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Lyapunov spectrum of forced homogeneous isotropic turbulent flows
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In order to better understand deviations from equilibrium in turbulent flows, it is
meaningful to characterize the dynamics rather than the statistics of turbulence. To this
end, the Lyapunov theory provides a useful description of turbulence through the study of
the perturbation dynamics. In this work, the Lyapunov spectrum of forced homogeneous
isotropic turbulent flows is computed. Using the Lyapunov exponents of a flow at different
Reynolds numbers, the scaling of the dimension of the chaotic attractor for a three-
dimensional homogeneous isotropic flow is obtained through direct computation. The
obtained Gram-Schmidt vectors (GSVs) are analyzed. For the range of conditions studied,
it is found that the chaotic response of the flow coincides with regions of large velocity
gradients at lower Reynolds numbers and enstrophy at higher Reynolds numbers, but does
not coincide with regions of large kinetic energy. Further, the response of the flow to
perturbations is more and more localized as the Reynolds number increases. Finally, the
energy spectrum of the GSVs is computed and is shown to be almost insensitive to the
Lyapunov index.
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I. INTRODUCTION

The dynamical systems (DS) approach to representing chaotic flows provides insights that are
generally different from statistical approaches [1–5]. With the emergence of data-driven modeling,
there has been a renewed focus on the DS viewpoint of turbulence [6]. From a physics standpoint,
the statistical view provides a natural pathway to modeling in the form of averaged equations, which
itself may take different forms [7–10]. However, such statistical approaches inherently model or
represent only the average dynamics of turbulent flow [9–12]. If the deviations from the average
behavior are of interest, then the DS approach might provide a better starting point [5,13]. In
recent years, there has been growing interest in the prediction of extreme events [14–16], defined as
anomalous excursions of the nonlinear DS from an expected average path. Hassanaly and Raman
describe multiple causal mechanisms for such extreme events in the context of turbulent reacting
flows [16,17]. The description of such extreme events is shown to be linked to the structure of the
phase space, in particular, the strange attractor that defines the chaotic system [18]. Characterizing
such attractors is often carried out using Lyapunov theory [19–24], but can also be computed using
other techniques [25,26]. The focus of this work is on the use of Lyapunov theory for a canonical
turbulent flow configuration, namely, homogeneous isotropic turbulence (HIT).

In the Lyapunov theory, the response of the turbulent flow fields to perturbations is analyzed.
From the DS perspective, the turbulent flow is represented using a set of ordinary differential
equations that are obtained by an appropriate discretization of the governing equations. The
Lyapunov analysis provides the growth rate of specifically aligned perturbations to the state of
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the system. The growth rate itself is expressed as the exponential of the Lyapunov exponent (LE),
while the corresponding perturbation is termed a Lyapunov vector (LV) (more formal definitions
are provided in Sec. II B). For a D-dimensional system, D such pairs of Lyapunov exponents and
vectors can be defined. Several algorithms have been used to extract the LEs and LVs [21,22,27],
which may be thought of as equivalent to eigenvalue-eigenvector pairs of the Oseledets matrix,
defined using the backward dynamics [28,29]. In general, the LEs are ordered from largest to
smallest and for any chaotic system will possess positive and negative values. The knowledge of
these quantities can lead to a description of the process by which instabilities occur in a turbulent
flow. Using LVs, it was found, for example, that the chaotic behavior in a Taylor-Couette flow
occurred due to a Kelvin-Helmholtz instability [30]. Similarly, streamwise vortices were found to
be at the origin of streak regeneration in Couette turbulence [31]. More recently, the importance
of walls in the generation of instabilities in Rayleigh-Bénard convection was deduced from the
Lyapunov analysis [32]. In the context of turbulent combustion, the Lyapunov analysis found that
the chaotic behavior of a turbulent jet flame was mostly due to intermittent ignition and extinction
[33]. The Lyapunov spectrum (LS) also carries important information about the long-time behavior
of a dynamical system, or more specifically, the attractor. The LE can provide an estimate of the
dimension of the attractor [3,34], while the LV can inform about its geometry (hyperbolicity, for
example, as in [35,36]). In terms of quantitative predictions, the knowledge of the first LE (which is
the largest LE) provides an estimate of the decorrelation time. In other words, the inverse of the LE
is a timescale that determines the time horizon of predictions with a prescribed level of uncertainty
[5,37]. In the context of HIT, which is the main focus here, the value of the scaling of the first LE
has been obtained in previous work [4].

The focus here is on the set of Lyapunov exponents and vectors for HIT. While there have been
many studies on extracting the spectra for other canonical flows, such as the Kuramoto-Sivashinsky
(KS) system [38] and the turbulent channel flow [3], the periodic turbulent flow in HIT has not
been explored. Even so, the focus of many of these studies has been on the Lyapunov exponents.
Since the computation of each exponent requires one additional forward run of the DS, obtaining
a large number of such exponents can quickly become computationally intractable, depending on
the complexity of the DS equations. When the DS is not high dimensional, then the entire spectrum
can typically be computed [39,40]. More specifically, all the positive exponents of the system are
directly computed, while retaining some of the negative exponents. Since the positive and the first
few negative exponents determine the structure of the attractor and the most negative exponents
track the dissipative behavior, such extensive Lyapunov computations provide detailed information
about the chaotic dynamics of the system.

