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The net movement of Lagrangian particles under water waves comprises a Stokes drift
in the direction of wave propagation and an Eulerian return flow in the opposing direction.
Accurate prediction of the Eulerian return flow in the ocean is of importance in modeling
the transport of plastic pollution, oil, wreckage, and sediment. Herein, we derive a multiple-
scales solution for the Eulerian mean flow under wave packets that is valid for all water
depths, relative to both the length of the wave and the length of the wave packet. To validate
this solution, we carry out particle tracking velocimetry experiments in a long flume to
extract the mean motion from Lagrangian seeding particles under wave packets, finding
good agreement. The extraction technique is able to deal with small background motion
and subharmonic error waves associated with wave generation by the paddle, the latter
being relatively large in finite-depth flume experiments. In finite depth, the return flow is
forced by both the divergence of the Stokes transport on the wave-packet scale and the
formation of a non-negligible mean set-down underneath the packet, which acts like a
bounding streamtube in the form of a convergent-divergent duct. The magnitude of the
horizontal return flow is thus enhanced, with particular relevance to transport in the finite-
depth coastal environment.
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I. INTRODUCTION

Although fluid particles under progressive, small-amplitude surface gravity waves predominantly
move forward and backward with linear motion, they undergo a small forward net transport known
as the Stokes drift [1]. Realistic seas are not regular waves but are composed of wave packets,
which can be represented as a linear superposition of waves of different frequencies [2]. In the limit
of a narrow-banded spectrum, these packets can also be obtained by the amplitude modulation of a
single frequency wave. Given that Stokes drift depends on the square of the local wave amplitude,
its associated mass transport becomes divergent at packet-scale: mass transport is larger at the center
of the group than at leading and trailing edges. This divergence must be balanced by a return flow
in the direction opposite to wave propagation, which also causes a depression in the wave-averaged
free surface under the wave packet, known as the set-down [3]. The depression in the wave-averaged
free surface can be thought of as further enhancing the magnitude of the return flow.

Together, Stokes drift and the wave-induced Eulerian return flow make up the wave-induced
Lagrangian velocity field, and both occur at second-order in a Stokes expansion. The Lagrangian
velocity field is important in the prediction of species transport in the ocean, encompassing the
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TABLE I. Classification of the literature in different regimes based on depth relative to the carrier
wavelength (k0d) and depth relative to the wave-packet length or the return flow scale (d/σ ).

Regime
Carrier wave depth

(k0d)
return flow depth

(d/σ )

Deep carrier wave and �1 �1 Dysthe [24]
deep return flow van den Bremer and Taylor [25]

This paper

Deep carrier wave and �1 �1 Mei et al. [23]
shallow return flow Longuet-Higgins and Stewart [3]

Davey and Stewartson [21]
Brinch-Nielsen and Jonsson [22]

This paper

Intermediate-depth carrier O(1) O(1) This paper
wave and intermediate-depth
return flow

Intermediate-depth carrier O(1) �1 Longuet-Higgins and Stewart [3]
wave and shallow Davey and Stewartson [21]
return flow Longuet-Higgins and Stewart [3]

This paper

movement of sediment, plastic, oil, and wreckage (see van den Bremer and Breivik [4] for a recent
review of Stokes drift and its applications). Because of its potentially large damage to marine
wildlife, plastic, and more specifically microplastic, has recently attracted a great deal of attention
[5,6]. Although recent research has focused on documenting the concentrations of plastic in the
coastal region [7], and predicting locations of plastic accumulation [8], the effect of wave-induced
plastic transport has yet to be fully explored. Wave-induced transport must also be included in the
search for wreckage, such as that concerning the 2014 MH370 airplane crash in the Indian Ocean
[9]. Stokes drift is also important in the modeling of oil spills [10–12] and in sediment transport
[13,14].

Although it can be ignored in sufficiently deep water [15], the set-down of the wave-averaged
free surface becomes important when the water depth is finite. Ignoring set-down or incorrectly
reproducing it in numerical or laboratory experiments has been shown to lead to incorrect
predictions of run-up on beaches [16]. Generation of wave packets using linearly controlled wave
paddles leads to spurious “error waves” on the scale of the group, which travel ahead of the wave
packet as free waves, typically at the shallow-water phase velocity in laboratory flumes [17] (see
also the discussion in [16,18]). Second-order wave generation, where the subharmonic frequencies
represent the correct generation of the mean flow and the set-down of the wave-averaged free
surface, has been proposed to remedy this [19,20]. Implementation of second-order wave generation
can, however, be limited by the requirement of a large paddle stroke on the scale of the group [17].

Historically, several approaches have been taken to derive analytical solutions for the mean flow
and the wave-averaged free surface under wave packets. These solutions can be classified on the
basis of two scales: the water depth d relative to carrier wavelength, namely k0d , with k0 denoting
the carrier wave number, and the water depth relative to packet length, namely d/σ , with σ denoting
the packet length scale. Table I shows the regimes based on these two nondimensional numbers
for which solutions have been proposed in the literature. Assuming the return flow is shallow,
i.e., d/σ � 1, such that the horizontal return flow is uniform over depth, Longuet-Higgins and
Stewart [3], Davey and Stewartson [21], Brinch-Nielsen and Jonsson [22], and Mei et al. [23]
presented solutions for the set-down and return flow. These solutions can describe water depths
that are shallow, deep, or intermediate with respect to the carrier wavelength [k0d � 1, k0d � 1,
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or k0d = O(1), respectively]. When d/σ � 1, the return flow does not extend to the bottom of the
ocean floor, thus it is considered a deep return flow and it has been modeled by Dysthe [24] (and van
den Bremer and Taylor [25]). None of these multiple-scales solutions are valid for an intermediate
depth return flow, d/σ = O(1). Taking a different approach, Dalzell [26] represents the wave packet
as an infinite sum over the wave number, which leads to a solution for the set-down and mean
flow in the form of “frequency-difference” terms in a double summation over the wave number.
Dalzell [26] makes no assumptions concerning the depth of the return flow or carrier wave, but
the solutions do not enable a simple evaluation of Lagrangian particle displacements. Expressions
for these “frequency-difference” terms can also be distilled from [3,27–30] (see [31] for a recent
rederivation that also includes pressure).

