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When a buoyant bubble is inserted into a closed capillary that is slightly smaller than
the capillary length, it appears stuck; exactly why this is so is a puzzle that has remained
unanswered over the past 50 years. Recent calculations suggest that the bubble’s motion is
critically dependent on the hydrodynamics of the surrounding liquid film; however, quan-
titative measurements of these dynamics are lacking. We provide direct measurements of
the dynamics of the liquid film surrounding a “stuck” bubble, recorded using interference
microscopy. The film slowly relaxes to a constant thickness, and is stabilized by disjoining
pressure at long times. The film’s stability at this thickness is demonstrated by recovery
after applied thermal perturbations; thus, we confirm that Bretherton’s buoyant bubble is
not pinned at a contact line, but is instead ostensibly stuck by extraordinarily slow flow
in the surrounding liquid film whose thickness is set by a balance of capillary stress and
disjoining pressure.

DOI: 10.1103/PhysRevFluids.4.123601

I. INTRODUCTION

Confinement of gas within a liquid-filled channel arises in myriad natural and technological
processes, from carbon sequestration [1–4] and hydrocarbon recovery [5,6] to circulatory systems
in biology [7–11]. Indeed, modern microfluidic applications [12–14] often involve several phases
of fluid. Gas confined in liquid filled channels often forms a bubble, whose motion and dynamics
depend on the boundary conditions, physical dimensions of the flow, and the thermodynamic state
of the fluid [15–18]. Over a century ago it was observed that bubbles in a sealed vertical channel
with a sufficiently narrow diameter cease to rise, and appear stuck [17]. Analysis of the flow around
such confined bubbles showed that under a certain critical confinement, there is no bubble shape
solution that allows it to rise, thus drastically altering the flow dynamics from the basic lubrication
assumption. While a bubble that remains stuck in a solid is unsurprising because the solid resists
shear deformation, a Newtonian fluid cannot provide any resistance at zero velocity, and we expect
that the bubble will rise due to buoyancy. Indeed, our intuition tells us that an immiscible phase will
always rise in a denser one, demanding that we reconcile intuition with long-standing observations.
A recent theoretical analysis of this liquid film uses asymptotic matching to predict a self-similar
pinch-off singularity of the thin film surrounding the bubble that prevents any flow and ultimately
stops the bubble [19]; however, experimental measurements of the dynamics of this film are lacking,
and the physical mechanisms governing the dynamics of the bubble in this important limit remain
unclear.

In this paper, we measure the dynamics of the thin film surrounding buoyant bubbles confined
within thin glass capillary tubes that are sealed on one end. Through our measurements we identify
a length scale, at which the film will stabilize and cease to drain, suggesting another avenue for
the theoretical treatment of the problem. All experiments take place under completely wetting
conditions: Isopropanol (IPA) is used as the fluid and as a nonpolar solvent wets the glass with
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a negligible contact angle, averting contact line pinning. Bubbles confined within capillaries of
different radii enable us to probe the effect of capillary size on the film dynamics.

The bubble appears stuck when the channel diameter is comparable to the liquid capillary length

�c =
√

γ

ρg [20]. For round capillaries of radius R, the critical capillary radius is calculated to be

Rcr = 0.918�c [21]. Below this critical size, the effects of surface tension and gravity are of the same
order; the relative importance of these effects is evaluated using the dimensionless Bond number,
given in terms of the capillary length by Bo = ( R

�c
)
2
; thus the critical bond number is Bocr = 0.842.

A recent asymptotic analysis of the thin film bounding the gas bubble for R < Rcr predicts that
the liquid film surrounding the bubble will drain to zero thickness in infinite time [19]. For films
draining due to gravity, the ever-decreasing thickness provides a means by which viscous resistance
in the film will increase [22]; however, the calculated film dynamics are nonlinear. While similar
experiments have been carried out recently [22,23], important aspects of the confinement of the
bubble are due to a uniform bounding film, where the bubble is conformal to the container.

II. EXPERIMENTAL METHODS

The liquid surrounding the gas is imaged at the wall of the capillary using a low coherence
length Fizeau interferometry microscope. The film is illuminated with a collimated light-emitting
diode (LED) that is focused on the capillary’s inner surface with a microscope objective, as shown
in Fig. 1(a). A beam splitter directs the light source onto the imaging path. A high-sensitivity CCD
camera records the interference signal in a manner similar to that used to study high velocity droplet
impacts [24], although in this case the phase of the second reflection is not shifted by π on account of
the adjacency of the liquid and glass layers. The microscope objective’s narrow depth of field [25],
and the LED’s low coherence length [26] ensure that interference fringes appear only in the focus
area, and only upon reflection from the glass-liquid and liquid-air interfaces. Reflections on other
interfaces along the imaging path do not affect the signal.