With this background, the goal of this work is to compute and study the Lyapunov spectrum
for HIT. Section II treats the numerical approach used for the DS and the computation of the
LS. Section III covers the results obtained by analyzing both the LE and the LV. In particular,
the effects of a different Reynolds number on the dimension of the chaotic attractor (Sec. III B)
and of the forcing schemes on the LE (Appendix C) are discussed. The response of the flow
field to perturbation is analyzed in Sec. III C by examining the backward Lyapunov vectors, or
Gram-Schmidt vectors (GSVs). Their structure, as well as their dependence on the Reynolds
number, is investigated. The findings are summarized and discussed in Sec. IV.

II. CONFIGURATION AND COMPUTATIONAL APPROACH

The simulation configuration and the numerical procedure for extracting the Lyapunov exponents
and vectors are briefly described below. For a full description, including the numerical convergence
details, the reader is referred to [41].

A. Flow configuration

Forced homogeneous isotropic turbulence in the low-Mach-number incompressible flow regime
is simulated in a 2π -triply periodic box. A constant density of ρ = 1 kg m−3 and kinematic viscosity
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of ν = 0.05 m2 s−1 are used throughout the paper. The governing equations of the DS are written as

∂ui

∂t
+ ∂uiuk

∂xk
= − 1

ρ

∂ p

∂xi
+ ν

∂

∂xk

∂ui

∂xk
+ fi, (1)

∂ui

∂xi
= 0, (2)

where ui is the velocity component, fi is a forcing term in the ith direction that maintains the
turbulence level, and p is the fluid pressure. In the absence of forcing, the turbulent kinetic energy in
the domain tends to zero due to viscous dissipation. Therefore, the forcing term ensures statistical
stationarity, which is necessary for evaluating the Lyapunov spectrum. The impact of the forcing
term will be studied in detail in Appendix C. For this reason, the exact form of the forcing term is
discussed later.

B. Numerical details

In a dynamical system context, the discretized governing equations (1) and (2) are written as a
set of ordinary differential equations that takes the form

dξ

dt
= F (ξ), ξ(t = 0) = ξ0, (3)

where ξ is a vector of all the variables, F is the discretized form of Eq. (1), and ξ0 are the initial
conditions. The vector ξ is also called a state vector as it describes the state of the system. Here,
because the pressure can be readily obtained from the velocity using the incompressibility condition,
the state vector is composed of all the variables describing only the velocity field at a certain instant.
For a fluid problem in three spatial dimensions, the state vector is of dimension D = 3 × N3, where
N is the number of grid points or Fourier modes in one direction. Several resolutions are used
investigated ranging from 323 to 1283 modes or grid points, resulting in D ∼ 105–107. The present
problem is high dimensional, which introduces a computational hurdle in the study of its chaotic
behavior.

The Lyapunov analysis consists of studying the evolution of perturbations δξ applied to the
system in this high-dimensional space. These perturbations evolve according to

dδξ

dt
= ∂F

∂ξ
δξ = J (ξ)δξ, δξ(t = 0) = δξ0, (4)

where J is the linearized evolution operator of the perturbation (the Jacobian of the dynamics). As
the perturbations advance in time, their norm is subject to an exponential expansion or contraction
rate, which depends on the unperturbed state vector and the direction of the perturbation. For every
state vector, the rate of variation of the perturbation norm can be decomposed into D individual
rates associated with particular initial perturbation direction. In the long-time limit, it was shown
by Oseledets [19] that in an ergodic system, there exist limits for these expansion rates, which
are called the Lyapunov exponents. The very existence of this limit is what allows one to adopt
a global point of view on the dynamics of the DS, as opposed to examining each point in phase
space. The computation of the LE and associated LV requires distinguishing between different
perturbation directions that expand at different rates. Here the algorithm of Benettin et al. [21] is
used. This algorithm computes the first m LEs, where m � D, by evolving m copies of Eq. (4). The
perturbations are periodically orthogonalized to identify directions that expand at different rates. In
the end, the set of LEs obtained is defined as

λ ≡ {λ1, . . . , λm}.
In the rest of the paper, λ is referred to as the Lyapunov spectrum. As shown in previous work [41],
the perturbation can initially grow due to the numerical effects rather than due to the dynamics of
the system. It is useful in that case to wait for a few time steps before recording the norm of the
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perturbations. At best, this allows eliminating the spurious perturbation growth. At worst, it recovers
the same perturbation growth rate. Note that the waiting period only affects the computation of the
LE. Here this procedure is used for all the simulations with a waiting time of 0.2 s (10–150 time
steps depending on the resolution) and an averaging time of the perturbations growth of one eddy
turnover time (300–1300 time steps depending on the resolution). The initial size of perturbations
is chosen such that they remain small compared to the baseline flow during the growth phase (see
Appendix A). The set of LVs obtained (GSVs) from the procedure are required to be orthogonal
(here according to the Euclidean scalar product) to each other and were shown to be independent
of the initial perturbation [42]. The GSVs are orthogonal by definition and depend on the scalar
product chosen. A less ambiguous set of vectors is the covariant Lyapunov vectors (CLVs), which
do not require the definition of a scalar product. The CLVs are defined as vectors that evolve with
the tangent dynamics [24,28,29]. Nevertheless, since the GSVs converge to the backward Lyapunov
vectors [42] they describe the response of the system to perturbations that expand or contract and
thereby provide interesting information about the DS. Since the CLVs can also be expressed as a
linear combination of the GSVs, studying the GSVs allows drawing conclusions about the tangent
space to the attractor. This aspect is further discussed in Appendix E. In the rest of the paper, LVs
always refer to GSVs unless specified otherwise.