Experimentally, many authors have considered Stokes drift in laboratory wave flumes. There
remains some confusion in the literature about whether a net drift should be observed (see the
discussion in [4,32–34]). In addition to the solutions to the irrotational water wave equations [35,36],
streaming in the boundary layers [33,37,38], convection of vorticity from the ends of the tank
into the interior of the fluid [37,39] (or conduction from the free surface and bottom boundary
layers [40]), or enhanced transport for particles on the surface in breaking waves may play a role
[34,41,42]. Recently, van den Bremer et al. [43] have demonstrated experimentally that Lagrangian
transport by the combination of Stokes drift and the Eulerian return flow underneath unidirectional,
deep-water surface gravity wave packets is in good agreement with leading-order solutions to the
irrotational water wave equations.

This paper derives solutions for the mean flow and the wave-averaged free surface using the
multiple-scales method. These solutions are valid in arbitrary depths relative to the scale of the
packet and the Eulerian return flow. The theory recovers all regimes for which solutions have
previously been derived (see Table I), and the predicted set-down matches the multicomponent
theory of Dalzell [26] in the narrow-banded limit. In doing so, we correct incomplete predictions
in the finite-depth regime by [44]. We calculate Lagrangian transport by integrating the Eulerian
mean flow and Stokes drift velocity. We also carry out new particle tracking velocimetry (PTV)
experiments for wave packets in a laboratory wave flume in the finite-depth regime, in which the
effect of set-down on Lagrangian particle displacement becomes significant. We thus extend results
for deep-water for which the set-down can be ignored (obtained by van den Bremer et al. [43]),
to finite depth for which it cannot. We measure the set-down, take into account the effect of error
waves, extract the Lagrangian displacement, and compare results with our theoretical predictions,
finding good agreement.

The paper is laid out as follows. First, Sec. II outlines second-order theory, leading to a solution
for Eulerian return flow in arbitrary depth and displacements arising from Eulerian mean flow and
Stokes drift. Section III describes the experimental method, and Sec. IV presents a comparison
of theoretically predicted and experimentally determined displacements. Finally, conclusions are
drawn in Sec. V.

II. SECOND-ORDER THEORY

A. Governing equations

We consider unidirectional waves propagating over a horizontal bed in the (x, z) plane, with z
measured vertically upward from the still water level, and the free surface located at z = η. For the
irrotational flow of inviscid, incompressible fluid, the governing equation is Laplacian,

∇2φ = 0 for − d � z � η, (1)

where φ is the velocity potential and d is the depth. Equation (1) is solved subject to the no-flow
bottom boundary condition,

∂φ

∂z
= 0 at z = −d, (2)
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and the kinematic and dynamic linear free surface boundary conditions,

w − ∂η

∂t
− u

∂η

∂x
= 0 (3a)

and

gη + ∂φ

∂t
+ 1

2
(∇φ)2 = 0 at z = η, (3b)

where t is time, g is gravity, and the velocity components are u = ∂φ/∂x and w = ∂φ/∂z.

B. Solutions using perturbation methods

We begin by carrying out a Stokes expansion using the steepness α ≡ k0a, where a is the
maximum amplitude of the (linear) free surface A0, and k0 is the carrier wave number. Using a
Taylor-series expansion of the free-surface boundary conditions (3a) and (3b) about z = 0, we obtain
after some manipulation (see also [45,46]), utilizing the Laplace equation (1):(

1

g

∂2

∂t2
+ ∂

∂z

)
φ(2) = ∂

∂x

(
∂φ(1)

∂x
η(1)

)
− 1

g

∂

∂t

(
1

2
(∇φ(1) )2 + ∂2φ(1)

∂z∂t
η(1)

)
+ O(α3) at z = 0,

(4)

η(2) = −1

g

(
∂φ(2)

∂t
+ ∂2φ(1)

∂z∂t
η(1) + 1

2
|∇φ(1)|2

)
+ O(α3) at z = 0, (5)

where the superscripts denote the order in α, and we only consider terms up to second order in α.
Wave packets can be created by modulating a single-frequency carrier wave with angular

frequency ω0 and wave number k0. Assuming the length scale of the modulation σ is much larger
than the wavelength of the carrier wave allows a multiple-scales expansion in the small parameter
ε ≡ 1/(k0σ ). The parameter ε is a measure of the bandwidth of the spectrum, and the leading-order
terms we consider correspond to a narrow-banded spectrum centered around the carrier wave.
Accordingly, we have the fast variables x, z, and t and the slow variable X = ε(x − cg,0t ), where
cg,0 ≡ ∂ω/∂k|k=k0 = ω0/k0[1/2 + k0d/ sinh(2k0d )] is the group velocity of the wave packet. Our
focus is on leading-order terms; we thus ignore dispersion of the group and its associated higher-
order scales. The fast variables allow change on the length scale of the carrier wave, while the slow
variables represent changes in the modulation of the wave packet. Derivatives are then expanded for
fast and slow variables as

∂

∂x
→ ∂x + ε∂X . (6)

From here on, ∂/∂x will be used to denote combined slow and fast derivatives, whereas ∂x and ∂X

denote fast and slow derivatives, respectively. The overlines in (4) and (5) correspond to averaging
over the fast scales, and we ignore any superharmonic contributions to the second-order terms as
they do not contribute to the mean flow. We will now consider the first two orders in α in turn.

1. First-order in steepness O(α)

Similar to [21,22], we write the O(α) solutions as summations over different orders in ε (see also
[47]),

ζ (1) = {A0(X ) ζ̂0(z) + εA1(X ) ζ̂1(z)}eı(k0x−ω0t ) + O(αε2), (7)

φ(1) = {B0(X )φ̂0(z) + εB1(X )φ̂1(z)}eı(k0x−ω0t ) + O(αε2), (8)

where the subscripts denote the order in ε and we only consider the first two orders. The variable ζ (1)

denotes the linear vertical displacement field, which corresponds to the linear free-surface elevation
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TABLE II. Expressions for the different linear (in α ≡ k0|a0|) fields at O(α1ε0) and O(α1ε1). The actual
fields are the real parts of the tabulated expressions after multiplication by exp[ı(k0x − ω0t )].

