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Analysis of the energy transfer in scale space, in addition to the energy transport in
physical space, is useful for obtaining a better understanding of inhomogeneous turbulence.
In this work, the energy transfer in scale space is examined using the direct numerical
simulation data of turbulent channel flow. A direct cascade of the streamwise and wall-
normal components of the turbulent energy is seen, whereas an inverse cascade of the
spanwise component is observed near the wall. The inverse energy cascade implies that
the production term of the subgrid-scale (SGS) energy is negative in the averaged sense.
The conditional average of the velocity field associated with the negative production
is evaluated to extract typical flow structures contributing to the inverse cascade. As a
result, a long streamwise vortex around the reference point, as well as a short one in the
upstream region, is observed, which is reminiscent of a series of slightly tilted streamwise
vortices with alternate signs of vorticity near the wall. The isosurface of the negative
production attached to the long vortex suggests that the grid-scale velocity of the long
vortex is enhanced by the SGS motion under the influence of the short upstream vortex.
The enstrophy equation is further examined to confirm that the SGS effect increases the
rotation of the long vortex.

DOI: 10.1103/PhysRevFluids.4.114609

I. INTRODUCTION

The energy spectrum in wave-number space is commonly used to describe the scale dependence
of turbulent fluctuations in homogeneous isotropic turbulence. The energy cascade from low to
high wave numbers has been studied in detail, and several closure theories have been proposed [1].
By contrast, for inhomogeneous turbulence, one-point statistical quantities such as the turbulent
kinetic energy are employed. The energy production, dissipation, and transfer in physical space are
typically investigated, and one-point closure models have been developed [2]. In order to obtain a
better understanding of inhomogeneous turbulence, it is also useful to examine the energy transfer in
scale space. If the velocity field in inhomogeneous turbulence is statistically homogeneous in several
directions, the Fourier transform can be applied in those directions. For example, turbulent channel
flows have been examined using the energy spectrum in the streamwise and spanwise directions
[3–7]. Mizuno [6] evaluated the spectral energy budget equation to reveal the scale dependence
of the energy transport. Lee and Moser [7] studied the scale dependence of the dynamics of the
Reynolds stress by examining its transport equation.

It is meaningful to study the scale dependence of turbulent flows not only in homogeneous
directions but also in inhomogeneous directions. Instead of the energy spectrum, the second-order
velocity structure function 〈δu2

i (x, r)〉 [where δui(x, r) = u′
i(x + r) − u′

i(x) and u′
i(x) is the velocity

fluctuation] and the two-point velocity correlation Qii(x, r) [=〈u′
i(x)u′

i(x + r)〉] can be used to
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approximate the kinetic energy of eddies of length scale r (=|r|) in physical space. For homo-
geneous isotropic turbulence, the von Kármán–Howarth equation and the Kolmogorov equation
were formulated using the two-point correlation and the structure function, respectively [1]. Several
attempts have been made to extend these equations to inhomogeneous turbulence [8–17]. Danaila
et al. [12] developed a scale-by-scale kinetic energy budget equation for inhomogeneous and
anisotropic turbulence using the structure function. They examined experimental data obtained
in a multiple-opposed-jet flow to validate the energy equation and clarify the anisotropic energy
transfer. Using the generalized Kolmogorov equation, Cimarelli et al. [13,15] examined the energy
flux occurring in scale space and physical space in turbulent channel flows. An interesting behavior
of the energy flux was observed in which the inverse energy cascade plays a central role. Mollicone
et al. [16] used the generalized Kolmogorov equation to examine the scale-by-scale dynamics in the
separated turbulent flow behind a bump.

Using the two-point velocity correlation, the author proposed the energy density in scale space
[14,17]. The energy density and its transport equation in scale space were investigated using the
direct numerical simulation (DNS) data of turbulent channel flow. Profiles of the energy transfer
term showed that a direct energy cascade from large to small scales was seen in most regions,
whereas an inverse energy cascade from small to large scales was observed in a small region near
the wall. The inverse energy cascade corresponds to energy transfer from the subgrid-scale (SGS)
component to the grid-scale (GS) component. It is interesting to further investigate the behavior of
the inverse cascade because it should be closely related to the process that sustains the GS turbulent
motion, including coherent structures near the wall.

Coherent structures near the wall in wall-bounded flows have been studied in detail experimen-
tally and numerically [18–27]. Hairpin vortices are simple coherent structures that explain several
features of wall turbulence. Not only symmetric hairpins but also asymmetric ones have commonly
been observed [18]. In the buffer layer, the legs of the hairpin become quasistreamwise vortices that
push low-momentum fluid upward; this is called the ejection event. In the outer layer of the boundary
layer, hairpin vortices occur in streamwise-aligned packets that propagate at nearly the same speed
[20]. Large-scale motion on the order of the boundary layer thickness has also been observed in
turbulent boundary layers and channel flows. In addition, very large-scale motion in a pipe flow was
studied by experimental and DNS works [19,25]. These structures contribute considerably to the
turbulent kinetic energy and Reynolds stress and they produce large-scale structures in the velocity
fluctuations in the near-wall region [21,25,26,28].

Such coherent structures are observed in snapshots of fluid motion. We can identify some typical
vortical structures from an instantaneous velocity field and examine them in detail. However, it
is not necessarily clear whether such individual structures observed in a snapshot are universal.
The conditional average of the flow field is then useful for determining the mean vortical structure
around a reference point at which the flow makes strong contributions to some events [22,29–31].
For example, the conditionally averaged flow field associated with an ejection event near the wall
was obtained using the DNS data of channel flow [22,29,32]. In order to investigate the influence
of large-scale motion on the friction drag, Hwang and Sung [30] evaluated the near-wall vortical
structures conditioned on the large-scale events using the DNS data of the turbulent boundary layer.
Using particle image velocimetry experiments, de Silva et al. [31] evaluated conditionally averaged
maps of the kinetic energy deficit near the turbulent bulges to investigate the large coherence of the
spanwise velocity in turbulent boundary layers.