Instead of solving Eq. (4), the growth in perturbations is obtained by solving a baseline simulation
and perturbed simulations, with the difference in the solution vectors at a future time providing
the perturbation at that time. This procedure circumvents the need to compute the Jacobian matrix,
which may become computationally expensive, especially for large systems with complex evolution
equations. Further, assembling the Oseledets matrix (see [28] for a precise definition) would lead
to large numerical errors. To obtain the m LEs or LVs, m perturbed simulations of a baseline
calculation are evolved. The approach of Benettin [20,21] is then used to obtain the LEs and LVs.
Previously, this numerical procedure has been verified for a number of canonical flows using a
low-Mach-number flow solver [41]. The low-Mach solver is based on the NGA code [43], and the
underlying numerical algorithms have been tested in Refs. [44,45]. This code has been validated
over a large range of turbulent flows in the past, including for HIT cases [46,47]. The code solves
Eq. (1) in physical space using a staggered arrangement of variables in space and time. Second-order
space and time discretization are used for integrating Eq. (1). The incompressibility condition is
enforced through a Poisson equation at the end of each time step: The pressure is computed such
that the velocity is a divergence-free field at the end of every time step. Convergence results for the
computations of the Lyapunov exponents using this code are available in Ref. [41].

In the present work, the incompressible governing equations (1) are solved using a Fourier
spectral transformation [48,49], by decomposing the primitive variables into Fourier modes

ui =
∑

κ

ûi(κ, t )e jκ·x,

where κ is the wave vector and x is the vector of the location in physical space. The Galerkin
projection of Eq. (1) is obtained for all the Fourier modes. A pseudospectral method with dealiasing
is used for the nonlinear term and is integrated in time using a second-order Runge-Kutta scheme.
The viscous term is integrated analytically. The time step is chosen so as to maintain a Courant
number of 0.5 for all the simulations. The ratio of the Kolmogorov length scale to grid size is
maintained close to unity. Due to roundoff numerical errors, it was found that there was a growth
of instability in the simulations that contaminated the Lyapunov evaluations. For this reason, the
continuity is explicitly forced using a correction procedure at each time step (see [29] for details).

As a validation of the implementation, the LS of the same case as the one obtained in
Ref. [41] which used a spatial discretization is computed this time with the spectral code. A linear
forcing [50,51] with a coefficient A = 0.1 is used and Eq. (1) takes the form

∂ui

∂t
+ ∂uiuk

∂xk
= − 1

ρ

∂ p

∂xi
+ ν

∂

∂xk

∂ui

∂xk
+ Aui. (5)
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(a)

(b)

FIG. 1. (a) Contour of the vorticity magnitude for the case solved with the spectral code using 323 Fourier
modes. (b) First 100 LEs obtained with the spectral code with 323 Fourier modes and 643 Fourier modes
and the physical space code with 323 grid points and 643 grid points ( , first 50 exponents only).

In order to verify the spectral code, four different simulations are run: 323 and 643 simulations
with the low-Mach-number solver (same as the one presented in Ref. [41]) and 323 and 643

Fourier mode simulations with the spectral solver. Figure 1(a) shows a snapshot of the vorticity
magnitude, demonstrating the presence of well-defined vortical structures in the relatively-low-
Reynolds-number flow. For all 323 calculations, 100 LEs were computed, while 50 LEs were
computed for the 643 spectral simulation. The Lyapunov spectra from all of these calculations are
shown in Fig. 1(b). The good agreement between all four cases indicates that the dynamics of the
flow was sufficiently resolved to capture the spectrum. It also shows that both the low-Mach spatial
solver and the spectral solver capture similar dynamics of the flow field.

III. RESULTS

In this section, the LEs are used to directly estimate the dimension of the attractor of the flow
field. Using different Reynolds numbers, an estimate of the scaling of the attractor dimension is

114608-5



MALIK HASSANALY AND VENKAT RAMAN

also obtained. The structure of the LVs is also described; their localization in physical space is
characterized as well as their correlation with classical turbulent flow quantities.

A. The LE spectrum

One of the main uses of the Lyapunov study is the determination of the dimension of the attractor.
For this purpose, a set of Lyapunov exponents needs to be computed. In order to obtain an accurate
estimate, it is necessary to determine at least all of the positive exponents and some of the negative
components. In prior studies [3], a partial set of positive exponents has been used to extract a
polynomial fit, from which the entire spectrum was determined. Here the negative components are
directly evaluated in order to increase the accuracy of the results. The main disadvantage of this
procedure is then that the range of Reynolds numbers that could be studied is vastly limited since
the number of positive exponents is known to increase with the Reynolds number exponentially [2].

As a starting point, the structure of the exponent spectrum can be examined from the validation
case investigated in Sec. II B. Figure 1 shows the spectrum of the first 100 exponents. The structure
of this plot is similar to that for other systems, such as turbulent channel flow [3]. Overall, a finite set
of positive exponents is observed, followed by a long tail of negative exponents. The magnitude is
inversely related to the index, with near-linear scaling, as opposed to the KS system, where negative
exponents were found to scale as the fourth power of the Lyapunov index [38]. This difference
is likely due to the stronger dissipation term (fourth derivative) in the KS system as opposed to
the second-order viscous term in the Navier-Stokes equations. Further, the near-zero LEs show a
kneelike structure, where the values do not follow the linear trend observed for the lower and higher
LE indices. This structure has also been observed in Kolmogorov flow [36] and a Hamiltonian
description of the motion of a collection of two-dimensional disks [52].