Linear field O(αε0) O(αε1)

Surface elevation η(1) A0 ı
k0d

k0 tanh(k0d ) εA0,X

Velocity potential φ (1) −ı
cp,0

k0
A0 η̂′

0
cp,0

k2 εA0,X [η̂′
1 + (2 − cg,0/cp,0 )η̂′

0]

Horizontal velocity u(1) cp,0 A0 η̂′
0 ı

cp,0

k0
εA0,X [η̂′

1 + (1 − cg,0/cp,0 )η̂′
0]

Vertical velocity w(1) −ıω0 A0 η̂0 cp,0 εA0,X (η̂1 − cg,0/cp,0 η̂0)

Vertical displacement ζ (1) A0 η̂0 ı 1
k0

εA0,X η̂1

Horizontal displacement ξ (1) ı 1
k0

η̂′
0 − 1

k2
0

εA0,X (η̂′
1 + η̂′

0)

η(1) evaluated at z = 0, namely η(1) = ζ (1)(z = 0), and it can be found from ∂ζ (1)/∂t = w(1) [cf.
(3a)]. The vertical structure functions ζ̂0(z), ζ̂1(z), φ̂0(z), and φ̂1(z) have to be chosen so that the
Laplace equation (1) and the bottom boundary condition (2) are satisfied. We find that

ζ̂0(z) = sinh[k0(d + z)]

sinh(k0d )
, ζ̂1(z) = a0 sinh[k0(d + z)] − k(d + z) cosh[k0(d + z)]

sinh(k0d )
, (9)

and

φ̂0(z) = cosh[k0(d + z)]

sinh(k0d )
,

φ̂1(z) = a0 cosh[k0(d + z)] − k0(d + z) sinh[k0(d + z)]

sinh(k0d )
+ (1 − cg,0/cp,0)

cosh[k0(d + z)]

sinh(k0d )
,

(10)

where a0 can be freely chosen (cf. homogeneous solution) and we set a0 = 0. Table II reports all
the O(α) polarization relationships expressed in terms of the amplitude envelope of the free surface
at O(αε0).

From the linear solution, we can directly evaluate the Stokes drift, which is generally defined by

uS ≡ ∂u(1)

∂x
ξ (1) + ∂u(1)

∂z
ζ (1), (11)

where ξ (1) and ζ (1) are the linear horizontal and vertical displacements (cf. ∂ξ (1)/∂t = u(1),
∂ζ (1)/∂t = w(1)). Using the linear polarization relationships from Table II, we can find explicit
expressions for the horizontal and vertical Stokes drift velocities:

uS = ω0k0

2

cosh[2k0(d + z)]

sinh2(k0d )
|A0|2 (12a)

and

wS = −ω0

4

(
1 + cg,0

cp,0

)
sinh[2k0(z + d )]

sinh2(k0d )
ε∂X |A0|2. (12b)
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2. Second order in steepness O(α2 )

Seeking a solution for the Eulerian mean-flow potential φ(2) that varies on the slow scale X and
using the linear polarization relationships in Table II, Eq. (4) becomes(

ε2c2
g,0

g
∂XX + ∂z

)
φ(2)(X, z) = ε

ω0∂X |A0|2
2 tanh(k0d )

+ εcg,0
ω2

0∂X |A0|2
4g sinh2(k0d )

,

= ε[1 + CFD(k0d )]
ω0∂X |A0|2

2 tanh(k0d )
, (13)

where the coefficient CFD(k0d ) represents terms that only contribute in finite depth:

CFD(k0d ) = cg,0ω0

g sinh(2k0d )
= k0d sech2(k0d ) + tanh(k0d )

2 sinh(2k0d )
, (14)

and in deep-water (k0d � 1) we have CFD(k0d ) → 0.
The forcing equation (13) can be solved using a Fourier transform to give

φ(2) = −ω0[1 + CFD(k0d )]

4π tanh(k0d )

∫ ∞

−∞
̂|A0|2 cosh[κ (z + d )]

sinh(κd )

ı exp(ıκ x̃)

1 − c2
g,0κ

g tanh(κd )

dκ, (15)

where ̂|A0|2 is the Fourier transform of |A0|2 in x̃ and x̃ ≡ X/ε = x − cg,0t . The poles of this integral
do not make a contribution and they are discussed in Appendix A. Using (15), the set-down can then
be calculated from (5) to be

η(2) = − ω2
0|A0|2

4g sinh2(k0d )
− cg,0ω0[1 + CFD(k0d )]

2g tanh(k0d )

∫ ∞

−∞
κ ̂|A0|2 cosh[κ (z + d )]

sinh(κd )

exp(ıκ x̃)

1 − c2
g,0κ

g tanh(κd )

dκ . (16)

When examining the left-hand side of the forcing equation (13), care must be taken with regard
to the order of φ(2) (see also the discussion in [48]). Here, κ is the wave number associated with the
wave packet and scales with ε. The order of φ(2) then depends on the order of k0d . If k0d is large
(deep-water) and ε is small, in such a manner that d/σ = εk0d � 1, it is justified to make the “rigid-
lid” approximation by neglecting the set-down. In intermediate depth and with a sufficiently narrow-
banded wave packet, the return flow must be shallow, d/σ = O(ε) � 1 [i.e., ε = 1/(k0σ ) implies
d/σ = k0dε = O(ε) when k0d = O(1)]. Thus, the small-argument approximations of hyperbolic
functions can be used [i.e., cosh(κd )/ sinh(κd ) → 1/(κd )]. As a result, φ(2) becomes one order
more significant in ε (i.e., φ(2)|k0d=O(1) ∝ ε−1φ(2)|k0d�1). If k0d is O(1), the inclusion of ∂XX φ(2) on
the left-hand side of the forcing equation is therefore required (this term was incorrectly ignored in
[44]).

The relative depth of the return flow (d/σ ) can be assumed to be shallow or deep, allowing
the integrals in (16) and (15) to be calculated analytically. Our solution for general d/σ can then
be manipulated to recover the results of Longuet-Higgins and Stewart [3] and Mei et al. [23] for
d/σ � 1 (shallow return flow), and Dysthe [24] and van den Bremer and Taylor [25] for d/σ � 1
(deep return flow) (see Appendix B).

C. Lagrangian displacements

1. Arbitrary water depth: k0d = O(1) and d/σ = O(1)

The Lagrangian velocity under a wave packet comprises the Stokes drift and the Eulerian return
flow, so that xL = xS + xE. To allow for a comparison to experiments in which displacements
have to be calculated over finite times to avoid the effect of error waves and their reflections,
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we calculate finite-time Lagrangian displacements. The Stokes drift (12) can be readily integrated
between t1 and t2 to give

xS = ω0k0

2

cosh[2k0(d + z)]

sinh2(k0d )

∫ t2

t1

|A0|2dt, (17)

zS = −1

4

(
1 + cp,0

cg,0

)
k0 sinh[2k0(z + d )]

sinh2(k0d )

(|A0|2t=t2 − |A0|2t=t1

)
. (18)

In arbitrary water depth, making no assumptions about the scale of the group relative to the depth
d/σ and thus about the depth of the return flow, the horizontal and vertical components of the
Eulerian return flow are obtained by differentiating (15); the displacements are then obtained by
integrating over time:

2xE = −ω0[1 + CFD(k0d )]