A typical image of a bubble stuck within a capillary is shown in Fig. 1(b). The region of interest
corresponds to a narrow band at the center of the capillary [27]. Bubbles are formed by injecting air
into the capillary using a syringe with a long and narrow tip. Bubble size is controlled to ensure the
generation of an elongated Bretherton bubble such that α = Req

R > 1, where Req is the radius of a
perfectly spherical bubble with an equivalent volume of gas. Over a period of 1 or 2 days, no motion
of the bubble can be detected and the bubble appears to be stuck.

The region of interest captures the film and transition region connecting the film to both the top
and the bottom menisci as shown in Fig. 1(c). The modulations in the observed intensity field appear
due to interference between light reflected from the glass-IPA interface and from the IPA-saturated
air interface, and can be used to determine the film’s thickness according to the expression [28]

h(x, y) =
⌊

k+1
2

⌋
λ

2n
+ (−1)k λ

2πn
arccos

√
I − Imin

Imax − Imin
, (1)

where n = 1.38 is the refractive index of IPA, k the fringe order, λ the wavelength of the light
source, and Imin and Imax are the local intensities of the troughs and peaks, respectively, effectively
correcting for illumination inhomogeneity. The intensity mapping to height varies with the phase of
the interference pattern. Absolute height is measured by tracking the spatiotemporal evolution of the
film from the dewetted state of the film with zero thickness obtained through thermal perturbation
as described below.

III. RESULTS

We consistently observe a thin liquid film surrounding the bubble at steady state for Bond
numbers below the critical Bo identified by Bretherton. For Bo = 0.082, we measure a film
thickness of approximately 40 nm after waiting several days [Fig. 1(c)]. The presence of the film
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FIG. 1. Visualizing the thin film around the bubble with Fizeau interferometry. (a) Schematic of the
experimental setup: A collimated LED source is focused onto the capillary’s internal surface by a microscope
objective. Reflection from the glass-liquid interface interferes with the reflection from the liquid-air interface,
forming an interference pattern. (b) Typical image of Bretherton’s buoyant bubble in a sealed capillary,
2R = 0.33 mm (Bo = 0.009). The bubble appears stationary over a timescale of days. (c) Interferogram of a
section of the film around the bubble recorded several hours after its formation; here, 2R = 1 mm (Bo = 0.082).
The intensity profile is converted to the film thickness as described in the main text. Thickness is averaged over
the y coordinate, yielding the bubble profile shown at right; raw data (red) are smoothed in z using local
averaging to show the shape of the bubble (blue). Averaging in this manner controls for imaging noise and
submicron dirt on the capillary’s surface.

demonstrates that the bubble shape that eluded Bretherton in his initial calculations [21] indeed
initially exists. We also note a smooth transition, visible for approximately 50 μm in the image,
connecting the flat film to the menisci. The transition region extends beyond the depth of field of
our interferometric imaging modality, and thus we cannot place firm constraints on its extent.

Given that the bubble is not stuck by contact line pinning, it can still rise—at what velocity might
we expect the bubble to ascend? We can calculate the rise velocity due to displacement of the fluid
by gravitational drainage through the nanometer-scale film using the lubrication approximation [29].
The rise velocity of the bubble is calculated to be U = 2ρgh3

3μR or 1.6 × 10−13 m/s (i.e., 14 nm per
day). Lateral resolution of the imaging system is limited to 1 μm per pixel by diffraction; thus the
bubble rises by approximately 1% of a pixel per day, well below our resolution.

For a typical bubble, the buoyant force is proportional to the displaced volume; thus we probe the
role of buoyancy by changing the gas volume within the bubble. To this end, different sized bubbles
were introduced into sealed capillaries and allowed to reach a steady state under the same ambient
conditions, (inset of Fig. 2). The mean film height and its standard deviation are shown for bubbles of
different sizes in Fig. 2. The graph shows a typical value of 2 nm variance along each bubble length,
confirming that for a fixed Bo, not only is the film extremely flat, but the bubble volume along the
region where the film is flat, away from the caps, does not affect the film thickness. The observed
independence of the bubble’s state from the bubble size is consistent with the earliest observations
of confined bubbles rising in capillaries over the critical condition [17,30]; we observe that this
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FIG. 2. Different gas volume bubbles at steady state. Bubbles with increasing volumes of gas were
inserted into capillaries with Bo = 0.123. The ratio of the radius of the equivalent-volume spherical bubble
to the capillary radius α is shown with five example bubbles (inset). A waiting period of 48 h transpired
before the average value of the steady-state film thickness was measured over the region of the liquid film
between the bubble menisci 〈hfilm〉z. The steady-state heights are identical within the measured variability in z,
as can be seen by the average value of these data points for all values of α, 〈hfilm〉α , represented by the dashed
red line.