B. Scaling of the dimension of the attractor

The scaling of the dimension of the attractor of turbulent flows with the Reynolds number has
important implications, in particular, in deciding the resolution required to capture the dynamics
of the flow field [53–55]. To estimate this scaling relation, a series of calculations with varying
Reynolds numbers is conducted. Through the Kaplan-Yorke (KY) conjecture [34], the geometric
dimension of the system’s attractor can be related to its LEs. The KY dimension is expressed as

DKY = i +
∑i

1 λ j

|λi+1| , (6)

where λ j denotes the jth LE and i is the last index such that
∑i

1 λ j � 0. The dimension of the
attractor of the system can inform about the complexity of the dynamics considered as well as serve
as an indicator that determines the minimal number of degrees of freedom required to capture all
the dynamics on the attractor [55]. All calculations use the linear forcing techniques discussed in
Sec. II B. The statistics of these cases are provided in Table I.

The LEs computed for each one of these cases are shown in Fig. 2. For cases 1–3, a sufficient
number of exponents are obtained to estimate the dimension from the above relation directly. In
practice, the exponents are obtained from long-time averages. Therefore, these values are subject
to statistical errors, which may be estimated from the time series of the exponents. The approach
used here is based on the technique proposed in Ref. [56] for turbulence statistics. For the average
turbulence quantities (Reλ and Kolmogorov length scale η), uncertainty estimates are obtained
following the same procedure. Here the simulations are run for several hundred eddy turnover times
in order to minimize the statistical uncertainty. The simulation parameters are shown in Table I.
The resulting LEs and corresponding statistical error are shown in Fig. 2. An uncertainty estimate
for the attractor dimension of cases 1–3 can then be derived by computing DKY using the mean LE
shifted by one standard deviation up or down. For case 4, the number of computed exponents is not
sufficient to estimate the dimension of the attractor (the first 49 exponents are all positive). Since it is
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TABLE I. Turbulent statistics of the simulations conducted with various Reλ using the linear forcing
scheme. Here Reλ denotes the Reynolds number based on the Taylor microscale, ε is the energy dissipation
rate, lint is integral length scale based on the turbulent kinetic energy and the energy dissipation rate, k is the
turbulent kinetic energy, N is the number of modes in one direction, m is the number of LEs computed, A is the
linear forcing coefficient, DKY is the computed Kaplan-Yorke dimension, and T/τ is the total simulation time
divided by the eddy turnover time.

Case Reλ ε (m2/s3) lint (m) k (m2/s2) N m A DKY T/τ ν κmaxη

1 15.55 0.07 0.47 0.35 32 99 0.137 57.67 743 0.05 1.1
2 21.26 0.26 0.53 0.93 64 199 0.215 128.67 589 0.05 1.5
3 25.57 0.68 0.55 1.8 64 299 0.3 232.54 546 0.05 1.2
4 37.67 8.8 0.52 9.7 128 49 0.75 1430.7 206 0.05 1.3

computationally expensive to obtain more exponents, DKY must be estimated using an extrapolation
method for the LEs. For this purpose, it is recognized that the shape of the Lyapunov spectrum is
similar in all the cases considered and can be approximated as a power-law function of the Lyapunov
index [33]. Since the extrapolation procedure can now affect the DKY, it is necessary to estimate the
uncertainty that it generates for the estimation of the attractor dimension. Note that the functional
form of the spectrum can reasonably be assumed to be the same, but cannot be expected to use the
same exponential decay rate as can be seen in Fig. 2. The uncertainty quantification procedure is
explained in detail in Appendix D.

Prior estimates [57] show that the attractor dimension scales as ( L
η

)3, where L denotes the length
of the domain in one direction and η is the Kolmogorov length scale. Other refinements of the
estimate have been mathematically derived [2,58], but involve the scaling with the upper bound
rather than average turbulent flow quantities. Here the scaling of the dimension with the length scale
ratio is shown in Fig. 3. It can be seen that DKY = (L/η)2.8±0.095, which is close to the theoretical
estimate. The procedure to obtain the uncertainty estimate is described in Appendix D. The fact
that the theoretical scaling is based on fully developed high-Reynolds-number turbulence, where
the underlying assumptions regarding the separation of scales are valid, indicates that the attractor
properties are only weakly dependent on these assumptions.

FIG. 2. LEs rescaled by the first LE computed for case 1 ( ), case 2 ( ), case 3 ( ), and case 4 ( ).
The shaded areas denote the statistical errors. The inset shows the magnified region near the first exponents for
cases 3 and 4.
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FIG. 3. Kaplan-Yorke dimension obtained from cases 1–4 (variable Reλ and linear forcing scheme) plotted
against the ratio L

η
, along with a ( L

η
)2.8 slope ( ). The error bars denote the uncertainty estimate for both the x

and y axes due to statistical convergence and extrapolation uncertainty.