4π tanh(k0d )

∫ t2

t1

∫ ∞

−∞
κ ̂|A0|2 cosh[κ (z + d )]

sinh(κd )

exp(ıκ x̃)

1 − c2
g,0κ

g tanh(κd )

dκ dt, (19)

2zE = −ω0[1 + CFD(k0d )]

4π tanh(k0d )

∫ t2

t1

∫ ∞

−∞
κ ̂|A0|2 sinh[κ (z + d )]

sinh(κd )

ı exp(ıκ x̃)

1 − c2
g,0κ

g tanh(κd )

dκ dt . (20)

2. Shallow return flow: k0d = O(1) and d/σ � 1

Assuming a shallow return flow (d/σ � 1) enables an explicit solution of the integral over the
wave number in (15) to be obtained (using the small-argument approximation of the hyperbolic
tangent). In that case, the Eulerian flow velocity components become

uE = − ω0[1 + CFD(k0d )]

2 tanh(k0d )d
(
1 − c2

g,0

gd

) |A0|2 (21a)

and

wE = − ω0[1 + CFD(k0d )]

2 tanh(k0d )
(
1 − c2

g,0

gd

) (z + d )

d
∂X |A0|2. (21b)

Integrating the horizontal Eulerian velocity when the return flow is shallow (21a) and combining
with the previously derived horizontal displacement by the Stokes drift (17), which is unchanged,
we obtain the horizontal Lagrangian displacement over the time interval t1 to t2,

xL = ω0k0

2

⎡⎣cosh[2k0(z + d )]

sinh2(k0d )
− [1 + CFD(k0d )]

k0 tanh(k0d )d
(
1 − c2

g,0

gd

)
⎤⎦∫ t1

t2

|A0|2dt , (22)

where t1 and t2 are arbitrary time values. If the group is Gaussian and of the form A0 =
a0 exp [−(x − cg,0t )2/2σ 2] and the time integral is taken over the entire group, such that t1 → −∞
is before the arrival of the group and t2 → ∞ after the group has passed, then we obtain

xL =
√

πω0α
2σ

2k0cg,0

⎡⎣cosh[2k0(z + d )]

sinh2(k0d )
− [1 + CFD(k0d )]

k0 tanh(k0d )d
(
1 − c2

g,0

gd

)
⎤⎦. (23)

The vertical Lagrangian displacement component between times t1 and t2 is

zL =
⎡⎣1

4

(
1 + cp,0

cg,0

)
k0 sinh[2k0(z + d )]

sinh2(k0d )
− ω0[1 + CFD(k0d )]

2cg,0 tanh(k0d )
(
1 − c2

g,0

gd

) z + d

d

⎤⎦(|A0|2t=t2 − |A0|2t=t1

)
,

(24)
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FIG. 1. Theoretical normalized horizontal (left panel) and vertical (right panel) displacements as a function
of the relative depth k0d at z = 0 [from (23) and (25)]. The displacements by the Eulerian mean flow
displacement are shown as black lines, the displacements by the Stokes drift are shown by red lines, and the
Lagrangian displacements are shown by blue lines. The solid lines show the displacements when the set-down
is fully accounted for, whereas the dashed lines ignore the set-down.

from which we can obtain for the maximum or minimum displacement underneath the center of the
group

zL =
⎡⎣1

4

(
1 + cp,0

cg,0

)
sinh[2k0(z + d )]

sinh2(k0d )
− ω0[1 + CFD(k0d )]

2k0cg,0 tanh(k0d )
(
1 − c2

g,0

gd

) z + d

d

⎤⎦α2

k0
. (25)

Figure 1 now examines the effect of ignoring the set-down when computing displacements. As
the relative depth k0d becomes shallower, the role of the set-down increases, and the continuous
lines, which include the effect of the set-down, diverge from the dashed lines, which ignore this
effect. This paper sets out to observe this effect experimentally.

III. EXPERIMENTAL METHODOLOGY

A. Setup and data acquisition

To validate the predicted particle trajectories under a wave packet, a series of particle tracking
velocimetry (PTV) experiments were undertaken in the Sediment Wave Flume in the Coastal, Ocean
and Sediment Transport (COAST) Laboratory, University of Plymouth, UK. The flume has a length
of 35 m, a width of 0.60 m, and was filled with water to a depth of 0.50 m, as shown in Fig. 2. We
used a double-element piston-type wavemaker to generate a focused wave packet with a spectral
shape that linearly focuses to a Gaussian packet A0 = a0 exp [−(x f − cg,0t )2/2σ 2] at a measurement
zone located x f = 19.75 m from the resting position of the wavemaker. Seven resistance-type
wave gauges provided 128 Hz free-surface elevation measurements. A light-emitting diode (LED)
light box illuminated the motions of small near-neutrally buoyant particles in a plane, which were
captured by a camera positioned outside the flume. After propagating through the measurement
zone, the dispersed wave packets were absorbed by mesh-filled wedges within an “absorption zone”
located at the downstream end of the wave flume. The distance to the measurement zone was
prescribed to allow as much separation as possible of the subharmonic error wave from the group,
while also avoiding reflections. To ensure near-quiescent initial conditions for each experiment, the
water surface was allowed to settle for 10 min between experiments. The settling time of 10 min was
short enough that the slightly positively buoyant particles remained evenly distributed throughout
the water column at the start of each experiment.

Fluid trajectories were measured by tracking a large number of illuminated small-diameter
seeding particles within the flow. These “Plascoat” particles were approximately 150 μm in
diameter, small enough to be considered dynamically unimportant. Although the particles were
slightly positively buoyant, their upward settling velocities were negligible compared to their
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FIG. 2. Experimental setup used to obtain PTV measurements of fluid trajectories beneath focused wave
packets generated by a double-element piston-type wavemaker at the COAST laboratory, University of
Plymouth, UK.

motion beneath the free-surface waves. The particles were effectively uniformly mixed throughout
the measurement zone, which was achieved by adding new particles between experiments when
necessary, mixing up the water column, and waiting for the flume to become quiescent before
starting experiments. Due to the light sheet, only particles in a thin slice in the (x-z) plane were
tracked. The camera field of view was not able to capture the full depth of the flume. Thus, to obtain
a complete coverage of the water column, the same experiment was repeated three times. Ambient
lighting was removed while a Photron SA4 high-speed camera captured the particle motions at
125 frames/s, at a resolution of 1024 by 1024 pixels and a shutter speed of 1/125 s. This shutter
speed achieved an acceptable compromise between the requirements of obtaining very sharp images
and allowing sufficient light to enter the camera during each image exposure. An image of a ruler
was used to quantify the pixel scale, and distortion was found to be negligible for these tests.

