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Genuine compressibility effects in wall-bounded turbulence

Ming Yu and Chun-Xiao Xu
Key Laboratory of Applied Mechanics, Ministry of Education, Institute of Fluid Mechanics,

and Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China

Sergio Pirozzoli *

Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma,
and via Eudossiana 18, 00184 Rome, Italy

(Received 7 June 2019; published 5 December 2019)

Compressible wall-bounded turbulence is generally assumed to be devoid of genuine
compressibility effects, meaning that the effect of finite fluid dilatation is regarded as
“small,” at least in the absence of disturbing pressure gradients. In the present paper we
attempt to answer the basic question of how small these effects are, by interrogating a DNS
database of compressible channel flow and by using Helmholtz decomposition to infer the
relative magnitude and correlations between the solenoidal and the dilatational parts of
turbulence velocity fields. Not surprisingly, we find dilatational velocity fluctuations to be
much smaller than solenoidal ones, but perhaps unexpectedly, we find that finite correlation
between the two components accounts for a nonnegligible fraction (about 10%) of the
turbulent shear stress near walls, and for up to 4% of the wall skin friction. Quadrant
analysis of the dilatational velocity fluctuations shows that the largest contribution to
the turbulent shear stress results from significant correlation between positive streamwise
solenoidal velocity fluctuations (i.e., high-speed streaks), and positive vertical dilatational
velocity fluctuations, which tend to mitigate the intensity of wall-ward sweep events.

DOI: 10.1103/PhysRevFluids.4.123402

I. INTRODUCTION

Supersonic and hypersonic wall-bounded turbulence has been extensively studied for about a
century, owing to its great technological importance in aerospace and mechanical engineering, most
early studies having been carried out through experiments [1]. Direct numerical simulations (DNS)
of compressible wall turbulence have become feasible in the past 30 years or so. Most studies have
focused on representative canonical flow configurations, namely, the developed boundary layer over
a flat plate [2–7] which is most relevant for obvious practical reasons, and the flow inside a planar
channel [8–11], which is easier to study numerically owing to the presence of two directions of flow
homogeneity.

All previous studies agree that, in the absence of disturbing elements such as shock waves,
and/or imposed pressure gradients, compressibility effects mainly manifest themselves in the form
of dependence of the statistical properties on the mean density and viscosity gradients. This is
the essence of the classical Morkovin’s hypothesis that owing to smallness of the fluctuating
Mach number density fluctuations should be negligible [12]. This ansatz leads to several important
consequences, such as the van Driest transformation for the mean velocity profile [13], and its
generalizations [9,14,15]. General success of those compressibility transformations suggests that
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Morkovin’s hypothesis is quite solid, hence genuine compressibility effects due to finite fluid
dilatation are regarded to be small, in general terms, although leading to obvious increase of pressure
work and dilatational dissipation as the Mach number increases [4,10]. In particular, pressure work
is dependent on the turbulence and gradient Mach number, as may be inferred from Green’s function
for pressure fluctuations [16], whereas dilatational dissipation depends on the turbulence Mach
number and kurtosis [17,18]. The organization of coherent structures is also weakly affected by
the Mach number, and for instance the spanwise spacing of velocity streaks slightly decreases as
the free-stream Mach number increases [6,19]. At the same time, the streamwise length of the
typical eddies decreases, and their inclination angle increases [4,20]. Shocklets induced by intense
dilatational effects are observed when the fluctuating Mach number is high enough [4], but their
volume fraction is small enough that no obvious contribution to overall flow structures results.
This is consistent with the statement [21] that, although compressibility effects may be large in
instantaneous flow fields, this is not necessarily reflected in the flow statistics.

Genuine compressibility effects in fluid flow may be generally characterized by exploiting
Helmholtz decomposition of the velocity field into its solenoidal and dilatational constituents [22].
Helmholtz decomposition has been used in the analysis of compressible isotropic turbulence [23],
and more recently for homogeneous shear flows [24]. In those studies it was found that energy and
dissipation spectra, and two-point correlation of the solenoidal velocity field remain the same as in
incompressible flow, even as the turbulence Mach number (Mt ) approaches unity [25,26], whereas
the dilatational part of the velocity field varies [24], with visible shocklets at Mt � 0.3. The ratio of
solenoidal to dilatational kinetic energy was found to scale as M4

t for Mt � 0.1, and as M2
t at higher

Mt , attaining values as large as 0.22 as Mt ≈ 1 [25], consistent with theoretical arguments [27]. To
the best of our knowledge, Helmholtz decomposition has never been used for statistical analysis of
wall-bounded flows.

The main goal of the present paper is to evaluate genuine compressibility effects in wall
turbulence by mining a DNS database of canonical channel flow at various Mach numbers. To
minimize complicating effects associated with abrupt variation of mean flow property near walls
[28], a suitable internal cooling term is added to the governing equations. Helmholtz decomposition
is then used to post-process the DNS results, thus allowing to quantify the effects of dilatational
fluctuations on turbulent stresses and wall friction. The paper is organized as follows. In Sec. II
we describe the physical model and its numerical implementation; in Sec. III we discuss basic
statistics to characterize the turbulent flow in general terms; in Sec. IV we introduce the Helmholtz
decomposition and show statistical moments and spectra of the solenoidal and dilatational velocity
fields; in Sec. V we discuss dilatational contributions to skin friction, and in Sec. V A we identify
the typical coherent structures responsible for the statistical observations. Concluding remarks are
given in Sec. VI.

II. PHYSICAL AND NUMERICAL MODEL

We consider compressible turbulent flow in a planar channel with constant total mass and mass
flux, and controllable temperature. Our intent is to replicate the flow of a fluid stream at Mach
number M0 coming from a long wind tunnel with constant wall temperature, equal to the recovery
temperature in the upstream flow (see Fig. 1). We focus on the region of fully developed flow (dashed
box), hence we consider streamwise and spanwise periodic boundary conditions. The mass and the
mass flux are retained as at the nominal inflow, whereas the temperature needs to be adjusted, as the
flow would otherwise heat up while progressing downstream owing to viscous friction. We consider
the governing equations for a compressible ideal Newtonian gas. In a Cartesian coordinate system
(xi, i = 1, 2, 3, also referred to as x, y, z in the following) the Navier-Stokes equations read as

∂ρ

∂t
+ ∂ρu j

∂x j
= 0, (1)
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FIG. 1. Sketch of the flow configuration under scrutiny.