It is also important to investigate the mechanisms that generate and maintain coherent structures
[33]. For example, Waleffe [34] proposed a self-sustaining process of the streamwise vortices. The
process consists of three phases: The streamwise vortices create a streak structure with the aid of the
mean shear, the instability of the streak structure generates three-dimensional velocity fluctuations,
and the nonlinear effects of the three-dimensional fluctuations reenergize the streamwise vortices.
This process is interesting as a candidate for the self-sustaining mechanism of wall turbulence.
Nevertheless, further verification is necessary, because this process was proposed on the basis of a
low-order model of the truncated system rather than on the exact Navier-Stokes equation. In terms

114609-2



INVERSE ENERGY CASCADE AND VORTICAL STRUCTURE …

of the energy transfer, the first and second phases correspond to a direct energy cascade from the
mean to the fluctuating components, whereas the third one corresponds to an inverse energy cascade
from the fluctuating to the mean components. Therefore, it is expected that flow structures related
to the energy cascade will provide some insight into the self-sustaining process near the wall in
real turbulent flows. In this study, we focus on the inverse energy cascade seen near the wall in
turbulent channel flow. We use the conditional average of the velocity field associated with the
inverse cascade, or the negative production of the SGS energy, to extract typical flow structures. We
examine the relationship between the flow structures and the process of reenergizing the streamwise
vortices.

This paper is organized as follows. In Sec. II we describe the transport equation for the energy
density in scale space and evaluate the energy transfer near the wall in turbulent channel flow. In
Sec. III we focus on the production term of the SGS energy to examine flow structures contributing
to the inverse energy cascade. In Sec. IV we evaluate the conditional average of the velocity
field associated with the negative production to extract typical flow structures and investigate the
relationship between vortical structures and the inverse cascade. We summarize this paper in Sec. V.

II. ENERGY TRANSFER IN SCALE SPACE

In order to examine the interscale energy transfer in turbulent channel flow, we introduce the
energy density and its transport equation in scale space [17]. The two-point velocity correlation
separated in the streamwise (x) direction is defined as

Qi j (x, rx ) = 〈u′
i(x)u′

j (x + rxex )〉, (1)

where 〈·〉 is the ensemble average, u′
i (=ui − 〈ui〉) is the velocity fluctuation, and ex is the unit vector

in the x direction. Using the correlation Qi j (x, rx ), we can define the density of the Reynolds stress
in scale space in the x direction as

Ri j (x, rx ) = − ∂

∂rx
R>

i j (x, rx ), (2)

where

R>
i j (x, rx ) =

∫ ∞

−∞
dξxQi j (x, ξx )G(ξx, rx ), G(ξ, r) = 1√

2πr
exp

(
− ξ 2

2r2

)
. (3)

Hereafter, we treat the density of the normal stresses Rxx(x, rx ), Ryy(x, rx ), and Rzz(x, rx ) as well as
that of the turbulent energy E (x, rx ) [=Rii(x, rx )/2] (summation convention is adopted for repeated
indices of i, j, and k); they are called the energy density in this paper. The energy density Ri j (x, rx )
defined in Eq. (2) can also be written as

Ri j (x, rx ) =
∫ ∞

−∞
dξxQi j (x, ξx )GD(ξx, rx ), GD(ξ, r) = 1√

2πr2

(
1 − ξ 2

r2

)
exp

(
− ξ 2

2r2

)
(4)

and satisfies the properties

〈u′
iu

′
j〉 =

∫ ∞

0
drxRi j (x, rx ), (5)

Rαα (x, rx ) � 0, (6)

where the summation is not taken for α. The property (6) holds in cases where the turbulent field is
statistically homogeneous in the x direction.

The function R>
i j (x, rx ) appearing in Eq. (3) represents the energy of eddies with sizes equal to

or greater than the length scale rx. The energy density Ri j (x, rx ) obtained from differentiation of
R>

i j (x, rx ) with respect to rx represents the energy of eddies with sizes equal to the length scale rx. In
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order to clarify the physical meaning of R>
i j (x, rx ), we consider the filtered velocity commonly used

in the large-eddy simulation as

ūi(x) =
∫ ∞

−∞
dx′ui(x + x′ex )GF (x′,�x ), (7)

where GF (x,�) is a filter function given by

GF (x,�) =
√

6√
π�

exp

(
−6x2

�2

)
. (8)

When the separation ξx appearing in Eq. (3) is taken in a statistically homogeneous direction, we
can obtain the relationship [17]

R>
i j (x, rx ) = 〈ū′

i(x)ū′
j (x)〉, (9)

where �x = √
6rx. Therefore, the function R>

αα (x, rx ) is equivalent to the GS turbulent energy 〈ū′2
α 〉.

Applying a Gaussian filter to the DNS velocity field of the turbulent boundary layer, Motoori
and Goto [35] investigated the generation mechanism of the hierarchy of multiscale vortices. The
analysis of the energy density Ri j (x, rx ) is closely related to a similar analysis in which a filter is
applied to the DNS field.

From the Navier-Stokes equation for u′
i(x) and u′

j (x + ξ) (ξ = rxex), we obtain the transport
equation for Qi j (x, rx ). Applying the integral appearing in Eq. (4) to each term in the equation, we
can obtain the transport equation for Ri j (x, rx ) as [17]

D

Dt
Ri j (x, rx ) = Pi j (x, rx ) − εi j (x, rx ) + 	i j (x, rx ) + DTi j (x, rx ) + DPi j (x, rx )

+ DVi j (x, rx ) + Ti j (x, rx ), (10)

where D/Dt = ∂/∂t + Ui∂/∂xi. The right-hand side consists of seven terms: the production
Pi j (x, rx ), dissipation εi j (x, rx ), pressure strain 	i j (x, rx ), turbulent diffusion DTi j (x, rx ), pressure
diffusion DPi j (x, rx ), viscous diffusion DVi j (x, rx ), and interscale transfer Ti j (x, rx ). They are
defined as

Pi j (x, rx ) = −
∫ ∞

−∞
dξxGD(ξx, rx )〈u′

k (x)u′
j (x + ξ)〉 ∂

∂xk
Ui(x)

−
∫ ∞

−∞
dξxGD(ξx, rx )〈u′

k (x + ξ)u′
i(x)〉 ∂

∂xk
Uj (x + ξ), (11)