C. Response of the flow to perturbations

So far, the discussion has centered on the Lyapunov exponents. In order to assess the correlation
between the flow field and the Lyapunov perturbations, the Lyapunov vectors have to be studied.
Each LV is a three-dimensional flow field made of three variables (one for each velocity component)
at every grid point. To identify where perturbations grow the most, the energy of the LV δξ2 can be
computed as the sum of squares of the velocity components that compose the normalized LVs and
rescaled by a factor 1/N3, where N3 is the total number of grid points. In Fig. 4, the first, 27th, and
100th LVs obtained for case 1 are plotted alongside the turbulent kinetic energy of the flow field k,
its helicity density H , its enstrophy ζ , and the strain rate magnitude S. Denoting by x the physical
space location and by u the velocity field, the turbulent kinetic energy is defined as k(x) = 1

2 u · u,
enstrophy is defined as ζ (x) = (∇ × u) · (∇ × u), the helicity density is defined as H (x) = (∇ ×
u) · u, and the strain rate S is defined as the Frobenius norm of the strain rate tensor 1

2 ( ∂ui
∂x j

+ ∂u j

∂xi
).

From these plots it can be seen that the LVs themselves are disorganized fields, containing structures
similar to the original velocity field. A detailed statistical analysis of the correlation between the
LVs and the flow field quantities considered is performed and discussed below. To understand the
correlation between the flow and the LVs, statistical analysis is performed and is discussed below.

Localization of chaotic response

It has been reported [35,59] in different chaotic systems that only a small part of the physical
space was responsible for most of the perturbation growth in chaotic systems. This property is
called the localization. In the case of hard-disk systems, it has been found that the number of
particles that contribute to perturbation growth decrease as the total number of particles in the
system increases [59]. This finding led to speculations about the convergence of the LSs in the
thermodynamic limit (with a large number of particles). In fluid systems, it has also been found
that the most chaotic LVs could be highly localized in physical space and that the least chaotic LVs
could be more spatially distributed [60]. Here the chaotic LV refers to the vector associated with a
positive LE. The most chaotic LV is the first LV and the least chaotic LV is the last LV computed. As
a side note, the localization has been mostly investigated with the GSV, but has also been recently
examined using the CLV [61], where it was observed that while the spatial distribution of the least
chaotic LVs was less pronounced for the CLV than the GSVs, these were still more distributed
than the most chaotic CLVs. In this section, the localization of the LVs is the main focus. Here
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FIG. 4. Contours of case 1 taken at the same instant. Shown on top is the instantaneous contour of turbulent
kinetic energy k, enstrophy ζ , strain rate S, and helicity density H (from left to right). Shown on the bottom is
the contour of δξ2 for the most chaotic first LV, the 27th LV corresponding to the near-zero LE, the 63rd LV,
and the 100th LV (from left to right).

the variation of the localization with respect to the turbulence level, the Lyapunov index, and other
macroscopic properties such as local kinetic energy are investigated.

The first mathematical definition of the LV localization is inspired by Ref. [59]. Here the
parameter Cθ is defined by counting the number of vector entries of δξ2 that contribute to a certain
fraction θ of its total L2-norm. More formally, let δ�2 be defined as δξ2 with entries sorted in
descending order. Then Cθ = j, where j is such that

∑ j
i=1 δ�2

i � θ‖δξ‖2 and
∑ j−1

i=1 δ�2
i < θ‖δξ‖2.

In Fig. 5(a) the localization of the most chaotic LV is shown as a function of Reλ for different
thresholds θ . It appears that the fraction of the domain that contributes to the perturbation growth
gets smaller and smaller as the level of turbulence increases. This result suggests that tracking
the evolution of perturbations over time using measurement techniques to anticipate their chaotic
buildup would get more and more difficult as the Reynolds number increases. In turn, if one wants
to exploit the chaoticity of the flow field for flow control purposes, the localized response of the flow
field could facilitate targeted control for high-Re flows. At the moment, while it is unclear whether
this trend would continue for higher levels of turbulence, it can be reasonably expected to follow
the rate at which Kolmogorov scales decreases with increasing Reλ.

The variation of the localization as a function of the LE index is then examined. To do so,
the entropylike metric of localization introduced in Ref. [62] is used. This metric W

N3 , called the
localization width, where N3 is the number of entries in δξ2, is defined as W = exp(S), where
S = −〈∑N3

j=1 δξ 2
j logδξ 2

j 〉, with δξ 2
j the jth entry of δξ2 normalized by the L2-norm of δξ2. This

metric is advantageous since it can be easily computed as it does not require sorting the entries of
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(a)

(b)

FIG. 5. Physical space localization of the LV. (a) Time-averaged localization Cθ obtained from cases 1–4
with different thresholds θ = 0.98 (�), θ = 0.88 (�), θ = 0.78 (�), and θ = 0.68 (•). The vertical error bars
denote the rms fluctuations around the mean (as opposed to statistical uncertainty). The horizontal error bars
denote statistical uncertainty in the average value of Reλ. (b) Localization width plotted against the LE index
obtained from cases 1 ( ), 2 ( ), 3 ( ), and 4 ( ).

δξ2 and it does not depend on the value of a particular threshold. However, this metric is bounded
between 1

N3 and 1 and its value depends on the total number of vector entries (number of grid
points): The same value of W

N3 for cases discretized with a different number of modes can mean that
a field is localized in one case and distributed in the other. As opposed to Cθ , this metric is not suited
for comparing fields discretized with a different number of grid points, which explains why it was
not used to compare different Reλ simulated with different numbers of Fourier modes. Figure 5(b)
shows the localization width obtained for cases 1–4. Here the statistical uncertainty of the quantity
is not indicated for clarity. Similar to previous results mentioned at the beginning of this section, the
LVs are increasingly distributed in physical space as the LE index increases, although the range of
variation is narrower than in other systems [62].