B. Wave generation

If operated using a first-order signal, a wavemaker will generate spurious error waves (see,
e.g., [16,18] for a discussion on the effects of these error waves). To partially eliminate the
generation of these error waves, the second-order corrections of Schäffer [19] were applied to
the wavemaker signal. The Edinburgh Designs Ltd. (EDL) wavemaker differs from an idealized
piston-type wavemaker in two ways. First, the EDL wavemaker is a double-element paddle, which
does not extend to the base of the flume. Second, the paddle does not have the range of movement
required to eliminate subharmonic error waves in finite water depth. As a result, error waves were not
completely removed by the correction method (see also [49]). Whittaker et al. [17] concluded that
the subharmonic error wave amplitude was reduced by approximately 60% in similar conditions. In
our case, subharmonic error waves had relatively large amplitude due to the finite-depth nature of
experiments (finite k0d), and they caused significant difficulty when calculating the displacements
discussed in Sec. IV A.

C. Matrix of experiments

Table III lists the parameters for the nine experiments we conducted, varying the relative water
depth k0d and the bandwidth ε. Frequencies were chosen such that the water depth is “intermediate”
(k0d ≈ 1–3); amplitudes such that second-order motions are large enough to measure, but not so
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TABLE III. Matrix of experiments.

Peak frequency Steepness Bandwidth Relative depth
Experiment f0 (Hz) α = k0a0 ε = (k0σ )−1 k0d

1 1.00 0.12 0.18 2.08
2 1.00 0.13 0.13 2.08
3 1.00 0.12 0.23 2.08
4 0.80 0.09 0.17 1.44
5 0.80 0.09 0.12 1.44
6 0.80 0.09 0.22 1.44
7 0.70 0.09 0.17 1.18
8 0.70 0.09 0.22 1.18
9 0.70 0.09 0.27 1.18

large so that effects beyond second-order play a role; and the bandwidth parameter ε = 1/(k0σ )
such that the wave packet is still quasimonochromatic, but not so long that reflections play a role.

D. Data processing and removal of background motion

The free surface was measured using seven resistance wave gauges, five spread around the focus
location and two significant distances before and after the focus location. The wave packets were
deliberately chosen to have a narrow-banded spectrum to allow frequency filtering to separate the
linear and second-order subharmonic parts from the wave gauge signal. This was achieved using a
low-pass filter of 0.5 f0 to separate the subharmonic set-down and a band-pass filter between 0.7 f0

and 1.3 f0 to extract the linear free-surface elevation. The linear free-surface elevation is shown
in Fig. 3, along with the measured envelope |A0|. The measured envelope is calculated using the
Hilbert transform of the linear free-surface elevation, which in turn is used to predict the mean flow
using (22). The use of the measured envelope at the location where the trajectories are measured
accounts for any dissipation or nonlinear dispersion, which may occur between the wavemaker and
the measurement zone.

The recorded images were processed using STREAMS software, a specialist package for flow
visualization applications [50]. Particles within each image were identified using a dual threshold
algorithm, which first searched for pixels of intensity greater than a threshold value, identified the
maximum pixel intensity within the group of pixels, and finally defined particle boundaries based on
a fraction of this maximum intensity. The identified particles were subsequently matched between
frames using an “auction” optimization algorithm, which minimized the total cost of all potential
matches for each successive pair of frames, where the cost was first assigned based on particle
distance, then based on matched particle velocities in a small region. Recent velocities of matched
particles were finally used to generate additional matches where appropriate. Lagrangian paths were
then calculated and stored for postprocessing.

Background motion and the motion due to the subharmonic error wave had to be eliminated in
order to calculate the displacement due to Stokes drift and Eulerian return flow. The background
motion is much slower than the desired measured Lagrangian motion, and it consists of a
combination of a rise velocity of the particles, long waves that decay slowly in the flume, circulation
induced by small air flows over the water surface, which cannot be eliminated in the laboratory,
and mixing-induced motion. The Stokes rise velocity of the spherical particles can be estimated as
w = (2/9)[(ρw − ρp)/ρw](gR2/ν) = 0.49 mm/s, where we have used ρp = 0.96 g/cm3 (density of
Plascoat particle), ρw = 1.00 g/cm3 (density of water), ν = 1.0 × 10−6 m2/s (viscosity of water),
and R = 75 × 10−6 m (radius of Plascoat particle). This is much slower than the motion induced
by the waves. The smallest amplitudes of wave-induced motion at focus are uS = 17.7 mm/s and
UE = 6.7 mm/s, which are significantly larger than the rise velocity of 0.49 mm/s. This permitted
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FIG. 3. The experimental linear free surface elevation measured at the focus location (black lines). The
linear part has been extracted with a band-pass filter between 0.7 f0 and 1.3 f0. The envelope (red dashes lines)
has been calculated using a Hilbert transform of the linear free surface.

a suitable curve fit to the trajectories before and/or after the focused wave packet to be subtracted
from the original x(t ) and z(t ) trajectories. The most successful fitting method was then selected by
studying the frequency spectrum of the trajectories after the curve fit had been subtracted. The exact
procedure is described in Appendix C.

IV. RESULTS

A. The subharmonic free-surface elevation: Set-down and error waves

Figure 4 shows the experimental second-order subharmonic free-surface elevation time series,
calculated by filtering the free-surface elevation at 0.5 f0. Each experiment clearly exhibits a
set-down at the center of the group (t = 0). Close to focus, the set-down matches the theoretical
curve well, and the maximum of the experimental set-down is very close to the theoretical. However,
“shoulders” can be seen on either side of the experimental set-down. These shoulders are not to be
confused with the predicted set-down shape in nonshallow return flow. The left shoulder corresponds
to the subharmonic error wave propagating in the positive x-direction ahead of the group (and
its bound set-down), and the right shoulder corresponds to its reflection traveling in the opposite
direction. Because of its length relative to the water depth, the subharmonic error wave travels at the
shallow water speed (

√
gd).
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FIG. 4. Time series of the subharmonic components of the free surface elevation representing a “set-down,”
from experiments (solid black lines), extracted from the free surface elevation by a low-pass filter at 0.5 f0, and
theory (dashed red lines) for the different experiments.