εi j (x, rx ) =
∫ ∞

−∞
dξxGD(ξx, rx )ν

〈
s′

ki(x)
∂

∂xk
u′

j (x + ξ) + s′
k j (x + ξ)

∂

∂xk
u′

i(x)

〉
, (12)

	i j (x, rx ) =
∫ ∞

−∞
dξxGD(ξx, rx )

〈
p′(x)

∂

∂xi
u′

j (x + ξ) + p′(x + ξ)
∂

∂x j
u′

i(x)

〉
, (13)

DTi j (x, rx ) = − ∂

∂xk

∫ ∞

−∞
dξxGD(ξx, rx )〈u′

k (x)u′
i(x)u′

j (x + ξ)〉, (14)

DPi j (x, rx ) = − ∂

∂xk

∫ ∞

−∞
dξxGD(ξx, rx )[〈p′(x)u′

j (x + ξ)〉δki + 〈p′(x + ξ)u′
i(x)〉δk j], (15)

DVi j (x, rx ) = ∂

∂xk

∫ ∞

−∞
dξxGD(ξx, rx )ν〈s′

ki(x)u′
j (x + ξ) + s′

k j (x + ξ)u′
i(x)〉, (16)

Ti j (x, rx ) = − ∂

∂rx
	Si j (x, rx ), (17)
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respectively, where

s′
i j (x) = ∂

∂xi
u′

j (x) + ∂

∂x j
u′

i(x), (18)

	Si j (x, rx ) = −
∫ ∞

−∞
dξxG(ξx, rx )

∂

∂ξk
〈[u′

k (x + ξ) − u′
k (x)]u′

i(x)u′
j (x + ξ)〉

−
∫ ∞

−∞
dξxG(ξx, rx )

∂

∂ξk
{[Uk (x + ξ) − Uk (x)]〈u′

i(x)u′
j (x + ξ)〉}. (19)

The interscale transfer term Ti j (x, rx ) is written in the gradient form in Eq. (17) and 	Si j (x, rx )
represents the energy flux in scale space. A negative value of 	Si j (x, rx ) represents energy flux
from large to small scales corresponding to a direct energy cascade. When each term in Eq. (10) is
integrated from rx = 0 to ∞, Eq. (10) reduces to the transport equation for the Reynolds stress 〈u′

iu
′
j〉

in physical space. The first six terms on the right-hand side of Eq. (10) have corresponding terms in
the Reynolds stress equation; the terms represent the scale dependence of physical processes such as
production and dissipation. By contrast, the transfer term disappears in the Reynolds stress equation
because ∫ ∞

0
drxTi j (x, rx ) = 0. (20)

Using the DNS data of turbulent channel flow, we examine the energy transfer in scale space
described by Eq. (10). The DNS is carried out as follows. The size of the computational domain is
Lx × Ly × Lz = 2π × 2 × π , where x, y, and z denote the streamwise, wall-normal, and spanwise
directions, respectively. The number of grid points is Nx × Ny × Nz = 1024 × 192 × 1024. The
Reynolds number based on the friction velocity uτ and the channel half-width Ly/2 is set to Reτ =
590. Hereafter, physical quantities are nondimensionalized by uτ and Ly/2. Periodic boundary
conditions are used in the streamwise and spanwise directions, and no-slip conditions are imposed
at the wall at y = 0, 2. We use the fourth-order finite-difference scheme in the x and z directions, the
second-order one in the y direction, and the Adams-Bashforth method for time marching. Statistical
quantities such as the energy density were obtained by ensemble averaging (denoted by angular
brackets) over the x-z plane and over the time period of 70 � t � 100 normalized by (Ly/2)/uτ . As
a result, the averaged quantities depend only on y and rx. In our previous work [17] we investigated
the energy transport in the whole domain of channel flow. Because simulation and analysis of flows
at higher Reynolds number require very large computational cost, we choose a moderate Reynolds
number Reτ = 590. The Reynolds number is high enough for the present work where we focus on
the near-wall structures.

Figure 1 shows the contours of the energy fluxes 	Sxx(y, rx ), 	Syy(y, rx ), 	Szz(y, rx ), and
	S (y, rx ) [= 	Sii(y, rx )/2] given by Eq. (19) in the rx-y plane. The location at y = 0 corresponds
to the bottom wall. Only the domain 0 � y+ (=uτ y/ν) � 300 (0 � y � 0.51) is shown to examine
the near-wall region in detail. Contours of positive (negative) values are plotted as solid (dashed)
lines. In Figs. 1(a), 1(b) and 1(d), contours with negative values are seen, indicating that a direct
energy cascade from large to small scales occurs for Rxx(y, rx ), Ryy(y, rx ), and E (y, rx ). By contrast,
in Fig. 1(c), contours with both positive and negative values are seen for Rzz(y, rx ); a direct cascade
is observed far from the wall, whereas an inverse cascade is clearly seen near the wall. Because the
function R>

αα (y, rx ) corresponds to the GS energy 〈ū′2
α 〉, as mentioned above, the flux 	Sαα (y, rx )

represents energy transfer between the GS and SGS components. Therefore, the energies 〈ū′2
x 〉 and

〈ū′2
y 〉 are transferred from the GS to the SGS components, whereas the energy 〈ū′2

z 〉 is transferred
from the SGS to the GS components near the wall. Jiménez [36] discussed the inverse energy
cascade from the wall toward the outer flow and examined the energy transfer in the scale and
physical (y) spaces simultaneously. By contrast, the present result implies that the inverse energy
cascade occurs even at a fixed y location. In general, we can examine the energy flux in the
scale space associated with the x-z plane at a fixed y location independently of the wall-normal
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FIG. 1. Contour plots of the energy flux given by Eq. (19) in the rx-y plane: (a) 	Sxx (y, rx ), (b) 	Syy(y, rx ),
(c) 	Szz(y, rx ), and (d) 	S (y, rx ) [=	Sii(y, rx )/2].