The metrics used above characterize the level of localization of the perturbations but do not
indicate the location where perturbations grow the most. To answer this question, the conditional
averages of δξ2 with turbulent flow quantities are examined. Below, only the results from the linear
forcing technique based simulations are used, since the results were found to be consistent across
different forcing schemes (see the Supplemental Material [63] for the results with other forcing
schemes).
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(a)

(b)

FIG. 6. (a) Conditional average of δξ2 conditioned on helicity density values H , for each LV. (b) Condi-
tional rms of δξ2 conditioned on helicity density values H , for each LV, rescaled by the conditional average of
δξ2.

First, the conditional average of δξ2 conditioned on the helicity density H is examined (Fig. 6) for
case 1. Note that only the points with relative statistical uncertainty lower than 1% are plotted here.
It can be seen that large values of δξ2 are correlated with large absolute values of helicity density
for the most chaotic LV only. This suggests that perturbations grow where the helicity density is
the largest. In turn, large values of the dissipative LVs appear uncorrelated with helicity density.
Figure 6 also shows the conditional root mean square (rms) of δξ2. These data show that at high
helicity density values, the variation in the LV energy is also high. This suggests that although
high helicity density regions are associated with increased perturbation growth, this feature is not
persistent and there are times when the growth is small. In fact, the range of variation exceeds the
conditional average.

The local helicity density can be intuitively understood as containing a contribution stemming
from the local kinetic energy and from the local enstrophy. It is then natural to investigate
the conditional averages with both fields to identify the importance of each component on the
localization of the LV. Figure 7(a) shows the conditional averages of δξ2 with k. As opposed to
the findings obtained with helicity density, the first GSV (which is the first CLV) suggests that
perturbations grow where the local kinetic energy is low. In turn, the conditional averages with
enstrophy [Fig. 7(b)] are similar to the ones observed with helicity density with slightly higher
conditional averages. The conditional average with respect to strain rate is shown in Fig. 7(c). It
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(a)

(b)

(c)

FIG. 7. (a) Conditional average of δξ2 conditioned on turbulent kinetic energy values k, for each LV.
(b) Conditional average of δξ2 conditioned on enstrophy values ζ , for each LV. (c) Conditional average of
δξ2 conditioned on strain rate values S, for each LV. Results correspond to case 1.

can be seen that conditioning on strain rate produces higher averages as compared to conditioning
on helicity, but lower values compared to enstrophy. While enstrophy can be considered to be a
better marker for isolating the most chaotic locations in the domain than strain rate and helicity,
the fact that the conditional averages with enstrophy, strain rate, and helicity are close suggests that
perturbations expand mostly in regions of large velocity gradients.
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(a)

(b)

FIG. 8. (a) Conditional average of δξ2 conditioned on enstrophy values ζ , for each LV. (b) Conditional
average of δξ2 conditioned on strain rate values S, for each LV. Results correspond to case 3.

Figure 8 shows that, at higher Reynolds numbers, 〈δξ2|ζ 〉 exceeds 〈δξ2|H〉 and 〈δξ2|S〉 by a
larger amount compared to the same averages at lower Reynolds number. In other words, enstrophy
becomes a better marker with an increase in Reynolds number. Only the results of case 3 are shown
for the sake of brevity (see the Supplemental Material [63] for the data from cases 2 and 4 and the
comparison with averages conditioned on helicity).

The average values of δξ2 for the first LE index, conditioned on enstrophy, can also be compared
across different Reynolds numbers to investigate its effect on the findings listed above. Here a
normalized enstrophy ζη = ζ τ 2

η is constructed, where τη is the Kolmogorov timescale. Note that
microscale scaling is adopted given that ζ is a gradient-based quantity. Figure 9 shows the obtained
conditional average results, along with the statistical uncertainties. The trends noted in Fig. 7 hold
across the Reynolds number considered. Overall, the large values of ζη are a better marker for the
chaotic response of the flow to perturbations as the Reynolds number increases.

To further characterize the spatial structure of the perturbation growth, statistical correlations
between different variables are used. The correlation of two fields φ and ψ is defined as

ρφ,ψ = (φ − 〈φ〉)(ψ − 〈ψ〉)

‖φ − 〈φ〉‖‖ψ − 〈ψ〉‖ , (7)

where the norm considered is the L2-norm and 〈·〉 denotes a spatial average. Figure 10 shows the
field correlation of δξ2 with enstrophy, helicity density, turbulent kinetic energy, and strain rate. In
line with the findings of Sec. III C, the LV appears slightly anticorrelated with the turbulent kinetic
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FIG. 9. Conditional average of δξ2 at different rescaled enstrophy ζn for case 1 (©), case 2 (�), case 3 (�),
and case 4 (+). Error bars show the statistical uncertainty.

energy, where low values of kinetic energy provide high localized energy. Since the helicity density
is symmetric about the zero value, the correlation with δξ2 is close to zero. Only enstrophy and strain
rate show significant correlation with the chaotic LVs. For case 1, the strain rate appears to be the
turbulent quantity that describes best the structures of δξ2. However, at higher Reynolds numbers,
the chaotic LVs become more correlated with enstrophy. This result is illustrated in Appendix B and
echoes the previous observation obtained with conditional averages.

