in electric potential, resulting in an
increase in the EHD body force and the process repeated. TKE was enhanced by up to a factor of
six as the particle loading increased.

The present numerical and theoretical analysis demonstrated that charged aerosols in the
atmosphere can couple nonlinearly with the background electric field to enhance the onset of TKE.
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It is important to note that other effects may be at play as well. Particles are capable of transferring
charge among each other or acquire charge through triboelectric effects [49–52]. In addition, the
droplet size may vary due to evaporation and condensation. Additional instabilities may also arise
when gravity is present, which may add to the TKE augmentation studied here. In the present study,
we isolate the effect of charged aerosols on turbulence generation, and therefore these effects were
not included. However, the Eulerian-Lagrangian simulation framework can be extended to account
for these kinetic processes in TKE augmentation in future work.
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APPENDIX A: ANALYTICAL SOLUTION OF THE INITIAL ALGEBRAIC GROWTH

In homogeneous shear flows, the initial algebraic growth is known to sustain large amplification
of perturbation energy that may introduce nonlinear effects and lead to onset of turbulence [53–57].
Because conventional linear stability analysis fails to accurately predict the transient growth,
other techniques, such as non-normal modal analysis [43,58,59] or the Wentzel-Kramers-Brillouin
(WKB) method [60,61], have been used. In the present analysis, we consider the method of
characteristics. By neglecting the particle phase, Eqs. (1) and (3) are rewritten along characteristics
in Fourier space, together with the wave vector characteristic equations, resulting in the following
three coupled ODEs:

dκ

dt
= −∇uT

b · κ,

dq̂ f

dt
= −iμI Eκ3q̂ f − DIκ

2q̂ f ,

dŵ

dt
= 2�κ1κ3

κ2
ŵ − νκ2ŵ +

(
1 − κ2

3

κ2

)
q̂ f E

ρ
,

(A1)

where the hat denotes the Fourier transform of a quantity, κ = [κ1 κ2 κ3]T is the wave vector, and
∇ub = �e1eT

3 is the base state velocity gradient tensor. The vertical velocity can be determined
by assuming w′(t, x) = ŵ(t ) exp[iκ(t ) · x]. The remaining velocity components can be obtained
by enforcing continuity. As shown in Fig. 10, the second-order algebraic growth closely matches
the numerical simulations from Sec. III, confirming that charged aerosols do not affect the initial
algebraic growth rate.

The second-order algebraic initial growth rate can be approximated analytically from Eq. (A1).
Solving the wave vector characteristic equation yields κ1 = κ0 = 2π/L and κ3 = (1 − �t ) κ0. With
this, the magnitude of q̂ f can easily be obtained by solving the first-order linear ODE in Eq. (A1):

q̂ f (t ) = q̂ f 0 exp
[− 1

3 DIκ
2
0 t (�2t2 − 3�t + 6)

]
. (A2)

Solving q̂ f , the third ODE for velocity results in a first-order linear equation and can be approxi-
mated via a Taylor series expansion according to

dŵ

dt
= 1

1 + (1 − �t )2

q̂ f 0E

ρ
exp

[
−1

3
DIκ

2
0 t (�2t2 − 3�t + 6)

]

≈ 1

1 + (1 − �t )2

q̂ f 0E

ρ

[
1 − 2DIκ

2
0 t + DIκ

2
0

(
� + 2DIκ

2
0

)
t2

]
. (A3)
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FIG. 10. Normalized TKE evolution for particle loading �v = 0 (–), 1 × 10−4 (· · · ), 4 × 10−4 (− -), 1 ×
10−3 (−), and 2 × 10−3 (- -). Theoretical solution obtained from Eq. (A1) (◦) is shown for comparison. The
vertical dashed line indicates the turning point from upstream and downstream waves.