phenomenon extends to bubbles under the critical condition. Moreover, the flatness of the film for
R < Rcr contrasts with the observation of ripples at the lower part of moving bubbles [17,31,32].
Such ripples are due to hydrodynamic stresses and strongly depend on the capillary number Ca,
which vanishes for the quasistatic rise.

To investigate the stability of the observed film, we employ a protocol of thermal perturbations
to deliberately drive the surrounding film out of equilibrium and study the dynamics of its recovery.
After the initial formation of the bubble, we wait a few days until no variations in the film profile are
observed, and the film is flat to within our experimental resolution. We first observe a steady-state
uniform flat film of thickness 85 nm as shown in Fig. 3(c). At this time, we briefly apply a heat
probe to the side of the capillary closest to the camera; this excites thermal-Marangoni stresses in
the thin film, causing it to dewet from the side of the capillary nearest the camera in a first timescale
τ1 ∼ 1 s. The film dewetted in this manner is used as a reference state to obtain absolute film
thickness measurements with the interferometric microscope. Because the heat application is brief,
only the film is heated, and the bubble remains at ambient temperature; thus, we can reasonably
suppose that the gas dilation and change of viscosity upon this heat perturbation is negligible. The
heat from the probe causes the temperature of the film to locally increase, and its surface tension
to locally decrease, inducing an azimuthal flow; the velocity of the dewetting process matches the
calculated velocity V for thermally excited Marangoni stresses as estimated from the surface tension
gradient dγ

dx induced by the temperature gradient dT
dx [33,34],

V = hτ

2μ
, with τ = dγ

dx
= dγ

dT

dT

dx
. (2)
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FIG. 3. Thermocapillary perturbations to the film in a 2R = 2 mm (Bo = 0.329) capillary show four
distinct timescales. (a) A thermal perturbation at 34 ◦C is applied in succession to opposite sides of the capillary,
which is held at an ambient temperature of 23 ◦C. A heat probe is applied first to the side nearest the camera
for a fraction of a second (1), and then removed while the film recovers; the heat probe is then applied to the
side of the capillary opposite from the camera for a second (2), and then removed. (b) Film profile evolution
in response to the thermal perturbation with a temporal resolution of 1 s. The mean of the height in z, shown
below the height map, reveals persistent recovery to a constant thickness from both perturbations, suggesting
that the film attains a finite thickness at steady state. The schematic representations of the bubble illustrate the
film profile during the experiment. The gray curved lines indicate time elapsed after the second step of the
perturbation protocol.

For IPA, dγ

dx = −30 × 10−5 N/mK, In our case, a 5 ◦C perturbation results in dT
dx ∼ 103 K/s with

h ∼ 10−7 m and assuming μ = 2 × 10−3 Pa/s gives V ∼ 1 mm/s, consistent with the observed
dewetting timescale. As this dewetting occurs, a contact line forms at the extremity of the menisci
at the interface. However, this state is not stable. The zero thickness and contact lines do not persist,
and the film recovers back to its previous state after a second timescale τ2 ∼ 1 min, as shown by the
height plot in Fig. 3(c).

After τ2 elapses, a similar perturbation is applied to the side of the capillary opposite from the
camera, causing the observed portion of the film to become thicker within τ3 ∼ 1 s; τ3 is also
due to thermally excited Marangoni stresses. Applying the heat probe to the opposite side of the
capillary causes the film closest to the camera to burgeon in thickness, with the z-averaged height
〈h〉z approaching 300 nm. As the film thickens, we observe the formation of a dimple in the middle
of the bubble, slightly skewed toward the bottom. Over a timescale τ4 ∼ 6000 s, the film resumes the
same steady-state thickness as it had when we applied the first perturbation. A space-time graph of
the film’s thickness in response to the applied perturbations is shown in Fig. 3(b), strongly indicating
the stability of the observed film thickness. Such perturbations show that the zero-thickness film is
not an energetically favored state of the bubble, rather a very thin film of uniform thickness is robust
to perturbations.
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FIG. 4. Initial drainage dynamics immediately after formation of the bubble in a capillary with 2R =
1.58 mm (Bo = 0.205). The minimum height corresponding to the bottom meniscus transition region (orange)
and the mean height (blue) are plotted as a function of time after the bubble is inserted into the capillary.
Initially the film is nonuniform, and not cylindrically symmetric, with a gravity biased dimple as can be seen in
the interferogram and corresponding height map in (b) for t0. Over 2 h later, the dimple has drained on average,
and the film has become flatter, as can be seen by the interferogram and the height map shown at t1. The film
breaks azimuthal symmetry, perhaps due to residual submicron scale dirt on the glass surface remaining after
the meticulous cleaning protocol. After over 8 h have elapsed, the film has reached an apparent steady state
at a symmetric, uniform thickness of approximately 70 nm as shown in (b) at t2. The drainage dynamics are
shown on a log-log scale (inset), suggesting that hmin ∼ t−0.5; this scaling may be self-similar, as shown by the
collapse of the h-x profiles, as shown in the Supplemental Material [35]. The calculated drainage scaling for a
2D bubble hmin ∼ t− 4