∂ρui

∂t
+ ∂ρuiu j

∂x j
= − ∂ p

∂xi
+ ∂σi j

∂x j
+ fiδi1, (2)

∂ρE

∂t
+ ∂ρu jE

∂x j
= −∂ pu j

∂x j
+ ∂uiσi j

∂x j
− ∂q j

∂x j
+ f1u1 − φ, (3)

with

σi j = 2μSi j − 2

3
μSkkδi j, q j = −λ

∂T

∂x j
, E = e + 1

2
uiui, (4)

with μ and λ the dynamic viscosity and the heat conduction coefficient, and Pr (=0.71) the
molecular Prandtl number. The variation of viscosity with temperature is accounted for through
Sutherland’s law. The ideal gas law is considered, namely, p = ρRT with R the gas constant, and
the internal energy is obtained from e = cvT , with cv the constant-volume specific heat. As stated
above, a body force f1 and a cooling term φ are added to ensure constant mass flux and bulk
temperature in the channel, the latter being set to

Tb = (1 − α)T0 + αTr, (5)

where Tr is the estimated recovery temperature in the upstream boundary layer, Tr = (1 + (γ −
1) r M2

0/2) T0, with r the recovery factor, and the adjustable constant α controls the mean
temperature gradient and the centerline Mach number. Periodic boundary conditions are applied in
the streamwise (x) and spanwise (z) directions, and the nonslip condition for velocity and isothermal
condition for temperature are applied at the upper and lower walls. The wall temperature is set to
the nominal recovery value, T (0) = T (2) = Tr . Although the wall heat flux is not zero, as shown
later it is small enough that its influence on the near-wall turbulence may be neglected. The bulk
Reynolds number is defined as Reb = ρ0Ubh/μ0, and the bulk Mach number as Mb = Ub/

√
γ RTb.

An initially parabolic velocity profile is specified, 〈u〉 = 1.5Ub(y/h)(2 − y/h), along with uniform
values of density and temperature, with added divergence-free sinuous perturbations [29]

u′(x, y, z) = f (y) cos (kzz), w′(x, y, z)/Ub = f (y) sin (kxx), (6)

with kx = 2/h and kz = 6/h. The vertical distribution of the disturbances is controlled by function
f (y) = 8Ub(y/h) exp [−100(y/h)2], which attains a peak of 0.35 at y/h = 0.07 (corresponding to
y+ ≈ 40 in the tests shown later).

As in incompressible flow, inner units are defined based on the friction velocity uτ =
(〈τw〉/〈ρw〉)1/2, namely,

y+ = 〈ρw〉yuτ

〈μw〉 , u+ = 〈u〉
uτ

, (7)
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TABLE I. Computational parameters for DNS flow cases. M0 is the reference Mach number, Reb is the
bulk Reynolds number, α controls the mean internal energy [see Eq. (5)], Reτ is the friction Reynolds number,
Mb and Mc are the bulk and centerline Mach number, Tw is the wall temperature, �xi denotes the mesh spacing
along the coordinate directions, and −Bq = Tτ /Tw is the heat flux parameter.

Case M0 Reb α Reτ Mb Mc Tw/T0 �x+ × �z+ �y+ −Bq Line style

C0 0.0 10032 – 550 – – 1.0 10.0 × 6.7 0.02 ∼ 6.8 – �
C1 0.8 10680 0.75 528 0.774 0.881 1.09 5.8 × 2.9 0.61 ∼ 8.5 0.0043
C2 1.5 13000 0.75 523 1.349 1.572 1.32 5.7 × 2.9 0.60 ∼ 7.4 0.012
C3 3.0 20000 0.75 496 2.151 2.529 2.28 5.4 × 2.8 0.58 ∼ 8.0 0.028
C4 6.0 42000 0.75 515 2.744 3.276 6.11 5.6 × 2.8 0.59 ∼ 8.2 0.040
C5 8.0 55000 0.75 494 2.879 3.484 10.09 5.4 × 2.7 0.57 ∼ 8.0 0.044
C6 8.0 80000 0.50 503 3.417 4.406 10.09 5.5 × 2.8 0.65 ∼ 9.1 0.022
C7 8.0 160000 0.25 504 4.444 6.970 10.09 5.5 × 2.7 0.59 ∼ 8.3 0.015

and hereafter denoted with the “+” subscript. The friction temperature is defined as

Tτ = −λ∂〈T 〉/∂y|w
〈ρw〉cpuτ

, (8)

and the friction Reynolds number as Reτ = h+ = 〈ρw〉〈uτ 〉h/μw, where the w subscript indicates
wall values. Ensemble averages of the generic variable ϕ are hereafter denoted as 〈ϕ〉, and the
corresponding fluctuations as ϕ′. Favre averages, 〈ρϕ〉/〈ρ〉, are denoted as ϕ̃, and the corresponding
fluctuation as ϕ′′.

A modified version of the Hoam-OPENCFD code [30] is used to carry out the DNS. The
governing equations are solved numerically by the finite-difference method described in Liang
and Li [19], based on seventh-order upwind discretization of convective terms and sixth-order
central discretization of viscous terms. A third-order TVD Runge-Kutta scheme is used for time
advancement, and explicit filtering is further applied to ensure numerical stability at high Mach
number [31].

The main parameters and numerical set-up of the DNS are listed in Table I. Case C0 is taken as a
reference from the incompressible channel flow dataset of Bernardini et al. [32], with computational
domain 6πh × 2h × 2πh, and 1024 × 256 × 512 grid points. In the compressible DNS flow cases
C1–C7, the size of the computation domain is instead taken as 2πh × 2h × πh in streamwise,
wall-normal and spanwise directions, respectively, with 576 × 288 × 576 grid points, clustered
in the wall-normal direction according to a hyperbolic tangent stretching function. To achieve
similar friction Reynolds number in all cases, the bulk Reynolds number Reb is adjusted along
with the reference Mach number M0, to compensate for temperature and viscosity variations.
Compressibility effects are measured in terms of the bulk and centerline Mach numbers, which
are significantly less than the reference value, owing to substantial increase of the wall temperature
with M0. The heat flux coefficient −Bq = Tτ /Tw is also reported, which as anticipated is found to
be much smaller than in isothermal channels without a cooling term [11] (for M0 = 1.5 we get
−Bq = 0.012 compared to 0.072, and for M0 = 3 we get −Bq = 0.028 compared to 0.14). The heat
flux controlling parameter α is generally set to 0.75, however two extra cases with smaller α have
also been carried out for M0 = 8, to achieve higher Mb.