flux in the physical space. Similar analysis was carried out using horizontal spectra of energy
transport [6]. Here we examine the flux in the rx space to find an inverse cascade of the spanwise
energy component. The peak of 	Szz(y, rx ) is located at y+ = 16.1 (y = 0.0273) and r+

x = 80.2
(rx = 0.136) in Fig. 1(c). Its y location corresponds to the buffer layer, where the turbulent kinetic
energy has its peak. The length scale r+

x = 80.2 corresponds to the filter width �+
x = 197 appearing

in Eq. (7). In Fig. 1(c), a contour of zero value shown by the dot-dashed line extends towards
the channel center. This indicates that a weak inverse cascade can be seen at r+

x > 200 even apart
from the wall. Because the y location is in the logarithmic layer or in the outer layer, we briefly
examine the Reynolds-number dependence of this behavior in the Appendix. A detailed analysis
of the inverse cascade in this region is beyond the scope of the present work. In this work we will
focus on flow phenomena related to the inverse cascade of Rzz(y, rx ) observed at y+ = 16.1 and
r+

x = 80.2, where the energy flux is maximum.
In order to examine the energy transfer near the wall in more detail, we evaluate the transport

equation for Rαα (y, rx ) given by Eq. (10). Figure 2 shows the premultiplied profiles of terms
in the transport equations for Rxx(y, rx ), Ryy(y, rx ), Rzz(y, rx ), and E (y, rx ) as functions of rx at
y+ = 16.1. Terms in the transport equation are multiplied by rx so that equal areas can represent
equal contributions to processes such as production. In Fig. 2(d), the production, dissipation, and
transfer terms are dominant in the budget of the turbulent energy E (y, rx ). The production term
is positive at large scales, whereas the dissipation term is negative at small scales. The transfer
term shows negative values at large scales and positive values at small scales, representing a direct
energy cascade from large to small scales. In Fig. 2(a), the overall behavior of the transport equation
for Rxx(y, rx ) is similar to that for E (y, rx ) in Fig. 2(d), except that the pressure-strain term for
the former shows negative values. In Fig. 2(b), the pressure-strain term for Ryy(y, rx ), rather than
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FIG. 2. Terms in the transport equation given by Eq. (10) as functions of rx at y+ = 16.1 for (a) Rxx (y, rx ),
(b) Ryy(y, rx ), (c) Rzz(y, rx ), and (d) E (y, rx ) [=Rii(y, rx )/2].

the production term, shows positive values. The transfer term represents the energy cascade from
large to small scales, but its magnitude is small. The pressure-diffusion term contributes mainly to
the energy cascade in this case. In Fig. 2(c), by contrast, the transfer term for Rzz(y, rx ) exhibits the
opposite behavior, that is, an inverse energy cascade from small to large scales. The length scale
r+

x = 80.2 of the peak of the flux 	Szz(y, rx ) shown in Fig. 1(c) corresponds to the zero point of
the transfer term Tzz(y, rx ) in Fig. 2(c). The reason for the inverse cascade is not clear at present,
but it must be related to the fact that the peak of the positive pressure-strain term is located at small
scales in Fig. 2(c), in contrast to Fig. 2(b).

It is interesting to compare the energy cascade observed here with the self-sustaining process
proposed by Waleffe [34]. The self-sustaining process consists of the following three phases.
First, streamwise rolls [0,V (y, z),W (y, z)] redistribute the streamwise momentum to create streaks
or spanwise fluctuations in the streamwise velocity U (y) → U (y, z). Second, an instability in
U (y, z) causes a three-dimensional disturbance to develop. Third, the nonlinear effect of the three-
dimensional disturbance reenergizes the original streamwise rolls. Here the velocity components
Ui(y, z) that do not depend on x can be considered as the velocity averaged over a line in the x
direction. We can then interpret the process in terms of the energy transfer as follows. The first
phase represents energy transfer from the ensemble-averaged velocity U (y) to the line-averaged
velocity U (y, z). The second phase represents energy transfer from the line-averaged velocity
U (y, z) to the three-dimensional fluctuations. The third phase represents energy transfer from the
three-dimensional fluctuations to the line-averaged velocities V (y, z) and W (y, z). Therefore, the
first and second phases correspond to the direct energy cascade, whereas the third phase corresponds
to the inverse energy cascade. This situation is similar to the present result based on one-dimensional
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filtering instead of the line average; in Fig. 1, a direct cascade is observed for Rxx(y, rx ) and an
inverse cascade is observed for Rzz(y, rx ), although the cascade of Ryy(y, rx ) occurs in the opposite
direction to the proposed process. The comparison suggests that the inverse cascade of Rzz(y, rx )
shown in Figs. 1(c) and 2(c) can be related to the phase in which the streamwise rolls are reenergized.

III. PRODUCTION TERM OF SGS ENERGY

In this section, in order to understand the mechanism of the inverse cascade of the spanwise
energy Rzz(y, rx ), we examine the flow structures contributing to this event. The positive flux
	Szz(y, rx ) represents the inverse cascade from small to large scales through the length scale rx.
However, we cannot examine the local flow structures by treating only the flux 	Szz(y, rx ), because
it is an ensemble-averaged quantity and does not have information on the dependence on the x and
z locations. As mentioned in Sec. II, this inverse energy cascade corresponds to energy transfer
from the SGS component τzz (where τi j = uiu j − ūiū j) to the GS component ū2

z . In general, the
energy transfer between the GS component ū2

α and the SGS component ταα can be expressed as the
production term appearing in the transport equation for the SGS energy ταα , as

P̄αα = −2ταk
∂ ūα

∂xk
, (21)

which is defined at each location. The direct (inverse) cascade corresponds to a positive (negative)
value of the SGS production term P̄αα . In fact, for homogeneous isotropic turbulence, we can obtain
the following relationship:

	Sαα = −〈P̄αα〉. (22)

Therefore, in order to examine the flow structures contributing to the inverse cascade of the spanwise
energy, we should treat the production term P̄zz defined at each location instead of the ensemble-
averaged flux 	Szz(y, rx ).