Figure 5 shows the time series of the subharmonic wave components at seven wave gauges
plotted with an offset proportional to their respective distance from the focus location. Straight
lines denote the propagation speeds of the different features: the positive group speed cg,0 for the
set-down, the positive shallow-water speed

√
gd for the subharmonic error wave (left shoulder),

and the negative shallow-water speed −√
gd for its reflection (right shoulder). The error wave is

larger and less separated in the shallower experiments (experiment 4–9 in Figs. 4 and 5), which is
as expected because the second-order signal given to the paddle is produced less well and the error
wave is consequently larger, and the difference between the group and the shallow-water speeds is
smaller in these cases.

Based on the three repetitions we carried out for each experiment, we can quantify the
repeatability and quantify the measurement error associated with the (small) set-down. The left
panel of Fig. 6 shows an example of this for experiment 5 (where f0 = 0.80 Hz and ε = 0.12),
with the three repeats plotted as a function of time along with the mean and confidence region
of ±2 standard deviations. The set-down of the three experiments shows remarkable repeatability,
even though the maximum value of the set-down is only 1.2 mm. The gray confidence band of
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FIG. 5. Time series of the subharmonic components of the free surface at each wave gauge (extracted from
the free surface elevation using a low-pass filter at 0.5 f0). The y-axis is offset by the product of the distance of
each gauge from the focus location xg and C = 8.0 × 10−4. Also shown are the group speed of the wave packet
cg,0 with which the set-down moves (continuous black lines), the speed of the error wave

√
gd (dashed black

lines), and the speed of its reflection −√
gd (dash-dotted black lines).

±2 standard deviations captures the theoretically predicted magnitude of the set-down (dashed red
line), though there is an error in the time structure and alignment. The right panel of Fig. 6 shows
the measured magnitude of the set-down as a function of the theoretically predicted value for all
experiments, with the 45◦ line corresponding to perfect agreement. The error bars in this panel are
not estimated from repeats but from the (absolute) calibration error of the gauges, giving generally
larger confidence bands than the error estimated from repeats. A good agreement between theory
and experiments is generally evident for the magnitude of the set-down underneath the center of the
group, where the error waves have not been reached for all experiments.

In the same way that the return flow underneath the set-down leads to a negative displacement
of particles, the subharmonic error wave (a setup traveling to the right) gives rise to positive
displacement of particles, and its reflection (a setup traveling to the left) to negative displacement. In
experiments 4–9, the error wave did not separate out from the group before the group arrived at the
focus location. Instead of calculating the true net displacement, in all experiments a small window
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FIG. 6. Quantification of the measurement error of the set-down. Panel (a) shows the subharmonic
set-down for experiment 5 ( f0 = 0.88 Hz, ε = 0.12) as a function of time: three repeats are plotted using
black dotted lines, and the mean is overlaid in solid black. The gray region shows a confidence band of ±2
standard deviations around the mean. The theoretical set-down is plotted using a dashed red line. Panel (b) is a
comparison of the magnitude of the set-down between the theoretical (labeled η

(2)
SD,T on the horizontal axis) and

experimentally measured (labeled η
(2)
SD,M on the vertical axis) magnitude of the set-down for each experiment.

The error bars show ±2 standard deviations of the absolute calibration error.

(t1 = −0.1σ/cg,0, t2 = 0.1σ/cg,0) has been used to calculate the horizontal displacement to avoid
including any error wave in the displacement. See Appendix C for more details.

B. Particle trajectories

Figure 7 shows typical trajectories of particles under wave packets before removal of the
background motion. The trajectories are all for experiment 1 ( f0 = 1.0 Hz and ε = 0.18). As
denoted by the vertical axis, the left panel is closest to the free surface, the middle panel is lower,
and the right panel is the deepest down in the water column. Near the free surface, there is a positive
displacement because Stokes drift is dominant (shown in the left panel). Further down in the water
column, the displacement reduces and changes sign; this is when the Stokes drift and the Eulerian
return flow are balanced (the middle panel). Toward the bottom of the tank (right panel), there is
still strong evidence of the waves in the trajectories (shown by the oscillatory motion) because these
waves are finite-depth. However, the Eulerian mean flow dominates the drift, and the particles move
in the opposite direction (right to left) to that of wave propagation (left to right). Note that there is a
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FIG. 7. Experimental particle trajectories under wave packets with f0 = 1.00 Hz and ε = 0.18 at three
different depths and before removal of the background motion. The left panel is closest to the surface, the
central panel is close to the vertical position where there is no mean drift, and the right panel is the deepest
trajectory, showing the large negative mean flow. The blue and red crosses denote the position before the wave
packet has arrived and after it has passed, respectively.
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FIG. 8. Profiles of horizontal Lagrangian displacement between t1 = −0.1σ/cg,0 and t2 = 0.1σ/cg,0 (with
t = 0 the center of the packet) as a function of depth: postprocessed experimental data (black crosses),
theoretical prediction from (22) (continuous red lines), and theoretical prediction ignoring the set-down from
(22) (dotted black lines). The theoretical prediction ignoring the set-down is obtained by replacing the term
[1 − c2

g,0/(gd )] in the denominator of the second term in the square brackets in (22) by 1.

small net vertical displacement in Fig. 7, as the background motion has not yet been removed. The
predicted and experimentally measured depth profiles after removal of the background motion are
examined in the next section.

C. Horizontal Lagrangian displacements

Figure 8 compares the measured horizontal particle displacements with theoretical predictions
based on the measured (linearized) free-surface elevation. As discussed in Sec. IV A, the displace-
ments are calculated over the interval t1 = −0.1σ/cg,0 to t2 = 0.1σ/cg,0, where t = 0 is the focus
time. The short time integral window (t2 − t2 = 0.2σcg,0) was used to avoid including displacements
induced by the subharmonic error wave. The packet length scale σ and the group velocity of the
carrier cg,0 were estimated from fitting a Gaussian to the measured free-surface signal. As expected,
for an irrotational flow, Stokes drift dominates at the top of the water column resulting in positive
displacements, while the Eulerian return flow causes opposite displacements, which dominate at
depth.