The two-point correlation for the flow field and the LVs is shown in Fig. 11. Here the spatial
correlation of ξ in the x direction is given by

ρi j (r) = 〈ξi(x)ξ j (x + (r, 0, 0))〉
‖ξ‖2

(8)

and is defined similarly for the underlying flow field. As expected, the integral length scale of the
LV is smaller than that of the underlying flow field. However, there is slight reduction of integral
length scale as a function of the LE index, seen from the more rapid decorrelation for higher LE
indices.

FIG. 10. Field correlation of δξ2 and ζ ( ), δξ2 and H ( ), δξ2 and k ( ), and δξ2 and S ( ). The
curves are plotted alongside the index where the LS crosses zero ( ).
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(a)

(b)

FIG. 11. (a) Spatial correlation ρ33(r) of the LV (solid lines) and of the underlying flow field (dashed
line). The lighter the solid line, the higher the Lyapunov index. (b) Spatial correlation ρ33(r) of the LV plotted
against the LE index and the distance. Both plots are generated with the data of case 1. Here L denotes the box
length 2π .

The two-point correlation may be expressed in the spectral domain as the energy spectrum, which
is shown in Fig. 12. It can be seen that there is a significant difference in the structure of the LV and
the flow field spectra, with more energy at small scales observed for the Lyapunov fields. Further,
the peak of the spectrum is located at larger wave numbers, which is consistent with the two-point
correlation (Fig. 11). It is noted that this result differs from previous findings for the Kuramoto-
Sivashinsky equation (KSE) [38,41] in several aspects. For the KSE, the spectra of the chaotic and
dissipative LVs were found to differ significantly. Further, the spectrum of dissipative LVs was found
to be localized in Fourier space. Other work with the Rayleigh-Bénard convection showed that the
energy spectra of the CLVs were not independent of the Lyapunov indices [35]. Given the present
result, it can be expected that the first few CLVs also have a nonlocalized energy spectrum. This
analysis is presented in Appendix E.

IV. SUMMARY AND CONCLUSIONS

The present work computed, for a three-dimensional homogeneous isotropic flow, all the positive
LEs and LVs of forced HIT flows for a set of Reλ, while inferring the negative values for the
highest-Reynolds-number case. The analysis of the LVs revealed that the fraction of the spatial
volume where the perturbations grow decreases with an increase in Reλ. It was found that there
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FIG. 12. Time-averaged energy spectrum of the computed LV for case 1 (solid lines) and of the underlying
flow field (dashed line). The lighter the solid line, the higher the Lyapunov index.

exists a strong correlation between the chaotic parts of the domain and the velocity gradients at low
Reynolds number. At higher Reynolds numbers, enstrophy becomes a good marker of chaoticity.
It was found that the dimension of the attractor scales as ( L

η
)2.8, where L is the domain size and

η is the Kolmogorov length scale, which is close to other estimates predicted by prior theoretical
work. However, the actual dimension is much smaller than the full dimension of the phase space,
indicating that reduced-order models that capture the dynamics of the flow field could be developed.

The results also indicate that the evolution of perturbations in a Navier-Stokes based flow is
considerably different than in other canonical systems, such as those studied using the KS equations.
In particular, the Lyapunov vectors did not show significant localization in Fourier space with an
increase in the index. This difference is likely due to the very strong diffusion term in the KS
equation (fourth-order derivative) as opposed to the second-order viscous dissipation in fluid flow.
This is also supported by the fact that the different forcing schemes used to sustain turbulence were
found to only mildly affect the results obtained about the LVs (see the Supplemental Material [63]
for the results with other forcing schemes).

This work provided a comprehensive description of the properties of the Lyapunov spectrum that
can be expected in three-dimensional turbulence. These properties could be used to design or select
models able to better capture the flow dynamics rather than spatial or temporal statistics. Ultimately,
the Lyapunov exponents and vectors could be used to guide better the design of models that would
be more responsive to perturbations and capture extreme and rare events. These extensions are
currently being considered.
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APPENDIX A: SIZE OF PERTURBATIONS

The Lyapunov analysis is valid only for small perturbations to the flow. Past this regime, a
saturation of perturbations can be observed [64]. It is therefore necessary to ensure that the size
of the perturbations remains small, even after they have exponentially grown. Table II provides
the average magnitude of velocity perturbation per cell in the domain when the perturbations are
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TABLE II. Perturbation magnitude per cell for cases 1–4. The perturbation
is assumed to be evenly distributed across 10% of the domain. Here uturb is the
turbulent velocity.

Case 1012kinit
pert (m2/s2) 1012kfinal

pert (m2/s2) k (m2/s2)

1 1.87 4.99 0.35
2 0.233 0.897 0.93
3 0.233 1.23 1.8
4 0.0292 0.566 9.7

initialized and after they have grown at the rate of the largest LE. The perturbations are quantified
in terms of the average kinetic energy per cell (kinit

pert and kfinal
pert ) and should be compared to the kinetic

energy of the baseline flow. These values are obtained by assuming that the perturbation is uniformly
distributed across the cells in the domain. As can be seen, the perturbations are small compared to
the baseline flow.