The production term P̄αα can be divided into the isotropic part PIαα and the anisotropic part PAαα

as

P̄αα = PIαα + PAαα, PIαα = −2

3
τkk

∂ ūα

∂xα

, PAαα = −2τ ∗
αk

∂ ūα

∂xk
, (23)

where τ ∗
i j = τi j − 1

3τkkδi j . The sum of the isotropic part PIii vanishes because ∇ · ū = 0. In the
transport equation for the GS energy ū2

α , the corresponding term −P̄αα appears as the dissipation
due to the SGS effect. However, it is more appropriate to view the isotropic and anisotropic parts
separately; that is, the isotropic part −PIαα represents the energy redistribution among the three GS
components ū2

x , ū2
y , and ū2

z , like the pressure term p̄∂ ūα/∂xα appearing in the ū2
α equation, whereas

the anisotropic part −PAαα represents the net dissipation into the SGS energy. Therefore, we examine
the anisotropic part PAαα rather than P̄αα as the net production term for the SGS energy in this work.

Here we examine the GS velocity field ūi and the SGS production term PAαα with �+
x = 197

(r+
x = 80.2) in the x-z plane at y+ = 16.1 and t = 70. The average 〈PAzz〉xz in the x-z plane is −3.14;

the anisotropic production actually indicates the inverse cascade. We should note that its local value
PAzz can be both positive and negative. In order to examine the behavior of the local value, we
evaluate the probability distribution function (PDF) P(PAzz ) over Nx × Nz points. The mean value
can be expressed as

〈PAzz〉xz =
∫ ∞

−∞
dPAzzPAzzP(PAzz ). (24)

Figure 3(a) shows the PDF of the production term P(PAzz ). The production term takes large positive
and negative values, although the mean value is small. The energy transfer between the GS and SGS
components can occur by both direct and inverse cascades. In order to see how large values of PAzz
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FIG. 3. Profiles of the PDF of SGS production term PAzz: (a) P(PAzz ) and (b) P2
AzzP(PAzz ) as a function of

|PAzz|.

contribute the most to the average value of 〈PAzz〉xz, we examine the following quantities by dividing
the integral given by Eq. (24) into positive and negative regions:∫ ∞

0
dPAzzPAzzP(PAzz ) =

∫ ∞

−∞
d ln(PAzz )P2

AzzP(PAzz ), (25)

∫ 0

−∞
dPAzzPAzzP(PAzz ) = −

∫ ∞

−∞
d ln(|PAzz|)P2

AzzP(PAzz ). (26)

Figure 3(b) shows the profiles of P2
AzzP(PAzz ) as functions of |PAzz| for the positive and negative

regions; the premultiplied profiles are shown because it is a semilogarithmic plot. The contribution
from the negative region is greater than that from the positive region, so the mean value −3.14 is
negative. We can see that the values around |PAzz| = 100 contribute the most to the integral in both
the positive and negative regions. Therefore, we consider PAzz = −100 to be a typical value of the
negative production representing the inverse cascade.

In order to examine the vortical structures contributing to the inverse cascade, we plot the
isosurfaces of the second invariant of the GS velocity gradient q̄ [=−(∂ ūi/∂x j )(ū j/∂xi )/2]. Figure 4
shows the isosurfaces of q̄ = 2000 (yellow) and those of PAzz = −100 (blue) in the domain
0 � x � π , 0 � y � 1, and 0 � z � π/2 (0 � x+ � 1850, 0 � y+ � 590, and 0 � z+ � 927). The
gray plane plotted in Fig. 4(a) represents the x-z plane at y+ = 16.1. We can see many streamwise
vortices with sizes approximately as long as �+

x (=197). The regions where the inverse cascade is

FIG. 4. Isosurfaces of the second invariant q̄ = 2000 (yellow) and production term PAzz = −100 (blue) in
the domain 0 � x � π , 0 � y � 1, and 0 � z � π/2 (0 � x+ � 1850, 0 � y+ � 590, and 0 � z+ � 927):
(a) perspective view and (b) top view. The gray plane represents the x-z plane at y+ = 16.1.
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active are visualized as the isosurfaces of PAzz. These regions tend to be located near some of the
streamwise vortices.

The production term PAzz can be further divided into three parts as

PAzz

(
=−2τ ∗

zk

∂ ūz

∂xk

)
= PAzz1 + PAzz2 + PAzz3, (27)

where

PAzz1 = −2τ ∗
zx

∂ ūz

∂x
, PAzz2 = −2τ ∗

zy

∂ ūz

∂y
, PAzz3 = −2τ ∗

zz

∂ ūz

∂z
. (28)

Their averaged values at y+ = 16.1 are given by

〈PAzz1〉xz = −2.48, 〈PAzz2〉xz = −1.38, 〈PAzz3〉xz = 0.72, (29)

respectively. Therefore, the first and second terms contribute to the inverse cascade and the
contribution of the first term is greater. The second term PAzz2 involves the velocity gradient ∂ ūz/∂y,
which is part of the streamwise vorticity ω̄x [=(∇ × ū)x]. On the other hand, the first term PAzz1

involves ∂ ūz/∂x; this gradient may be related to the gradient of the vorticity in the streamwise
direction rather than the streamwise vorticity itself. Because the first term contributes the most,
this result suggests that the inverse cascade is closely related to the streamwise variation of the
streamwise vortices. In fact, in Fig. 4, some regions of negative production are located near the edge
of the streamwise vortices, where the streamwise vorticity increases or decreases in the x direction.

IV. CONDITIONAL AVERAGE OF VELOCITY FIELD

In Sec. III, the isosurfaces of q̄ and PAzz plotted in Fig. 4 suggest some relationship between the
streamwise vortices and the regions of negative production. However, their relative locations are not
necessarily clear because of their variation. In this section, making use of the conditional average of
the velocity field, we try to extract typical flow structures contributing to the inverse cascade.

First, we define the conditional average of a quantity f associated with the negative production
at the reference point (x, y0, z) as follows:

〈 f 〉C1(�x, y,�z) = 〈 f (x + �x, y, z + �z)| − 100.1 < PAzz(x, y0, z) < −99.9〉. (30)

The y location of the reference point is set to y+
0 = 16.1. If the value of PAzz(x, y0, z) is within the

above range, then the field of the quantity f around the reference point is added to calculate the
averaged field. Because the value of PAzz = −100 is a typical one for the negative production, as
described in Sec. III, we expect that this conditional average can be used to extract typical flow
structures contributing to the inverse cascade.