The first two terms on the right-hand-side can be neglected since they are orders of magnitude
smaller than the last term. Integrating Eq. (A3) yields

ŵ(t ) = ŵ0 − q̂ f 0E

ρ�2

(
� − 2DIκ

2
0

)[
tan−1(1 − �t ) − π

4

]

≈ ŵ0 + q̂ f 0E

2ρ�

(
� − 2DIκ

2
0

)
t . (A4)

By applying continuity, the streamwise velocity can be expressed as

û(t ) = − ŵ(t )κ3

κ1
= −ŵ0(1 − �t ) − q̂ f 0E

2ρ�

(
� − 2DIκ

2
0

)
(1 − �t )t . (A5)

With this, the TKE can be approximated by

TKE(t ) = 1

2
(ŵ2 + û2) ≈ TKE0 + q̂2

f 0E
2

2ρ2�2

(
� − 2DIκ

2
0

)2
t2 = O(t2), (A6)

which implies when t is small, the initial growth of TKE is second order. This growth rate is also
consistent with the well-known quadratic-scaling law for the transient energy growth in uniform
shear flow [57,62].

APPENDIX B: LINEARIZATION AND NONDIMENSIONALIZATION
OF THE GOVERNING EQUATIONS

We start with the governing equations (1) and (3) and neglect the convective term in the
momentum equation and diffusion term in the charge transport equation due to their relatively small
magnitudes: (

ρ
∂

∂t
− μ∇2

)
u = q f E − ∇p − ρ�z

∂u
∂x

− ρ�wex, (B1)

∂q f

∂t
+ ∇ · (μIq f E + q f u + q f �zex ) = 0. (B2)
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The flow quantities q f , φ, p, u, and E are decomposed into a base state and a fluctuating component
as A = A + A′, where

A′ = A0(z) exp(iκxx + iκyy) exp(ωτ ), (B3)

with A0 the fluctuation amplitude, κx and κy the horizontal wave numbers, ω the growth rate, and
τ = (μIφ t )/L2 the timescale normalized over a vertical span L. Consider (B1) first at a base case
where u = [u v w]T = 0, then (B1) reduces to

q f E = ∇p, (B4)

and by subtracting (B1) by (B4), we have(
ρ

∂

∂t
− μ∇2

)
u = (q f E )′ − ∇p′ − ρ�z

∂u
∂x

− ρ�wex, (B5)

then for incompressible flow, we can take divergence of (B5) and apply ∇ · u = 0 to arrive at

∇2 p′ = ∇ · (q f E )′. (B6)

Now consider the vertical component of (B5),(
ρ

∂

∂t
− μ∇2

)
w′ = (q f E3)′ − ∂

∂z
p′ − ρ�z

∂w′

∂x
, (B7)

where we can take the Laplacian of (B7) and incorporate (B6)(
ρ

∂

∂t
− μ∇2

)
∇2w′ = ∇2(q f E3)′ − ∂

∂z
[∇ · (q f E )′] − ρ�∇2

(
z
∂w′

∂x

)
, (B8)

where

∂

∂z
[∇ · (q f E )′] = ∂

∂z
[∇ · (q f

′E ) + ∇ · (q f E ′)]

= E
∂2q′

f

∂z2
+ d2q f

dz2
E ′

3 + dq f

dz

∂E ′
3

∂z
+ 2

q′
f

ε

dq f

dz
+ 3

q f

ε

∂q′
f

∂z
, (B9)

∇2(q f E3)′ = ∇2(q′
f E ) + ∇2(q f E ′

3)

= E ∇2q′
f + q′

f

ε

dq f

dz
+ 2

dq′
f

dz

dE

dz
+ q f ∇2E ′

3 + E ′
3

d2q f

dz2
+ 2

dq f

dz

dE ′
3

dz
, (B10)

and

ρ�∇2

(
z
∂w′

∂x

)
= ρ�z

∂

∂x
(∇2w′) + 2ρ�

∂

∂x

(
∂w′

∂z

)
. (B11)

Combining (B8)–(B11) gives
(

ρ
∂

∂t
− μ∇2

)
∇2w′ = ∂2q′

f

∂z2
E − q′

f

ε

dq f

dz
+ q f

ε

∂q′
f

∂z
+ q f ∇2E ′

3 + dq f

dz

∂E ′
3

∂z
+ E∇2q′

f

− ρ�z
∂

∂x
(∇2w′) − 2ρ�

∂

∂x

(
∂w′

∂z

)
. (B12)