Grid resolution figures are provided in Table I, which are consistent with those reported in
previous DNS studies of incompressible and compressible channels. Adequacy of the grid resolution
was also tested a-posteriori by inspecting the velocity spectra, as shown in Fig. 2, in local
Kolmogorov units. The figure shows general collapse of the spectra across flow cases and with
reference incompressible data, with a common inertial behavior and flow-dependent roll-off past
kη � 1. We conclude that the grid is fine enough to accurately resolve all the energetically relevant
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FIG. 2. Spanwise spectral densities of streamwise velocity fluctuations at y/h = 0.3, in local Kolmogorov
units. Refer to Table I for line legend.

flow features. The flow statistics are averaged over one hundred time samples spaced 1.0h/Ub

apart. We have checked that most results are converged with barely twenty samples. We have also
monitored the time evolution of the solenoidal and dilatational energy, and verified that no drift
occurs in the long term.

III. BASIC FLOW STATISTICS

The computed mean velocity and temperature profiles are shown in Fig. 3. As customary, the van
Driest transformation is applied to the velocity profiles, namely,

uVD =
∫ 〈u〉

0

√
〈ρ〉/〈ρw〉d〈u〉. (9)

Although other transformations may be more accurate in the presence of significant heat transfer
[11,14], van Driest transformation works rather well here owing to the near-adiabatic wall con-
ditions, and the transformed mean velocity profiles across different cases are fairly close to the
standard incompressible log law for y+ � 50, although a systematic upward trend is observed with
increasing Mach number. A tiny (if any) logarithmic layer is observed at this modest Reynolds

FIG. 3. Mean velocity (a) and temperature (b) profiles. Tc is the centerline temperature. Symbols in panel
(b) indicate temperature profiles obtained from the GRA relationship in Equation 10. Refer to Table I for line
legend.
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FIG. 4. Density-scaled Reynolds stresses distributions, as defined in Eq. (11). The gray line in (d) refers to
the asymptotic shear stress distribution, 1 − y/h. Refer to Table I for line legend.

number. The mean temperature profiles are shown in Fig. 3(b), along with predictions from the
generalized Reynolds analogy (GRA) of Zhang et al. [33],

〈T 〉 = Tw +
(

〈uc〉∂〈T 〉
∂〈u〉

∣∣∣∣
w

) 〈u〉
〈uc〉 +

(
〈Tc〉 − Tw − 〈uc〉∂〈T 〉

∂〈u〉
∣∣∣∣
w

) 〈u〉2

〈uc〉2 , (10)

where the subscript c refers to centerline properties. The mean temperature profiles very nearly
coincide with the predicted distributions across the wall-distance range, suggesting that addition
of a cooling term to the governing equations does not invalidate the GRA. It should be noted that
increasing the cooling term through the parameter α yields stronger temperature gradients in the
channel core, whereas the wall temperature gradients remain quite small in all cases.

The wall-normal distributions of the Reynolds stress components are shown in Fig. 4. As cus-
tomary, density scaling is applied to the velocity fluctuations according to Morkovin’s hypothesis.
The resulting innerscaled distributions are denoted as

R∗
i j = 〈ρ〉ũ′′

i u′′
j

τw

, (11)

where the diagonal components represent the velocity variances, and −R∗
12 is the turbulent shear

stress. Good universality of the profiles is observed in the outer layer, whereas differences are found
for y+ � 100, especially regarding the streamwise fluctuations, Fig. 4(a), whose buffer-layer peak
increases with the Mach number. However, the vertical and spanwise fluctuations slightly decrease
with M0, especially for y+ � 30. Similar observations were previously made by Refs. [4,5]. The
turbulent shear stress is shown in Fig. 4(d), where outer units are used for the vertical coordinate
to better compare with the infinite-Reynolds number distribution 1 − y/h, resulting from the mean
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FIG. 5. Inner-scaled distributions of vorticity fluctuations (a)–(c), and dilatation fluctuations (d). Refer to
Table I for line legend.

momentum balance. The results of the different flow cases are nearly indistinguishable, suggesting
that Mach number influences on turbulent shear stress are globally small, for given friction Reynolds
number.

The vorticity and divergence fluctuation intensities normalized in inner units (i.e., by τw/μw)
are shown in Fig. 5. The streamwise vorticity fluctuation ω+

x , which reflects the average strength
of streamwise vortices (in idealized structural models), decreases with the Mach number below
y+ = 30 and collapse above logarithmic layer, which is consistent with the previous observation
that cross-stream velocity fluctuations also decrease. The wall-normal and spanwise vorticity
fluctuations, which are generally assumed to be associated with the average strength of velocity
streaks and shear layers, respectively, collapse well across the y direction. The fluctuations of
velocity dilatation, θ ′ = ∇ · u′, which reflect direct effects of compressibility, increase in amplitude
with Mach number, as expected. Consistent with previous studies [8], maximum dilatational
fluctuations are found at the wall, for reasons that will be clarified in the following. In any case, the
magnitude is always much less than the vorticity fluctuations, as generally found in wall-bounded
flows [4,34].

To bring out possible correlations between the dilatation field and the global flow organization, in
Fig. 6 we show the correlation coefficients between dilatation fluctuations and velocity fluctuation
components, defined as Cθui = 〈θ ′u′′

i 〉/(〈θ ′2〉〈u′′2
i 〉)1/2. The strongest correlation between θ and u (up

to about 0.3) occurs in the buffer layer, where turbulence is most active. This points to nonnegligible
statistical association between high-speed streaks and expansion (namely, θ ′ > 0) zones, and/or
between low-speed streaks and compressions (θ ′ < 0). Strong positive correlation between θ and
v instead occurs at the wall, whose peak value increases with the Mach number. This strong
association is the results of kinematic constraints, as in the wall proximity θ ′ ∼ ∂v′′/∂y ∼ v′′, as
a result of finite flow compressibility. Because of symmetry, the correlation coefficient Cθw is nearly
zero and not reported.
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FIG. 6. Correlation coefficient between fluctuating dilatation and streamwise (a) and wall-normal (b) ve-
locity fluctuations. Refer to Table I for line legend.