Figure 5 shows the contours of the conditional averages 〈ūx〉C1, 〈ūy〉C1, 〈ūz〉C1, and 〈PAzz〉C1 in
the x-z plane at y = y0. The dot-dashed lines denote the contours of zero value. The reference point
corresponds to (�x+,�z+) = (0, 0). The size of the domain −200 < �x+ < 200 in the streamwise
direction is approximately twice the filter width �+

x . In Fig. 5(d), the magnitude of 〈PAzz〉C1 shows
a peak at the reference point (�x+,�z+) = (0, 0). Negative production is actually seen around
this point and it covers a region that is elongated in the streamwise direction. In Fig. 5(b), the
wall-normal velocity 〈ūy〉C1 shows large positive values in the upstream region at �x+ < 0 and
�z+ 	 0, indicating upward flow. The variation of the wall-normal velocity 〈ūy〉C1 in the spanwise
direction is directly related to the streamwise vortices because ω̄x = ∂ ūz/∂y − ∂ ūy/∂z. The profile
shows that the magnitude of the velocity gradient ∂〈ūy〉C1/∂z is large in the upstream regions at
�x+ < 0 and 5 < |�z+| < 30. The gradient is positive at �z+ < 0 and negative at �z+ > 0; this
profile suggests two streamwise vortices rotating in opposite directions. In Fig. 5(a), the streamwise
velocity 〈ūx〉C1 is low in the upstream region where 〈ūy〉C1 is positive, so the situation is similar to
an ejection event. Along the region of low 〈ūx〉C1 value, two regions of high 〈ūx〉C1 value are seen
at (�x+,�z+) = (−100,±50). The interval of the two regions is approximately z+ = 100 and
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FIG. 5. Contour plots of the conditionally averaged velocity and production term in the x-z plane at y = y0:
(a) 〈ūx〉C1, (b) 〈ūy〉C1, (c) 〈ūz〉C1, and (d) 〈PAzz〉C1.

is associated with the spanwise spacing of near-wall streaks. The velocity gradient ∂〈ūx〉C1/∂x is
positive around the reference point, indicating acceleration of the flow in the streamwise direction.
In Fig. 5(c), the velocity gradient ∂〈ūz〉C1/∂z is negative around the reference point, indicating
contraction in the spanwise direction. Modifying the variable interval time averaging technique,
Johansson et al. [37] also made conditional sampling for near-wall vortical structures. Figure 6 in
[37] is similar to Fig. 5 in the present work; in particular, the distribution of the shear stress uv − uv

showed negative values around a positive region which is similar to Fig. 5(d). Although detailed

FIG. 6. Isosurfaces of the second invariant q̄C1 = 100 (yellow) and production term 〈PAzz〉C1 = −30 (blue)
in the domain −0.3 < �x < 0.3, 0 < y < 0.097, and −0.1 < �z < 0.1 (−177 < �x+ < 177, 0 < y+ < 57,
and −59 < �z+ < 59): (a) perspective view and (b) top view. The gray plane represents the x-z plane at
y+ = 16.1. Velocity vectors in the y-z plane at �x = −0.09 are also plotted. Arrows represent the direction of
vortex rotation.
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methods are different from each other, the results obtained here are closely related to the near-wall
shear structure reported by Johansson et al. [37].

Next we examine the three-dimensional structure of the conditionally averaged velocity field.
The second invariant of the conditionally averaged velocity is given by

q̄C1 = −1

2

∂〈ūi〉C1

∂x j

∂〈ū j〉C1

∂xi
. (31)

Figure 6 shows the isosurfaces of q̄C1 = 100 (yellow) and 〈PAzz〉C1 = −30 (blue) in the domain
−0.3 < �x < 0.3, 0 < y < 0.097, and −0.1 < �z < 0.1 (−177 < �x+ < 177, 0 < y+ < 57, and
−59 < �z+ < 59). The gray plane plotted in Fig. 6(a) represents the x-z plane at y+ = 16.1. The
isosurfaces of q̄C1 show rather complex structures. As discussed above, two streamwise vortices can
be seen in the upstream region; they are tilted slightly in the spanwise direction and overlap each
other near the reference point. The velocity vectors in the y-z plane are also plotted to show the
direction of rotation of the two vortices. In the downstream region at �x > 0, we can see another
vortical structure. The isosurface of the negative production plotted in blue is located between the
upstream and downstream vortices.

The vortical structures shown in Fig. 6 are symmetric about the x-y plane at �z = 0. This
symmetric profile is obtained because the condition appearing in Eq. (30) is symmetric about
�z = 0, although the profiles of individual vortices in a snapshot are not necessarily symmetric. It
is likely that the two streamwise vortices located upstream in Fig. 6 originally appear independently
in a turbulent field and are overlaid by the conditional average. In Sec. III, we found that the
velocity gradient ∂ ūz/∂x contributes the most to the negative production. However, in Fig. 5(c),
its conditional average ∂〈ūz〉C1/∂x vanishes at the reference point because 〈ūz〉C1 = 0 along the
centerline in the x direction at �z = 0. This situation indicates that we cannot extract adequate
vortical structure by taking the conditional average defined by Eq. (30), because the important
contribution from ∂〈ūz〉C1/∂x is missing.

We thus introduce another conditional average defined as

〈 f 〉C2(�x, y,�z) = 〈 f (x + �x, y, z + �z)|−100.1 < PAzz(x, y0, z) < −99.9,
∂ ūz

∂x
(x, y0, z) > 0〉,

(32)
where the condition ∂ ūz/∂x > 0 is added to break the symmetry about �z = 0. We should note
that events with ∂ ūz/∂x > 0 and those with ∂ ūz/∂x < 0 occur equally. Here we focus on the events
under the former condition. Figure 7 shows the contours of the conditional averages 〈ūx〉C2, 〈ūy〉C2,
〈ūz〉C2, and 〈PAzz〉C2 in the x-z plane at y = y0. Each figure shows tilted contours, but they are rather
simple compared to their counterparts in Fig. 5. In Fig. 7(c), the velocity gradient ∂〈ūz〉C2/∂x clearly
shows positive values at the reference point, in contrast to that in Fig. 5(c). In Fig. 7(b), the wall-
normal velocity 〈ūy〉C2 shows large positive values in the upstream region at �x+ < 0 and �z+ 	 0,
like that in Fig. 5(b). However, the symmetry about �z+ = 0 is broken and the velocity gradient
∂〈ūy〉C2/∂z is positive in a wide region around �z+ = 0, suggesting a long streamwise vortex with
ω̄x < 0.