Figure 8 includes two theoretical predictions: including the effect of the set-down (22) (con-
tinuous red lines) and excluding the set-down (dotted black lines). To predict the displacement
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FIG. 9. Scaled, nondimensional profiles of horizontal Lagrangian displacement between t1 = −0.1σ/cg,0

and t2 = 0.1σ/cg,0 (with t = 0 the center of the packet) as a function of depth: postprocessed experimental data
(black crosses) and theoretical predictions from (22) (continuous red lines).

using (22), we use the envelope A0 obtained from a Hilbert transform of the linearized free-surface
elevation. To exclude the set-down, we replace the term [1 − c2

g,0/(gd )] in the denominator of
the second term in the square brackets in (22) by 1. It is immediately evident from Fig. 8 that
agreement between measurements and theoretical predictions indeed requires inclusion of the
set-down. Including the effect of the set-down can be likened to a convergent-divergent duct, thus
accelerating the Eulerian mean flow and resulting in a larger velocity underneath the center of the
group. The set-down grows in magnitude as the carrier wave gets shallower ( f0 decreases) and thus
forces the mean flow more significantly. As the carrier waves get shallower, c2

g,0/(gd ) approaches
1, and thus the change in denominator creates a very large difference in the predicted return flow.
This can be observed in Fig. 8 by the increase in difference between the two theoretical lines as f0

decreases (lower rows). For the experiments with the greatest depth (experiments 1–3, k0d = 2.1),
the importance of the set-down is minimal, as is evident by the small difference between the two
theoretical lines. However, for the shallower cases (experiments 4–6, k0d = 1.4; experiments 7–9,
k0d = 1.2), it is evident that the prediction including the set-down is far better than without. For
completeness, we note that the agreement for the shallower experiments is less good, likely as a
result of the more dominant role of imperfectly eliminated error waves in these cases.

In Fig. 8, the bandwidth ε [ε ≡ 1/(k0σ ), with σ the group length] is varied for each frequency
(each panel in a particular row has a different ε). One can observe an increase in the magnitudes
of the transport with a reduction in ε: the narrower the bandwidth ε, the longer the wave packet.
Figure 9 shows scaled and nondimensional measured horizontal displacement profiles, allowing
experiments at the same relative depth k0d but a different group length σ = 1/(k0ε) to be overlaid.
The nondimensional horizontal displacements collapse onto a single curve for the three values of
k0d considered.

It is evident from the results that there is a mean transport observed under two-dimensional wave
packets, which can be decomposed into Stokes drift and an Eulerian return flow. Stokes drift is
dominant near the surface, as is evident from the positive transport near the surface, and its decay
with depth matches the theory well. It is worth noting that although the displacement by Stokes drift
decays with depth, the displacement by the Eulerian return flow is constant with depth. This can be
seen in Eq. (22) and is consistent with the observed measured displacements.

Although the net vertical displacement by a group is zero, the measured vertical displacement
underneath the center of the group can also be compared to theory. Although the data are subject to
more noise, experiments and theory also agree well here (see Appendix D).

V. CONCLUSIONS

In this paper, we have derived from the water wave equations an expression for wave-induced
Eulerian mean flow for a quasi-monochromatic or narrow-banded surface gravity wave packet that
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is valid for arbitrary water depth relative to both the carrier wave and the wave packet (or return
flow) scale. In doing so, we have generalized previous results in the literature that are valid for
packets and their return flows that are either very short (d/σ � 1) or very long relative to the water
depth (d/σ � 1), referred to by us as shallow and deep return-flow, respectively. Furthermore, we
have corrected van den Bremer and Taylor [44], who did take into account the effect of finite depth,
but incompletely so, by ignoring the set-down. Physically, we explain the mechanism by which
set-down enhances the mean flow in finite depth, namely by acting as a convergent-divergent duct.

There has been some disagreement in the literature about whether a net drift should be observed
in a laboratory wave flume (see the discussion in [4,32–34]). We have clearly shown in this paper that
for the relatively short groups considered, observations are in good agreement with leading-order
equations of the irrotational water wave equations in two dimensions. These equations predict a net
drift under wave packets in irrotational flows. The resulting displacement is the result of both the
Stokes drift and the Eulerian return flow. The Stokes drift displacement is positive (in the direction of
the waves) and decays with depth on the scale of the carrier wavelength. The displacement induced
by the return flow is negative and does not vary as a function of the vertical coordinate, as predicted
both in the shallow return flow and in the deep return flow regimes.

Experiments were designed to extract Lagrangian particle displacements for wave packets in
finite depth (k0d = 1.2–2.2) in a flume without full second-order wave-generation, where the error
wave is of significant amplitude and travels at a similar speed to the wave packet. The processing
technique accounted for motion from the error wave and eliminated other background motion
of the Lagrangian seeding particles. The effect of set-down in these experiments was clear, and
the theoretical solution was found to match the experimental measurements far better than if the
contribution from the set-down forcing was excluded. The experimental methodology presented
herein enables mean flows to be measured in finite water depth despite the presence of an error
wave. Although full second-order wave generation is preferable, such generation will be physically
constrained in many wavemakers by the maximum length of the paddle sweep and its inability
to generate all the slow bound subharmonic components of the signal. Careful consideration of the
error wave through fitting methods on the mean flow will then be necessary, as demonstrated herein.

In shallow coastal waters, where the set-down under wave packets is significant, the increase
in mean flow found herein would significantly effect transport of pollutants (such as plastic,
oil, wreckage, and sediment). Transport by the return flow is opposite to the direction of wave
propagation, and, unlike the transport by the Stokes drift, it does not decay with depth.
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APPENDIX A: ANALYSIS OF POLES IN WAVE-NUMBER INTEGRAL

In the solution to φ(2) (15) there are three poles in the integral over wave number. The first is at
κ = 0 and can be considered inconsequential because it only exists in the potential and disappears
once spatially differentiated to velocity; κ = 0 corresponds to a mean increase in potential (infinite
wavelength), which has no physical interpretation. The second and third poles are symmetrical and
stem from [1 − c2

g,0κ/(g tanh κd )]−1, which we shall define as 1/ f (κ ). The poles are at ±κp only if
the gradient c2

g,0/gd < 1, which is true for all cases other than at the limit of shallow water where
c2

g,0/(gd ) = 1. If f (κ ) is expanded around κp in a Taylor series, it can be shown that f ′(κ ) is an odd
function. Thus, when combined with the other terms in the equation for velocity, the two symmetric
poles will cancel each other out upon integration.
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APPENDIX B: COMPARISON WITH EXISTING LITERATURE

The theory presented in Sec. II describes a single solution for mean flow in water of arbitrary
depth. Table I shows the regimes characterized by relative depths k0d and d/σ . In this Appendix, the
solution is shown to recover the results of these established regimes, and a return flow is modeled
in an arbitrary depth, either of the carrier wave (k0d) or the return flow (d/σ ).