Using q′
f = −ε∇2φ′ and E ′

3 = −dφ′/dz, (B12) can be rewritten in terms of potential
(

ρ
∂

∂t
− μ∇2

)
∇2w′ = εE∇2∇2

1φ′ + dq f

dz
∇2

1φ′ − ρ�z
∂

∂x
(∇2w′) − 2ρ�

∂

∂x

(
∂w′

∂z

)
, (B13)

123701-15



YUAN YAO AND JESSE CAPECELATRO

where ∇2
1 = ∂2/∂x2 + ∂2/∂y2. Similarly (B2) can be linearized the same way in the vertical

direction to obtain

−εĒ
∂

∂z
∇2φ′ + dq̄ f

dz

∂φ′

∂z
+ ε

μI

∂

∂t
∇2φ′ + 2q̄ f ∇2φ′ = 1

μI

dq̄ f

dz
w′. (B14)

Recall that φ′ = φ0(z) exp(iκxx + iκyy) exp(ωτ ) and w′ = w0(z) exp(iκxx + iκyy) exp(ωτ ),
so ∇2φ′ = [−(κ2

x + κ2
y ) + (d/dz)2]φ′ and ∇2w′ = [−(κ2

x + κ2
y ) + (d/dz)2]w′; therefore the

equations can be nondimensionalized with ∇2 = (D2 − α2)/L2, ∇2
1 = −α2/L2 where α =

L
√

κ2
x + κ2

y and D = Ld/dz, ∂/∂t = ∂/∂τ (μIφ/L2) = ω (μIφ/L2), ∂/∂x = β/L, z = ẑL, f (z) =
w0(z)L/[μIφ(z)], and g(z) = φ0(z)/φ(z). All the exponential terms eventually cancel out, and we
arrive at[

ω

Pr
− (D2 − α2)

]
(D2 − α2) f = −R

dq f

dz

L3

εφ
α2g− R

EL

φ
(D2 − α2)α2g − Sẑβ(D2 − α2) f −2SβD f ,

(B15)

−εE

L2
(D2 − α2)Dg + dq f

dz
Dg + εφ

L3
ω(D2 − α2)g + 2q f

L
(D2 − α2)g = dq f

dz
f , (B16)

where

R = εφ̄

μμI
, Pr = μ

ρφ̄μI
, S = ρ�L2

μ
. (B17)

Equations (B15) and (B16) are linear equations of order four and three, respectively. Therefore,
four boundary conditions for the initial velocity fluctuation, w0(z), and three boundary conditions
for the initial potential fluctuation, φ0(z), are required to obtain a unique solution. For the velocity
fluctuation, we impose w0(z0) = ∂w0(z0)/∂z = 0 and w0(z0 + L) = ∂w0(z0 + L)/∂z = 0 based on
no-slip boundary conditions and incompressibility of the fluid. For the potential fluctuation, it is
assumed that the initial electric field fluctuations at the upper and lower boundaries are zero such that
it is not violating Gauss’s law, i.e., ∂φ0(z0)/∂z = ∂φ0(z0 + L)/∂z = 0. The last boundary condition
is determined by recognizing that the electrical conductivity decreases significantly with altitude in
the lower atmosphere [37], and therefore we assume the lower boundary has much larger electrical
conductivity than the upper boundary such that relatively the initial potential fluctuation at the lower
boundary is negligible, i.e., φ0(z0) = 0.

The boundary conditions are then transformed into the final dimensionless form: f (z0) =
f ′(z0) = g(z0) = g′(z0) = 0 for the lower boundary and f (z0 + L) = f ′(z0 + L) = g′(z0 + L) = 0
for the upper boundary. To ensure numerical stability, we follow Appendix A in Schneider and
Watson [38] to solve the ODEs numerically with these boundary conditions using a shooting
method. We also observed that changing boundary conditions for the potential [e.g., employing
a Neumann condition for the electric field g′′(z0) = g′′(z0 + L) = 0] has little effect on the critical
Rayleigh number.
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