5 [19] using the experimentally observed initial value (gold) is shown for comparison. A
scaling of film thickness to the power 1/2 is expected at the base of the bubble, however [19].

Throughout the series of perturbations, the top meniscus is observed to be stationary. Provided
that the top of the capillary is sealed, the excess fluid in the film’s dimple must drain towards
the bottom of the bubble, seemingly driven by a gravitational body force. We note that during this
drainage the film pinches down locally in the meniscus-film transition region. The minimal thickness
converges to a nonzero thickness in ∼30 000 s. This pinching corresponds to the relaxation of the
menisci towards its steady-state shape with gravity and capillary stresses in balance. All excess
fluid in the dimple drains through this nanometer-scale neck, which limits the overall drainage
rate. The mean height of the film takes roughly ten times longer to reach equilibrium during τ4.
Assuming pure gravitational drainage through the pinch-off region, the volumetric flux per unit
length along the circumference is calculated by a Poiseuille flow between a wall and a free surface
to be Q = ρgh3

3μ
, hence the decrease in mean film thickness 	h over a time 	t can be estimated to be

	h
	t ∼ Q

h , corresponding to a rate of 0.16 nm/s for a bubble size similar to the one presented in Fig. 4.

We observe a mean drainage rate of 	〈h〉z

	t = 0.05 nm/s, which is comparable to the aforementioned
prediction from gravitational drainage, as shown in Fig. 4. The discrepancy may be due to the low-
frequency thermally induced fluctuations visible in the film that can temporarily thicken, effectively
slowing the drainage. The drainage dynamics confirm that flows develop even at such small scales,
suggesting that the bubble can still rise at the extraordinarily slow velocity calculated above.

The relaxation dynamics is of particular physical significance as it is an essential characteristic
of the system [19]. It can be extracted from the temporal response of the film, which allows a
direct comparison with theoretical calculations developed for the two-dimensional (2D) case. After
bubble insertion, the temporal response of the film with Bo = 0.197 allows us to compare our
experimental results with theoretical calculations in 2D [19]. The film drains nonmonotonically
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TABLE I. Measured film thickness values hmeasured, for capillaries of various inner diameters 2R, are
tabulated with Bo, the predicted thickness hpredicted based on the estimation provided in the Appendix, and
the Hamaker constant for a glass-IPA-air system obtained from Ref. [37]. Discrepancies between measured
values and predicted values might arise due to other interfacial effects such as electrostatic or retarded van der
Waals forces [37,38]. The corresponding figure reference is provided in the first column.

Figure 2R (mm) Bo hpredicted (nm) hmeasured (nm)

1 1.00 0.082 40.6 41
2 1.22 0.123 43.3 42
3 2.00 0.329 58.6 85
4 1.58 0.205 49.9 68

towards a steady-state value of approximately 70 nm as shown in Fig. 4. Low-frequency fluctuations
are observed on the film when the film is thicker than 200 nm, and may explain discrepancies
in the observed drainage rate from the purely gravitational prediction. Such ripples are absent
from a purely hydrodynamic framework. These fluctuations seem to be correlated to temperature
fluctuations (not shown) that we measured to be in the order of 0.1 K in the surrounding environment
of the capillary.

The film’s thickness takes on a minimal value hmin in the region adjacent to the bottom meniscus.
The bubble reaches its steady state as this thickness slowly reduces; this can be seen for a freshly
inserted bubble in Fig. 4(a), and the corresponding profiles shown in Fig. 4(b). hmin converges to
a nonzero steady value in finite time following an apparent intermediate scaling of t−0.5, as can
be seen in the inset to Fig. 4(a). This convergence rate is slower that the theoretical prediction for
the 2D case [19]; extensions of this theoretical prediction to 3D including the effect of disjoining
pressure are under development [36]. It can be seen from the main graph that hmin does not converge
to zero.