1. Shallow return flow: k0d = O(1) and d/σ � 1

The solution for φ(2) in (15) does not make an assumption regarding the depth of the return flow.
If the return flow is assumed to be shallow (d/σ � 1), after differentiation to obtain horizontal
velocity, (15) simplifies to

u(2) = − ω0[1 + CFD(k0d )]

4π tanh(k0d )
(
1 − c2

g,0

gd

) ∫ ∞

−∞
κ ̂|A0|2 exp(ıκ x̃)

κd
dκ, (B1)

and we can explicitly evaluate (16):

η(2) = −cg,0

g

[1 + CFD(k0d )]

2 tanh(k0d )
(
gd − c2

g,0

)g|A0|2 − ω2
0|A0|2

4g sinh2(k0d )
, (B2)

which can be rewritten as

η(2) = −K (c2
g,0/g)|A0|2

gd − c2
g,0

− ω2
0|A0|2

4g sinh2(k0d )
, (B3)

where

K = ω2
0

4 sinh2(k0d )

[
sinh(4k0d ) + 3 sinh(2k0d ) + 2k0d

2k0d + sinh(2k0d )

]
. (B4)

Equation (B3) is identical to (3.17b) obtained by Longuet-Higgins and Stewart [3] under the
assumption of a shallow return flow when solving for the potential [φ in Eq. (3.17a) of Longuet-
Higgins and Stewart [3]]. Note that Longuet-Higgins and Stewart initially represent the wave packet
A0 as a sum of difference waves, which are waves with phase equal to the difference between that
of the linear components, and they do not take a multiple-scales approach.

The two terms on right-hand side of (B3) can be combined using a rearranged relation for group
velocity, k0d/ sinh(2k0d ) = cg,0/cp,0 − 1/2, to give

η(2) = − g|A0|2
2
(
gd − c2

g,0

)[
2cg,0

cp,0
− 1

2

]
, (B5)

which is the same as Eq. (11.4.4) obtained by Mei et al. [23] through a multiple-scales approach
similar to ours.

2. Deep return flow: k0d � 1 and d/σ � 1

Using their nondimensional notation, our forcing Eqs. (5) and (13) can be rewritten as (2.20) and
(2.21) in Dysthe [24]. As noted by Dysthe [24], the ε2∂XX φ(2) term in (13) can be ignored in deep
water, and an explicit solution for the return flow velocity can be found [25],

2u(2) = − ω0

4π

∫ ∞

−∞
κ ̂|A0|2 exp(κz)exp(ıκ x̃)dκ . (B6)
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FIG. 10. Profiles of vertical Lagrangian displacement between t1 = −3σ/cg,0 and t2 = 0 (corresponding
to the center of the packet t = 0) as a function of depth: postprocessed experimental data (black crosses) and
theoretical predictions from (24) (continuous red lines).

APPENDIX C: TRAJECTORY PROCESSING

The raw motion of the seeding particles also included background motion and motion due to
the error wave, which was significantly larger in the shallower experiments. This motion had to be
eliminated, and a suitable interval to calculate displacements used to achieve good agreement of
the experimentally measured displacements with the theory. The background motion of particles is
much slower than the Stokes drift and the Eulerian return flow beneath the group. We eliminated
background motion using a suitable curve fit (selected from four possible fits) to the motion of
the particles over specified time interval(s) before and/or after the arrival of the focused wave
packet, and then we subtracted the fit from the original x(t ) and z(t ) trajectories. The postprocessing
algorithm first identified the focus time t f within the record as the time of the maximum horizontal
velocity, and calculated the group velocity cg,0, and hence the group period Tg, by solving the linear
dispersion equation based on the modulation of the linear surface signal, A0. The group period
formed the basis of the “fit windows” used by the different curve fit options:

(a) Linear fit to x-displacement prior to the wave-packet arrival (t f − 6Tg to t f − 3Tg), quadratic
fit to z-displacement before and after the wave-packet arrival (t f ± 6Tg to t f ± 3Tg).

(b) Linear fit to x-displacement prior to the wave-packet arrival (t f − 12Tg to t f − 9Tg), quadratic
fit to z-displacement before and after the wave-packet arrival (t f ± 9Tg to t f ± 3Tg).
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FIG. 11. Scaled, nondimensional profiles of vertical Lagrangian displacement between t1 = −3σ/cg,0 and
t2 = 0 (corresponding to the center of the packet t = 0) as a function of depth: postprocessed experimental
data (black crosses) and theoretical predictions from (24) (continuous red lines).

(c) Linear fit to x-displacement prior to the wave-packet arrival (t f − 12Tg to t f − 3Tg), quadratic
fit to z-displacement before and after the wave-packet arrival (t f ± 12Tg to t f ± 3Tg).

(d) Linear fit to x-displacement prior to the wave-packet arrival (t f − 9Tg to t f − 3Tg), quadratic
fit to z-displacement before and after the wave-packet arrival (t f ± 9Tg to t f ± 3Tg).

Once the fits to the raw motions had been carried out, the frequency spectrum of the motion
was examined (the motion was first mirrored to create a periodic signal). Using the knowledge that
for narrow-banded wave packets the subharmonic and periodic motion should be well-separated
(this is not the case for background motion if this is not periodic), the fitting method that led to the
frequency spectrum that was most separated was chosen for each trajectory.

The remaining signal was then filtered with a low-pass filter to eliminate the periodic motion;
this allowed an accumulated displacement over any time to be compared with theory. For the
horizontal motion, an interval of ±0.1σ/cg,0 was used to avoid displacement by the error wave.
The vertical displacements were measured over half of the wave packet before the time of focus
(t1 = −3Tg and t2 = 0). If only a small window before focus was used for the vertical displacement,
the measurements became very small and dominated by noise.

APPENDIX D: VERTICAL LAGRANGIAN DISPLACEMENTS

Figure 10 compares the measured vertical Lagrangian displacement profiles with theoretical
predictions based on the measured (linearized) free-surface elevation from (24). The time integral
in (24) has been taken from before the group arrives (t1 = −3σ/cg,0) to the focus time (t2 = 0). The
agreement between measured and predicted vertical displacements appears less satisfactory than
for horizontal displacements because the values are an order of magnitude smaller, leading to larger
relative errors. Even so, measurements capture predictions in terms of their shape and magnitude,
including zero vertical displacements at the bottom, negative displacements at mid-depth due to
the return flow, and positive displacements near the free surface due to Stokes drift. Measurements
and theory agree better in deeper water (experiments 1–3 compared to experiments 4–9). This is
most likely because the effect of the error wave is larger in the shallower cases. Figure 11 shows
scaled and nondimensional measured vertical displacement profiles, allowing experiments at the
same relative depth k0d but a different group length σ = 1/(k0ε) to be overlaid. The measured
vertical displacements again show far more scatter than their horizontal counterparts. The increased
magnitude of the error wave at low k0d is evident in the additional scatter in the experiments at
shallower relative depth.
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