IV. COMPRESSIBILITY EFFECTS

The degree of compressibility in turbulent flow is traditionally measured in terms of either the
turbulence Mach number (Mt = 〈u′′

i u′′
i 〉1/2/〈c〉, with c the local sound speed), or the fluctuating

Mach number (M ′, namely, the root-mean-square of the local Mach number), whose distributions
are shown in Fig. 7. As expected, both Mt and M ′ increase with the bulk Mach number, although
their behavior is quite different. Specifically, Mt attains its maximum in the buffer layer, basically
following the same trend as the velocity variances (see Fig. 4). For reference, Mt for hypersonic
boundary layer flow at M0 = 12 from Duan et al. [4] is also shown in the figure. Higher values are
found in the present channel-flow study, although the Mach number is not as high, presumably
owing to large differences in the distribution of the speed of sound. Smits and Dussauge [35]
pointed out that if Mt is locally higher than about 0.3, compressibility effects cannot be disregarded,
which is the case here for some of the flow cases. The fluctuating Mach number also has a relative
maximum in the buffer layer, which becomes a shoulder at the highest Mach numbers under study.
Consistent with the findings of Duan et al. [4], an additional peak is found in the channel core, which
becomes dominant at high M0. Although weaker, the outer peak of M ′ resembles that observed
in boundary layers, where it is associated with strong intermittency of the turbulent/nonturbulent
interface (TNTI). Although no obvious TNTI is present in channels (however, see Ref. [36]), high
values of M ′ are observed because of the strong temperature and density fluctuations in the core
flow.

FIG. 7. Distributions of turbulence Mach number (a) and fluctuating Mach number (b). Refer to Table I for
line legend. Symbols indicate boundary layer DNS data from Duan et al. [4].

123402-8



GENUINE COMPRESSIBILITY EFFECTS IN …

FIG. 8. Instantaneous fields of u′′
s (a), u′′

d (b), v′′
s (c), v′′

d (d), in a wall-parallel plane at y+ = 15, for case C5.

As mentioned in the Introduction, Helmholtz decomposition has been frequently used to
analyze isotropic and homogeneously sheared compressible turbulence, whereas application to
wall-bounded turbulence seems to be lacking. In fact, Pirozzoli et al. [34] applied the Helmholtz
decomposition to supersonic turbulent boundary layers to isolate the contributions of shear layers
and vortex tubes to turbulence, however, disregarding compressibility effects. The essence of the
Helmholtz decomposition is the attempt to cast the full velocity field as the sum of a vortical,
solenoidal (us) and a potential, dilatational (ud ) component, satisfying, respectively, ∇ · us = 0,
∇ × ud = 0. The two fields can be extracted from the velocity field u by solving Poisson equations
for the vector potential A and for the velocity potential ϕ,

∇2A = −∇ × u, ∇2ϕ = ∇ · u, (12)

whence ud = ∇ϕ and us = ∇ × A are obtained. Under the boundary conditions

∂ϕ

∂y
= 0,

∂Ay

∂y
= 0, Ax = Az = 0, (13)

the vector potential is unique [37], and the gradient of ϕ is also unique. The Poisson Eqs. (12) are
discretized spectrally in the periodic x and z directions, and by second-order central differences in
the y direction. The algorithm has been extensively verified through tests on artificial flow fields,
and it is applied to several three-dimensional flow samples to extract statistical information on us

and ud .
The instantaneous decomposed velocity fields are shown in the buffer layer (y+ = 15) in

Fig. 8. The distinctive wall-turbulence streaky pattern is recovered for us, whereas vertical velocity
fluctuations vs have a more spotty appearance, resulting from ejection and sweep events. Clear
association between the dilatational and solenoidal velocity fields is observed. Specifically, zones
with positive u′′

d (white shades) clearly follow high-speed streaks. Negative u′′
s and u′′

d fluctuations
are also clearly related. However, associated with low-speed streaks of u′′

s we find complex
patterns of u′′

d , consisting of alternating positive and negative fluctuations with small streamwise
wavelength, probably interpretable as traveling wave packets. These traveling waves also contain
vertical velocity fluctuations v′′

d , which are found to be negatively correlated with v′′
s . For the sake

of statistical interpretation of the flow visualizations, we consider the following splitting of the
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FIG. 9. Variance of solenoidal (a), (d), (g) and dilatational (c), (f), (i) velocity fluctuations, and their
covariance (b), (e), (h). (a)–(c) u fluctuations, (d)–(f) v fluctuations, (g)–(i) w fluctuations. Refer to Table I
for line legend.

Reynolds stresses,

Ri j = 〈ρ〉ũ′′
i u′′

j = 〈ρ〉˜u′′
i su

′′
j s

+ 〈ρ〉 ˜u′′
i d u′′

j d
+ 〈ρ〉 ˜u′′

i d u′′
j s

+ 〈ρ〉 ˜u′′
i su

′′
j d

. (14)

We will refer to the first term at the right-hand side as solenoidal-solenoidal (SS), to the second
term as dilatational-dilatational (DD), and to the third and fourth terms as solenoidal-dilatational
(SD, DS), being, respectively, associated with the variance of the solenoidal and dilatational velocity
fields, and with their covariance. The contributions to the diagonal Reynolds stress components are
shown in Fig. 9, where as in Eq. (11), the star denotes density-weighted, inner-scaled quantities.
The SS component clearly accounts for a prominent part of velocity fluctuations, for all flow cases.
Notably, the fluctuation intensities of u′′

s and v′′
s are even higher than those of u′′ and v′′ (compare

with Fig. 4), and a strong tendency to increase is observed for the buffer-layer peak of the u′′
s

variance. The intensity of dilatational fluctuations is generally much smaller, although substantially
increasing with the Mach number, and their trend is obviously similar to that previously noticed
for the dilatation variance. Absolute maxima are attained at the channel centerline, where variances
are about one tenth of the corresponding solenoidal velocity fluctuations. A notable exception to
this scenario is provided by v′′

d , whose variance is larger than v′′
s near the wall, at sufficiently high

Mach number. This is due to their different asymptotic wall scaling, as v′′
s ∼ y2 as a results of

incompressibility [38], whereas v′′
d ∼ y [21]. This is an important issue, implying that the largest

effects of compressibility on the overall flow dynamics (if any) should be traced to the near-wall
region. Unlike the case of homogeneously sheared turbulence [24], we find no evidence of simple
parametrization of the dilatational to solenoidal kinetic energy with the turbulent or fluctuating
Mach number, but rather we find (not shown) that the distributions tend to collapse when simply
scaled by M3

b . The covariance of dilatational and solenoidal velocity fluctuations is mainly confined
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FIG. 10. Contributions to turbulent shear stress from (a) solenoidal velocity fluctuations (SS), (d) dilata-
tional velocity fluctuations (DD), (b), (c) fluctuations covariances (SD and DS). Refer to Table I for line legend.

to the buffer layer, where it is larger than the variance of the dilatational fluctuations. Notably,
the covariance of u′′

s and u′′
d is always negative, indicating that statistical correlation between the

solenoidal and the dilatational velocity fields tends to compensate the increase of the solenoidal
fluctuations intensity with the Mach number.