Figure 8 shows the isosurfaces of q̄C2 = 100 (yellow) and 〈PAzz〉C2 = −30 (blue) in the domain
−0.37 < �x < 0.37, 0 < y < 0.097, and −0.1 < �z < 0.1 (−218 < �x+ < 218, 0 < y+ < 57,
and −59 < �z+ < 59), where q̄C2 is defined by an equation similar to Eq. (31). The gray plane
plotted in Fig. 8(a) represents the x-z plane at y+ = 16.1. We should note that Fig. 7 corresponds
not to the top view but to the bottom view of the three-dimensional plot in Fig. 8. We can clearly
see two streamwise vortices in Fig. 8. The long vortex is slightly tilted in the +z direction and is
accompanied by a short vortex in the upstream region. The two vortices rotate in opposite directions,
as shown by the velocity vectors in the y-z plane. These profiles in Fig. 8 are simple compared to
those plotted in Fig. 6 and seem to be more realistic as typical vortical structures. Figure 8 reminds
us of a series of slightly tilted streamwise vortices with alternate signs of vorticity near the wall
investigated by previous works [38,39]. In fact, in Fig. 4 we can see that some streamwise vortices
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FIG. 7. Contour plots of the conditionally averaged velocity and production term in the x-z plane at y = y0:
(a) 〈ūx〉C2, (b) 〈ūy〉C2, (c) 〈ūz〉C2, and (d) 〈PAzz〉C2.

tilted in the +z direction are aligned with others tilted in the −z direction. We believe that the
profiles plotted in Fig. 8 reflect such a series of streamwise vortices near the wall. The upstream
vortex shown in Fig. 8 is short and weak compared to the long vortex; the magnitude of the vorticity
must be weakened in the process of taking the conditional average, although individual upstream
vortices in a snapshot should be as strong as the long one.

The isosurface of 〈PAzz〉C2 is located between the two vortices, suggesting that the inverse cascade
is driven by the interaction of the two vortices. Because the isosurface appears mainly along the

FIG. 8. Isosurfaces of the second invariant q̄C2 = 100 (yellow) and production term 〈PAzz〉C2 = −30 (blue)
in the domain −0.37 < �x < 0.37, 0 < y < 0.097, and −0.1 < �z < 0.1 (−218 < �x+ < 218, 0 < y+ <

57, and −59 < �z+ < 59): (a) perspective view and (b) top view. The gray plane represents the x-z plane at
y+ = 16.1. Velocity vectors in the y-z plane at �x = −0.11 are also plotted. Arrows represent the direction of
vortex rotation.
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FIG. 9. Isosurfaces of the second invariant q̄C2 = 100 (yellow) and enstrophy production term 〈Pωxx〉C2 =
−250 000 (violet) in the domain −0.37 < �x < 0.37, 0 < y < 0.097, and −0.1 < �z < 0.1 (−218 < �x+ <

218, 0 < y+ < 57, and −59 < �z+ < 59): (a) perspective view and (b) top view. The gray plane represents
the x-z plane at y+ = 16.1. Velocity vectors in the y-z plane at �x = −0.11 are also plotted. Arrows represent
the direction of vortex rotation.

long vortex, the negative production should represent enhancement of the GS velocity of the long
vortex, that is, an increase in the rotation of the long vortex. It does not mean that the short upstream
vortex directly drives the rotation of the long vortex; this phenomenon would be expressed as energy
transfer between the GS velocities because the short vortex is also based on the GS velocity. A
negative value of 〈PAzz〉C2 represents energy transfer from the SGS to the GS components. We should
consider that the SGS motion not plotted in the figure enhances the GS velocity of the long vortex
under the influence of the short vortex. In typical situations, the SGS motion acts as the effective
viscosity for the GS velocity; this means that the GS vorticity is usually diffused and weakened by
the SGS effect. However, in the regions of negative SGS production, the GS vorticity is not diffused
but enhanced by the SGS motion via the upstream vortex.

In order to check whether the negative production actually indicates an increase in the rotation of
the long vortex, we examine the transport equation for the GS vorticity ω̄x. From the Navier-Stokes
equation for the GS velocity, we can obtain the equation for the streamwise component of the GS
enstrophy ω̄2

x as

∂

∂t
ω̄2

x = −Pωxx + · · · , Pωxx = −2εx jk
∂τ ∗

km

∂x j

∂ω̄x

∂xm
, (33)

where only the terms describing the interaction between the GS and SGS components are written
on the right-hand side for simplicity. The term Pωxx is part of the production term in the SGS
enstrophy equation. A negative value of Pωxx represents enhancement of the GS vorticity ω̄x, that
is, an increase in the rotation of the GS vortex. Figure 9 shows the isosurfaces of q̄C2 = 100
(yellow) and 〈Pωxx〉C2 = −250 000 (violet) in the domain −0.37 < �x < 0.37, 0 < y < 0.097, and
−0.1 < �z < 0.1 (−218 < �x+ < 218, 0 < y+ < 57, and −59 < �z+ < 59). The isosurfaces of
q̄C2 are the same as those plotted in Fig. 8. The isosurfaces of 〈Pωxx〉C2 are attached to the long
vortex and located near those of 〈PAzz〉C2 plotted in Fig. 8. These profiles confirm that the inverse
cascade represented by 〈PAzz〉C2 is directly related to the increase in the rotation of the long vortex.