Our experiments show that in contrast to theoretical predictions for a bubble in a closed capillary
below a critical size [21], a thin film persists in wetting the glass surface at a steady-state thickness
h∞, whose specific value depends on the capillary’s radius in a manner consistent with stabilization
due to disjoining pressure, as shown in Table I. The values are compared to those obtained
theoretically by balancing the disjoining and capillary pressures; this calculation is developed in
detail in the Supplemental Material [35]. We also note from our analysis the emergence of a factor
accounting for the additional capillary pressure due to the unmatched curvature of the end of the
caps, which, together with the Laplace pressure jump at the lateral film γ

R , is balanced by the
disjoining pressure. Results tabulated for several different capillary diameters show good agreement
with this calculation, as can be seen in Table I. This is consistent with Bretherton’s claim that the
film thickness is uniquely determined by the conditions on the leading edge of the bubble [21].

IV. DISCUSSION

The observed film suggests a regularization mechanism for the predicted singularity in the
film’s drainage, and significantly alters the drainage dynamics in comparison with an existing
analysis. Interestingly, a recent analysis of driven bubbles influenced by disjoining pressure of a
nonwetting fluid shows the importance of disjoining pressure in destabilizing the film surrounding
the bubble [18], suggesting that the dynamics we observe would be drastically altered for a
nonwetting fluid.

Our observations suggest that the approach to h∞ might be self-similar, as hmin − h∞ appears to
scale as t−0.5. We show that the height profiles will indeed collapse when rescaled by this exponent
of t in the Supplemental Material [35]. While these dynamics are different than the hmin scaling
calculated for the 2D geometry, they are consistent with the temporal scaling at the bottom of
the bubble, suggesting that this asymptotic analysis could be accurate until the disjoining pressure
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becomes large [19]; furthermore, our experiments are necessarily fully 3D, which could alter the
scaling of the film thickness in time.

In order to probe the stability of h∞, we perturbed the film with a thermal probe, inducing
Marangoni stresses due to a gradient in surface tension. An estimation of the surface tension gradient
generated this way is used to develop a prediction for the timescale observed in the flow of the film as
described above; this flow is predicted to occur over seconds, consistent with our observations of τ1

and τ3. Phenomenology related to thermal excitation in this problem could be interesting to explore
in future work, as we have shown that Marangoni stresses arising from temperature gradients can
significantly alter the film’s state, and thus small fluctuations of temperature play a dominant role
in the dynamics; this can be seen directly from the unsteady nature of the film drainage shown in
Fig. 4. We note that our experiments show the liquid film dewetting to zero thickness in response
to Marangoni stresses, suggesting that there is a nonperturbative limit where the film’s stability in
response to thermal excitation is not unconditionally stable for all wave numbers. This would be
interesting to see in a complete theoretical development, as these dynamics might be rich.

Irrespective of bubble size, we find that the film surrounding the bubble is extremely flat,
implying that the pressure along the film is constant. As opposed to unconfined bubbles in liquids,
where the pressure gradient along the gas-liquid interface is hydrostatic, and buoyancy corresponds
to the total volume of displaced fluid, the thin film breaks the continuity of the hydrostatic pressure
gradient [35]. Gravity becomes a body force driving flow in the film and the buoyancy force of such
a bubble corresponds to a reduced volume of the displaced fluid. Here, − �Fbuoyancy = ∫∫

S
�∇P · d�n =∫∫

Scaps
�∇P · d�n = ∫∫∫

Vcaps
ρ�gdV , where Scaps and Vcaps refer to the surface area and volume of the

bubbles caps, or the menisci, at the ends of the bubble. Thus a bubble under such confinement has a
complex surface stress condition, resulting in its nonintuitive behavior.

Upon varying the bubble size relative to the capillary diameter, we encounter a potentially
interesting limit not directly discussed or considered in the calculations of this problem, where α

approaches 1; in this case, the volume of gas contained in the bubble is insufficient to push against
the wall of the capillary, and generate a thin boundary film. Instead in this case the bubble will rise,
even when R < Rc. We observed a significant unsteadiness of the velocity for bubbles near this limit
in yet another apparently critical scenario for confined bubbles that merits further investigation in
order to gain insight into the precise role of van der Waals stresses in causing the counterintuitive
effective arrest of Bretherton’s buoyant bubble.
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