A separate analysis is carried out for the turbulent shear stress, in view of its direct relevance in
the mean momentum budget, with subsequent impact on friction. From Eq. (14), four contributions
may be identified, which are reported in Fig. 10. As expected, the SS component contributes most
to the shear stress, and in fact it even overshoots the asymptotic 1 − y/h trend at high Mach number.
The overshoot is compensated by the SD term [Fig. 10(b)], which is negative everywhere and clearly
nonnegligible in the near-wall region. The DS term [Fig. 10(c)] is also negative, but an order of
magnitude smaller. The direct compressibility term (DD) is increasing substantially with the Mach
number, being negligible with respect to the other terms. For completeness of the analysis, in Fig. 11
we show the cross-correlation coefficients, Cusvs (associated with the SS contribution) and Cusvd

(associated with the SD contribution). As typical of wall-bounded flows, the SS cross-correlation is
close to 0.4 across large part of the channel [39]. However, the SD correlation is generally negative,
and insensitive to Mach number variation. Hence, the increase of the magnitude of the SD terms
observed in Fig. 10(b) is mainly due to the increase of the intensity of v′

d (recall Fig. 9).
Clear indication about the overall organization in wall-bounded flows is traditionally provided by

the spectral maps of the velocity components (e.g., Ref. [40]). In Fig. 12 we thus show the spanwise
spectra of the solenoidal and dilatational velocity fluctuations in pre-multiplied form, as a function
of the respective wavelength. For the purpose of isolating the effect of scale variation from large
inhomogeneity of the velocity variances across the wall layer (see Fig. 4), the spectra are presented
in normalized form,

Êϕ (ki ) = Eϕ (ki )/ϕ′2, (15)
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FIG. 11. Cross-correlation coefficients of horizontal and vertical decomposed velocity fluctuations. Refer
to Table I for line legend.

where Eϕ (ki ) denotes the spectral density of variable ϕ in the ith coordinate direction, in such a
way that they all integrate to unity at each y. The spectra of the solenoidal velocity field, shown
in Figs. 12(a) and 12(b), have the same structure, irrespective of the Mach number. The same type
of behavior is observed as in incompressible channel flow at moderate Mach number, with the
distinctive buffer-layer signature consisting of a spectral peak at λ+

z ≈ 100 for us, λ+
z ≈ 50 for

vs, associated with near-wall streaks. A band of wall distances for which the typical length scale
increases linearly is clearly visible in vs, whereas us features a distinct outer energy site at λz ≈ h,
associated with outer-layer superstructures [41]. The spectra of the dilatational velocity components
are shown in Figs. 12(c)–12(h). The streamwise dilatational velocity fluctuations [Figs. 12(c), 12(e),
and 12(g)] are characterized by single typical length scale throughout the wall layer, λ+

z ≈ 100. It
is noteworthy that this is very similar to the length scale of the buffer-layer streaks, which probably
points to a direct connection between the underlying hydrodynamic field and dilatational motions.
More puzzling is the case of the vertical velocity fluctuations, which tend to be wider near the wall
by a factor of about two, and which seem to have a similar spectral organization as us, with an outer
spectral peak at λz ≈ h. The reason for the largely different behavior of ud and vd is unclear at this
stage.

V. DILATATIONAL CONTRIBUTIONS TO SKIN FRICTION

Given the previously noted nonnegligible contribution of dilatational velocity fluctuations to
the turbulent shear stress, it is not surprising that they also contribute to the wall shear stress. To
quantify that effect, we generalize the FIK identity [42], in its compressible flow extension [43],
by decomposing the turbulent shear stress contributions. The starting point is the mean momentum
balance, written in nondimensional form,

(1 − y)
Cf

2
= −〈ρ〉ũ′′v′′ + 1

Re�

[
(1 + 〈μ〉�)

∂uVD

∂y
+

〈
μ′�

(
∂u′

∂y
+ ∂v′

∂x

)〉]
, (16)

where Re� = 2ρbUbh/〈μ〉�, 〈μ〉� = μw − 〈μ〉, and μ′� = μ′/μw. Integrating twice in y, one obtains

Cf

2
= 6

Re�︸︷︷︸
CV

− 6
∫ 1

0
(1 − y)〈ρ〉ũ′′v′′dy︸ ︷︷ ︸

CT

+ 6

Re�

∫ 1

0
(1 − y)〈μ〉� ∂uVD

∂y
dy︸ ︷︷ ︸

CM

+ 6

Re�

∫ 1

0
(1 − y)

〈
μ′�

(
∂u′

∂y
+ ∂v′

∂x

)〉
dy︸ ︷︷ ︸

CM1

, (17)
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FIG. 12. Premultiplied normalized spanwise spectral densities [kzÊϕ (kz )] of streamwise (left) and wall-
normal (right) velocity fluctuations: ϕ = u′′

s (a), ϕ = v′′
s (b), ϕ = u′′

d (c), (e), (g), ϕ = v′′
d (d), (f), (h). Data are

shown for all flow cases in panels (a), (b), line style as in Table I. Dilatational spectra are shown for flow cases
C1 (c), (d), C4 (e), (f), C7 (g), (h). Contour levels from 0.1 to 0.5, in intervals of 0.1.

which reveals that mean skin friction is affected by the viscous term (CV ), turbulent shear stresses
(CT ), mean viscosity variations (CM), and turbulent viscosity fluctuations (CM1). Substituting the
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D
D

SS

SD

FIG. 13. Premultiplied integrands of terms contributing to mean wall friction from Eq. (18), normalized by
Cf /2,: CT (a), CT SS (b), CT SD (c), CT DD (d), CM (e), CM1 (f). Refer to Table I for line legend.

Reynolds stress decomposition Eq. (14) into Eq. (17) finally yields

Cf

2
= 6

Re�︸︷︷︸
CV

− 6
∫ 1

0
(1 − y)〈ρ〉ũ′′

s v
′′
s dy︸ ︷︷ ︸

CT SS

− 6
∫ 1

0
(1 − y)〈ρ〉(ũ′′

s v
′′
d + ˜u′′

dv
′′
s )dy︸ ︷︷ ︸

CT SD

− 6
∫ 1

0
(1 − y)〈ρ〉ũ′′

dv
′′
d dy︸ ︷︷ ︸

CT DD

+ 6

Re�

∫ 1

0
(1 − y)〈μ〉� ∂uVD

∂y
dy︸ ︷︷ ︸

CM

+ 6

Re�

∫ 1

0
(1 − y)

〈
μ′�

(
∂u′′

∂y
+ ∂v′′

∂x

)〉
dy︸ ︷︷ ︸

CM1

. (18)

Hence, the turbulent shear stress contribution is further split into the contribution from solenoidal
velocity fluctuations (CT SS), from dilatational velocity fluctuations (CT DD), and from their cross-
correlation (CT SD). The premultiplied integrands corresponding to these terms are shown in Fig. 13.
The turbulent solenoidal contribution is clearly dominant over the other ones, being distributed
across the wall layer, and receiving large contribution from the logarithmic layer. The turbulent
dilatational contribution is much smaller, and it also exhibits a secondary peak in the buffer layer. It
is noteworthy that the term associated with solenoidal/dilatational correlations is not negligible,
and it attains a negative peak in the buffer layer, which increases in magnitude with Mb. The
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TABLE II. Mean friction coefficient (Cf ) and integrated contributions of terms in Eq. (18) as percentage of
the total.