In Sec. II we mentioned the self-sustaining process proposed by Waleffe [34] in terms of the
energy transfer. The third phase of the process can be considered as the inverse cascade from the
three-dimensional fluctuations to the line-averaged velocities V (y, z) and W (y, z). The line-averaged
velocity and three-dimensional fluctuations correspond to the GS and SGS velocities in our analysis,
respectively. The region of negative production attached to the long vortex plotted in Fig. 8 shows
that the GS velocity field of the long vortex is enhanced by the SGS motion. Moreover, the region of
negative enstrophy production plotted in Fig. 9 confirms that the SGS effect increases the rotation of
the long vortex; that is, the effect of the three-dimensional fluctuations reenergizes the streamwise

114609-14



INVERSE ENERGY CASCADE AND VORTICAL STRUCTURE …

rolls. Therefore, the results obtained in this section indicate that the third phase of the process is
actually observed for the GS velocity field with the streamwise filtering used here. The near-wall
vortical structures are expected to be described adequately in wall units whereas some statistics
may depend on the Reynolds number in a different manner. Although a systematic survey of the
Reynolds-number dependence is beyond the scope of this paper, a preliminary analysis of the
similarity and dependence is made in the Appendix.

V. CONCLUSION

The energy transfer in scale space was examined using the DNS data of turbulent channel flow.
The energy flux term was evaluated for the normal Reynolds stresses and the turbulent energy. A
direct cascade of the streamwise and wall-normal components of the turbulent energy was seen,
whereas an inverse cascade of the spanwise component was observed near the wall. In order to
understand the flow structures related to the inverse cascade, we focused on the production term
of the SGS energy instead of the energy flux term in scale space. The isosurfaces of the second
invariant of the GS velocity gradient and those of the SGS production showed that the regions of
negative production were located near the streamwise vortices. However, the relative locations of
the streamwise vortices and negative production regions were not necessarily clear because of their
variation.

In order to extract the typical flow structures contributing to the inverse cascade, we evaluated the
conditional average of the velocity field associated with negative production of the SGS energy. The
observed structure was rather complex: Two streamwise vortices overlapped near the reference point
and the region of negative production appeared between these vortices and the small downstream
vortices. In order to break the symmetry in the spanwise direction and obtain simple vortical
structures, we added another condition for taking the average. As a result, a long streamwise
vortex around the reference point and a short one in the upstream region were observed. These
vortices remind us of a series of slightly tilted streamwise vortices with alternate signs of vorticity
near the wall. The isosurface of the negative production suggests that the GS velocity of the long
vortex is enhanced by the SGS motion under the influence of the short upstream vortex. We further
examined the enstrophy equation to confirm that the SGS effect increases the rotation of the long
streamwise vortex. We believe that this analysis of the conditional average provides insight into the
self-sustaining process of the streamwise vortices and the generation mechanism of the turbulent
energy near the wall.
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APPENDIX: REYNOLDS-NUMBER DEPENDENCE OF NEAR-WALL STRUCTURES

It is expected that the energy transport and the vortical structures near the wall can be described
adequately in wall units. At the same time, large-scale structures in the outer layer may affect the
near-wall structures; their statistics may depend on the Reynolds number in a different manner. A
systematic survey of the Reynolds number dependence needs to be done in future work. Here we
show preliminary results of the Reynolds-number similarity and dependence. In addition to the DNS
data at Reτ = 590, we carried out a DNS of channel flow at Reτ = 395 for comparison.

First, we examine the inverse energy cascade observed in Fig. 1(c). Figure 10 shows the contours
of the energy flux 	Szz(y, rx ) for Reτ = 395. The contours are very similar to those in Fig. 1(c) for
Reτ = 590. The peak of the flux is located at y+ = 16.1 and r+

x = 78.6; the values are nearly the
same as those in Fig. 1(c). Therefore, the location and size of the inverse energy cascade near the
wall can be described adequately in wall units. As already mentioned in Sec. II, a contour of zero
value extending towards the channel center suggested a weak inverse cascade in the region apart
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FIG. 10. Contour plots of the energy flux 	Szz(y, rx ) given by Eq. (19) in the rx-y plane for Reτ = 395.

from the wall. The behavior of such regions may depend on the Reynolds number in a different
manner. In fact, the zero-value contour is located at r+

x = 200 in Fig. 1(c) whereas it is located at
r+

x = 150 in Fig. 10.
Next we examine the vortical structures in the near-wall region. The size of the isosurfaces plotted

in Figs. 6 and 8 depends on their threshold values; the comparison of results between the different
Reynolds numbers is not necessarily easy. Here we examine the contour plots of the velocity in the
x-z plane shown in Figs. 5 and 7. Figure 11 shows the contours of the conditional averages 〈ūx〉C1

and 〈ūy〉C1 given by Eq. (30) in the x-z plane for Reτ = 395. Figures 11(a) and 11(b) correspond
to Figs. 5(a) and 5(b), respectively, for Reτ = 590. The contours are very similar between the two
figures. The contours of the conditional averages 〈ūx〉C2 and 〈ūy〉C2 given by Eq. (32) are also very
similar between Reτ = 590 and 395 as shown in Figs. 7 and 12. Therefore, near-wall structures
observed in the present work are described adequately in wall units.

Waleffe and Kim [40] estimated that streamwise roles [0,V (y, z),W (y, z)] exhibit a Re−1

dependence whereas streaks U (y, z) remain essentially Re independent; that is, the former is
described in wall units and the latter is as large as the outer layer. Abe et al. [41] examined the
Reynolds-number dependence of turbulence statistics and structures in a streamwise minimal unit
of channel flow. They observed that large-scale structures are essentially two dimensional at large
Reynolds number and confirmed the expectation of Waleffe and Kim [40]. In the present work it
is confirmed that streamwise roles are described in wall units in Figs. 11(b) and 12(b). However,
the streamwise velocity in Figs. 11(a) and 12(a) are also described in wall units and large-scale

FIG. 11. Contour plots of the conditionally averaged velocity in the x-z plane at y = y0 for Reτ = 395:
(a) 〈ūx〉C1 and (b) 〈ūy〉C1.

114609-16



INVERSE ENERGY CASCADE AND VORTICAL STRUCTURE …

FIG. 12. Contour plots of the conditionally averaged velocity in the x-z plane at y = y0 for Reτ = 395:
(a) 〈ūx〉C2 and (b) 〈ūy〉C2.

structures of streaks are not observed. This is partly because of the choice of the conditional average;
the SGS production should be closely related to near-wall structures. It must be interesting to choose
other conditions to see if large-scale structures are extracted or not.
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