Case Cf (×103) CV CT CT SS CT DD CT SD CM CM1

C0 5.91 10.22% 89.78% – – – – –
C1 5.76 10.49% 89.49% 89.42% −0.0003% −0.577% 0.0214% 0.0077%
C2 5.32 10.50% 89.45% 89.62% 0.0002% −0.737% 0.0555% 0.0208%
C3 4.70 11.35% 88.53% 91.39% 0.0122% −1.64% 0.119% 0.0483%
C4 4.17 11.16% 88.68% 93.84% 0.0609% −2.38% 0.160% 0.0646%
C5 3.91 11.69% 88.15% 88.25% 0.0597% −1.92% 0.162% 0.0660%
C6 2.89 10.93% 89.55% 94.11% 0.153% −2.72% −0.488% 0.0697%
C7 1.51 10.61% 90.53% 95.13% 0.482% −3.77% −1.143% 0.0856%

terms associated with mean viscosity variation have roughly the same order of magnitude, but
they are more concentrated toward the wall, and also increasing with Mb, whereas terms due to
viscosity fluctuations are very small. The integrated fractional contributions of the various terms
to skin friction are listed in Table II. At the moderate Reynolds numbers under scrutiny, viscosity
yields a nonnegligible contribution to friction of about 10%. The turbulent shear stress accounts
for approximately the remaining 90% of the skin friction, this percentage being weakly affected
by Mach number. Within this large percentage, we find a competitive effect of solenoidal turbulent
stresses which would tend to increase Cf , and of stresses resulting from solenoidal/dilatational
correlations, which instead tend to decrease it, yielding a negative net effect which increases very
nearly linearly with Mb, up to 4%.

A. Coherent structures

As previously pointed out, the flow is characterized by significant correlation between stream-
wise solenoidal velocity fluctuations and vertical dilatational velocity fluctuations. Traditionally, the
statistical association of horizontal and vertical velocity fluctuations is studied through their joint
probability function, referred to as quadrant analysis [44]. The quadrant analysis of the decomposed
Reynolds stress of C1, C4, and C7 cases is reported in Fig. 14, at y+ = 20. Similar to the case
of incompressible wall turbulence, the joint probability density function (p.d.f.) of the solenoidal
velocity components (us, vs) shows dominance of second- and fourth-quadrant events, the latter
being statistically more frequent and the former more intense. The joint p.d.f. of the dilatational
velocity field, (ud , vd ), shows large negative skewness of the horizontal fluctuations, with strong
negative u′′

d events, but no significant correlation with vertical fluctuations. The SD (us, vd ) joint
p.d.f. shows no evidence of correlation for negative u′′

s events, namely, low-speed streaks, however
it shows that the most frequent events, which have small positive u′′

s and positive v′′
d , tend to be

positively correlated. The DS (ud , vs) joint p.d.f. also shows some positive correlation between
horizontal and vertical velocity fluctuations, with second and fourth quadrants relatively depleted of
events.

In view of the much larger effect of the SD cross-correlation on the turbulent shear stress
(recalling Fig. 10) with respect to other dilatational effects, (us, vd ) events are further scrutinized to
determine the typical associated eddies. For that purpose, we evaluate the statistical averages of the
DNS flow fields based on the condition

ϕ(�x, y,�z) = 〈ϕ(x + �x, y, z + �z)|u′′
s (x, yref , z) > 0, v′′

d (x, yref , z) > 0, u′′
s v

′′
d >

(
u′′

s
2v′′

d
2)1/2〉.

(19)

The analysis is then restricted to strong first-quadrant events, which based on the analysis of the
covariance integrands (not shown) are found to yield larger contribution to the covariance. The
resulting vortical structures and dilatation fields are shown in Fig. 15, superposed to the conditional
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FIG. 14. Quadrant analysis of solenoidal and dilatational velocity fluctuations [(a), SS (us, vs ); (b), DD
(ud , vd ); (c) SD (us, vd ); (d), DS (ud , vs )], at y+ = 20 for flow cases C1, C4, and C7 (refer to Table I for line
legend). The contour levels 0.002, 0.02, 0.1, and 0.2, are shown.

velocity field in the reference plane, taken in the buffer layer. Following Zhou et al. [45], we
identify vortical structures based on the swirling strength (λci), namely, the imaginary part of the
complex eigenvalue pair of the conditional velocity gradient tensor. The topology of the educed
eddies consists of a pair of quasistreamwise legs, forming a small angle with respect to the wall
plane, connected upstream by a quasispanwise head. Based on the sign of the streamwise vorticity
used to color the swirling strength isosurface, we may interpret those eddies as retrograde hairpins
(namely, whose spanwise vorticity has opposite sign to the mean [46]), pumping high-speed fluid
toward the wall between their legs, hence linked with sweep events and high-speed streaks. We
find that these events are associated with positive dilatation patches underneath, namely, expansions
with positive v′′

d . This is consistent with the above noted positive correlation of us and vd , and it
physically points to the fact that finite flow compressibility tends to oppose wall-ward motions, thus
limiting the strength of sweep events, and also limiting turbulent shear stress in the buffer layer.
A similar, but reverse behavior is observed in conditional events based on negative u′′

s , hence on
low-speed streaks, which instead yield prograde hairpins as typical structures, inducing negative
dilatation between their legs. Again, based on the previous quadrant analysis, they convey much
smaller contribution to the overall turbulent shear stress, hence the related conditional flow patterns
are not shown.

VI. CONCLUSION

We have carried out a numerical study of compressible turbulent channel flow, in a set-up
which allows for weak variation of the mean thermodynamic properties. The latter are regarded
to be responsible for what are generally referred to as compressibility effects, which is the reason
why transformations based on the mean density and viscosity gradients are rather successful in
mapping compressible results onto incompressible data. In this study we have rather focused on
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FIG. 15. Conditional average eddies based on condition Eq. (19) for flow case C1 (a), C3 (b), C5 (c), and
C7 (d). Isosurfaces of λci = 0.6 are shown colored in red and blue (corresponding to positive and negative ωx ,
respectively), overlaid to isosurfaces of dilatation, in green (a, θ = 0.03; b, θ = 0.15; c, θ = 0.3; d, θ = 0.6).
Streamwise velocity contours at the conditioning wall distance (y+

ref = 20) are also shown (levels from −0.19
to 0.19 in intervals of 0.02: solid, positive; dashed, negative).

the genuine effects of flow compressibility, related to finite dilatation of the fluid. For that purpose,
the Helmholtz decomposition has been used, which allows to effectively separate the dilatational
velocity fluctuations from the underlying vortical, hydrodynamic field. Bulk Mach numbers up
to Mb ≈ 4.4 are included in the database, which yield moderate turbulent Mach numbers up to
Mt ≈ 0.45. Under these conditions, we find that the fraction of dilatational kinetic energy to the
solenoidal kinetic energy is less than 1% in the buffer layer, increasing to about 10% toward
the channel centerline, where potential velocity fluctuations are relatively most intense. Notably,
this fraction is found to increase as M3

b , which allows for extrapolation of the present results to
more extreme flow conditions. Also important is the fact that, because of violation of the divergence-
free conditions, dilatational vertical velocity fluctuations in the viscous sublayer may be larger than
the solenoidal ones, which allows for some dynamical near-wall effect. In fact, we find nonnegligible
statistical association between high-speed streaks and vertical dilatational velocity fluctuations,
which affects the turbulent shear stress by as much as 10% within the buffer layer. As a consequence
of the contribution to the turbulent shear stress, we find that dilatational effects also contribute to
mean friction. In fact, use of a modified FIK identity shows that dilatational effects yield a nominal
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decrease (with respect to the purely incompressible case) of about 4% at the highest Mach number
considered, a fraction which is found to increase about linearly with Mb. Given the nonnegligible
dynamical relevance of dilatational motions in the buffer layer, we have also carried out an analysis
of the typical associated coherent structures by taking conditional averaged of the DNS flow fields.
Consistent with previously advocated kinematic arguments, we find that most dilatational effects are
concentrated in the viscous sublayer, corresponding to expansion regions which tend to counteract
wall-ward motions associated with hydrodynamic sweep events. We have also studied the spatial
organization of dilatational motions away from walls, and characterized their typical size through
spectral maps. Some issues remain puzzling, for instance the noted different behavior of dilatational
motions near high- and low-speed streaks, with the latter featuring streamwise-aligned alternating
expansion and compression bands, resembling wave packets. It should finally be noted that the
results herein presented strictly pertain to the case of nearly adiabatic walls, but the conclusions
might in principle change in the presence of significantly heated or cooled walls. These and other
topics are left for future studies.
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[23] R. Samtaney, D. I. Pullin, and B. Kosović, Direct numerical simulation of decaying compressible

turbulence and shocklet statistics, Phys. Fluids 13, 1415 (2001).
[24] S. Chen, J. Wang, H. Li, M. Wan, and S. Chen, Spectra and Mach number scaling in compressible

homogeneous shear turbulence, Phys. Fluids 30, 065109 (2018).
[25] J. Wang, Y. Shi, L. P. Wang, Z. Xiao, X. He, and S. Chen, Effect of shocklets on the velocity gradients in

highly compressible isotropic turbulence, Phys. Fluids 23, 125103 (2011).
[26] J. Wang, Y. Shi, L. P. Wang, Z. Xiao, X. T. He, and S. Chen, Effect of compressibility on the small-scale

structures in isotropic turbulence, J. Fluid Mech. 713, 588 (2012).
[27] J. R. Ristorcelli, A pseudo-sound constitutive relationship for the dilatational covariances in compressible

turbulence, J. Fluid Mech. 347, 37 (1997).
[28] Y. Morinishi, S. Tamano, and K. Nakabayashi, Direct numerical simulation of compressible turbulent

channel flow between adiabatic and isothermal walls, J. Fluid Mech. 502, 273 (2004).
[29] W. Schoppa and F. Hussain, Coherent structure generation in near-wall turbulence, J. fluid Mech. 453, 57

(2002).
[30] X. Li, D. Fu, and Y. Ma, Direct numerical simulation of hypersonic boundary layer transition over a blunt

cone, AIAA J. 46, 2899 (2008).
[31] X. Li, D. X. Fu, and Y. W. Ma, Direct numerical simulation of a spatially evolving supersonic turbulent

boundary layer at Ma = 6, Chin. Phys. Lett. 23, 1519 (2006).
[32] M. Bernardini, S. Pirozzoli, and P. Orlandi, Velocity statistics in turbulent channel flow up to Reτ = 4000,

J. Fluid Mech. 742, 171 (2014).
[33] Y. S. Zhang, W. T. Bi, F. Hussain, and Z. S. She, A generalized Reynolds analogy for compressible

wall-bounded turbulent flows, J. Fluid Mech. 739, 392 (2014).
[34] S. Pirozzoli, M. Bernardini, and F. Grasso, On the dynamical relevance of coherent vortical structures in

turbulent boundary layers, J. Fluid Mech. 648, 325 (2010).
[35] A. J. Smits and J. P. Dussauge, Turbulent Shear Layers in Supersonic Flow (Springer, Berlin, 2006).
[36] Y. S. Kwon, J. Philip, C. M. de Silva, N. Hutchins, and J. P. Monty, The quiescent core of turbulent

channel flow, J. Fluid Mech. 751, 228 (2014).
[37] G. J. Hirasaki and J. D. Hellums, Boundary conditions on the vector and scalar potentials in viscous

three-dimensional hydrodynamics, Qu. App. Math. 28, 293 (1970).
[38] A. A. Townsend, The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1976).
[39] P. J. A. Priyadarshana and J. C. Klewicki, Study of the motions contributing to the Reynolds stress in high

and low Reynolds number turbulent boundary layers, Phys. Fluids 16, 4586 (2004).
[40] J. C. del Álamo, J. Jiménez, P. Zandonade, and R. D. Moser, Scaling of the energy spectra of turbulent

channels, J. Fluid Mech. 500, 135 (2004).
[41] N. Hutchins and I. Marusic, Evidence of very long meandering features in the logarithmic region of

turbulent boundary layers, J. Fluid Mech. 579, 1 (2007).
[42] K. Fukagata, K. Iwamoto, and N. Kasagi, Contribution of Reynolds stress distribution to the skin friction

in wall-bounded flows, Phys. Fluids 14, L73 (2002).

123402-19

https://doi.org/10.1007/s00162-007-0043-4
https://doi.org/10.1007/s00162-007-0043-4
https://doi.org/10.1007/s00162-007-0043-4
https://doi.org/10.1007/s00162-007-0043-4
https://doi.org/10.1063/1.857767
https://doi.org/10.1063/1.857767
https://doi.org/10.1063/1.857767
https://doi.org/10.1063/1.857767
https://doi.org/10.1016/j.ijheatfluidflow.2006.02.014
https://doi.org/10.1016/j.ijheatfluidflow.2006.02.014
https://doi.org/10.1016/j.ijheatfluidflow.2006.02.014
https://doi.org/10.1016/j.ijheatfluidflow.2006.02.014
https://doi.org/10.4208/cicp.221113.280714a
https://doi.org/10.4208/cicp.221113.280714a
https://doi.org/10.4208/cicp.221113.280714a
https://doi.org/10.4208/cicp.221113.280714a
https://doi.org/10.1017/S0022112008003005
https://doi.org/10.1017/S0022112008003005
https://doi.org/10.1017/S0022112008003005
https://doi.org/10.1017/S0022112008003005
https://doi.org/10.1063/1.1355682
https://doi.org/10.1063/1.1355682
https://doi.org/10.1063/1.1355682
https://doi.org/10.1063/1.1355682
https://doi.org/10.1063/1.5028294
https://doi.org/10.1063/1.5028294
https://doi.org/10.1063/1.5028294
https://doi.org/10.1063/1.5028294
https://doi.org/10.1063/1.3664124
https://doi.org/10.1063/1.3664124
https://doi.org/10.1063/1.3664124
https://doi.org/10.1063/1.3664124
https://doi.org/10.1017/jfm.2012.474
https://doi.org/10.1017/jfm.2012.474
https://doi.org/10.1017/jfm.2012.474
https://doi.org/10.1017/jfm.2012.474
https://doi.org/10.1017/S0022112097006083
https://doi.org/10.1017/S0022112097006083
https://doi.org/10.1017/S0022112097006083
https://doi.org/10.1017/S0022112097006083
https://doi.org/10.1017/S0022112003007705
https://doi.org/10.1017/S0022112003007705
https://doi.org/10.1017/S0022112003007705
https://doi.org/10.1017/S0022112003007705
https://doi.org/10.1017/S002211200100667X
https://doi.org/10.1017/S002211200100667X
https://doi.org/10.1017/S002211200100667X
https://doi.org/10.1017/S002211200100667X
https://doi.org/10.2514/1.37305
https://doi.org/10.2514/1.37305
https://doi.org/10.2514/1.37305
https://doi.org/10.2514/1.37305
https://doi.org/10.1088/0256-307X/23/6/045
https://doi.org/10.1088/0256-307X/23/6/045
https://doi.org/10.1088/0256-307X/23/6/045
https://doi.org/10.1088/0256-307X/23/6/045
https://doi.org/10.1017/jfm.2013.674
https://doi.org/10.1017/jfm.2013.674
https://doi.org/10.1017/jfm.2013.674
https://doi.org/10.1017/jfm.2013.674
https://doi.org/10.1017/jfm.2013.620
https://doi.org/10.1017/jfm.2013.620
https://doi.org/10.1017/jfm.2013.620
https://doi.org/10.1017/jfm.2013.620
https://doi.org/10.1017/S0022112009993156
https://doi.org/10.1017/S0022112009993156
https://doi.org/10.1017/S0022112009993156
https://doi.org/10.1017/S0022112009993156
https://doi.org/10.1017/jfm.2014.295
https://doi.org/10.1017/jfm.2014.295
https://doi.org/10.1017/jfm.2014.295
https://doi.org/10.1017/jfm.2014.295
https://doi.org/10.1090/qam/99793
https://doi.org/10.1090/qam/99793
https://doi.org/10.1090/qam/99793
https://doi.org/10.1090/qam/99793
https://doi.org/10.1063/1.1809131
https://doi.org/10.1063/1.1809131
https://doi.org/10.1063/1.1809131
https://doi.org/10.1063/1.1809131
https://doi.org/10.1017/S002211200300733X
https://doi.org/10.1017/S002211200300733X
https://doi.org/10.1017/S002211200300733X
https://doi.org/10.1017/S002211200300733X
https://doi.org/10.1017/S0022112006003946
https://doi.org/10.1017/S0022112006003946
https://doi.org/10.1017/S0022112006003946
https://doi.org/10.1017/S0022112006003946
https://doi.org/10.1063/1.1516779
https://doi.org/10.1063/1.1516779
https://doi.org/10.1063/1.1516779
https://doi.org/10.1063/1.1516779


YU, XU, AND PIROZZOLI

[43] T. Gomez, V. Flutet, and P. Sagaut, Contribution of Reynolds stress distribution to the skin friction in
compressible turbulent channel flows, Phys. Rev. E 79, 035301(R) (2009).

[44] J. M. Wallace, Quadrant analysis in turbulence research: History and evolution, Annu. Rev. Fluid Mech.
48, 131 (2016).

[45] J. Zhou, R. J. Adrian, S. Balachandar, and T. M. Kendall, Mechanisms for generating coherent packets of
hairpin vortices in channel flow, J. Fluid Mech. 387, 353 (1999).

[46] V. K. Natrajan, Y. Wu, and K. T. Christensen, Spatial signatures of retrograde spanwise vortices in wall
turbulence, J. Fluid Mech. 574, 155 (2007).

123402-20

https://doi.org/10.1103/PhysRevE.79.035301
https://doi.org/10.1103/PhysRevE.79.035301
https://doi.org/10.1103/PhysRevE.79.035301
https://doi.org/10.1103/PhysRevE.79.035301
https://doi.org/10.1146/annurev-fluid-122414-034550
https://doi.org/10.1146/annurev-fluid-122414-034550
https://doi.org/10.1146/annurev-fluid-122414-034550
https://doi.org/10.1146/annurev-fluid-122414-034550
https://doi.org/10.1017/S002211209900467X
https://doi.org/10.1017/S002211209900467X
https://doi.org/10.1017/S002211209900467X
https://doi.org/10.1017/S002211209900467X
https://doi.org/10.1017/S0022112006003788
https://doi.org/10.1017/S0022112006003788
https://doi.org/10.1017/S0022112006003788
https://doi.org/10.1017/S0022112006003788