APPENDIX B: SPATIAL CORRELATIONS AT HIGHER REYNOLDS NUMBERS

Here the effect of Reynolds number on correlations between the LVs and different flow field
quantities are presented. In Fig. 13 it can be seen that the strain rate becomes less correlated with the
most chaotic LVs as the Reynolds number increases. On the other hand, at high Reynolds numbers,
enstrophy describes better the spatial structure of the δξ2. The computed statistical uncertainty
suggests that this result is statistically significant.

(a) (b)

(c) (d)

FIG. 13. Field correlation of δξ2 and ζ ( ) and δξ2 and S ( ) for (a) case 1, (b) case 2, (c) case 3, and
(d) case 4. The curves are plotted alongside the index where the LS crosses zero ( ). The shaded areas indicate
the statistical errors.
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TABLE III. Turbulent statistics of the simulations conducted with various forcing schemes.

Case Reλ ε (m2/s3) lint (m) k (m2/s2) T/τ

1 15.55 0.07 0.47 0.35 743
5 16.09 0.069 0.488 0.37 735
6 15.79 0.1802 0.37 0.58 1237
7 15.55 0.07 0.47 0.35 744

APPENDIX C: EFFECT OF FORCING SCHEME

In the case of forced HIT, despite the ability to run detailed simulations (resolve the smallest
length scales), the turbulence needs to be sustained using an external volumetric force that
compensates the dissipation. The functional form of this forcing term is a modeling choice that
can have an impact on the turbulent flow field. Multiple forcing schemes have been proposed over
the past decades with various objectives [46,47,65–67]; more recent techniques have focused on
minimizing the time to statistical stationarity [46]. As a result, the forcing functions might, on
purpose, alter the dynamics of the flow. Since the goal here is to study such dynamical aspects, it is
necessary to understand the role of the forcing method on the results.

Four different forcing schemes are considered. All of the cases are run using the spectral method
described in Sec. II and with 323 modes. The following forcing methods are used.

Case 1 uses a linear forcing technique for all the wave numbers, similar to [50,51], with a linear
forcing coefficient of A = 0.137.

Case 5 uses a linear forcing technique for only the lowest wave numbers, similar to [68]. The
linear forcing coefficient applied is A = 0.14 for all wave numbers with |κ| � 3.

Case 6 uses a stochastic forcing technique [66]. The forcing functional form is based on an
Ornstein-Uhlenbeck process. The parameters used are TL = 0.92, Kf = 2

√
2, and ε∗ = 0.0015.

More precisely, the forcing term has the form

f (κ, t + �t ) =
(

1 − �t

TL

)
f (κ, t ) + n(κ )

√
2ε∗ �t

T 2
L

for |κ| � Kf , where n(κ ) is a complex number drawn from a standard normal distribution.
Since the forcing term is not solely dependent on the position of the system in phase space,

but also depends on the random number drawn, the Lyapunov calculation is conducted by
communicating, at every time step, the same forcing term to all the forward realizations. In other
terms, the same value for the forcing is used for the computation of each LE. The LEs are computed
by using the “same noise realization” technique in the sense of “noise on the particle” (see [69] for
a detailed discussion).

Case 7 is not a realistic forcing method but rather a numerical experiment used to compare cases
1, 5, and 6 in a fair manner. It consists of using a classical linear forcing technique with a linear
forcing coefficient A = 0.137 for the unperturbed simulation (similar to case 1) and communicating
the same forcing to all the other perturbed simulations. This procedure is similar to the one used for
case 6.

The Reynolds number and statistics of all the cases are provided in Table III, where Reλ is the
averaged Reynolds number based on the Taylor microscales, ε is the averaged turbulent dissipation
rate, k is the averaged turbulent kinetic energy, and lint is the integral length scale. As can be seen,
the statistics of the cases are similar for all forcing techniques except case 6, which shows higher
kinetic energy.

The first 100 Lyapunov exponents of all the forcing schemes for HIT are shown in Fig. 14. Cases
1 and 5 have similar values of the LEs, implying similar chaotic behavior of the flow field. However,
case 6 shows a significantly lower LE despite turbulent statistics that suggest a higher turbulence
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FIG. 14. First 100 LEs for the linear forcing technique (case 1, �), the linear forcing applied to the large
scales only (case 5, �), the stochastic forcing technique (case 6, +), and the linear forcing techniques with the
same force across simulations (case 7, �).

intensity. This feature can be understood by considering the last case. Cases 1 and 7 lead to the same
statistics as they use the same forcing for the unperturbed simulation, but again, the LEs of case 7
are significantly lower than those of case 1. The level of chaoticity is therefore significantly reduced
when all the realizations are forced in the same manner, which explains the results found in case 6.
This example shows that the Reynolds number alone is not enough to characterize the dynamics of
a turbulent flow field and that the level of chaoticity is strongly dependent on the functional form of
the forcing and the dependence of the forcing on the perturbation. In the present case, it appears that
a forcing insensitive to perturbations annihilates chaos in the flow field. More broadly, this study
illustrates the potential of the Lyapunov analysis in comparing different models by assessing their
effect on the dynamics of the flow field.

APPENDIX D: UNCERTAINTY ESTIMATION OF ATTRACTOR DIMENSION AND SCALING

Since the negative LEs are not available for the highest-Reynolds-number case (case 4), the
dimension needs to be estimated based on certain assumptions. From Fig. 2 it can be reasonably
inferred that the shape of the spectrum is similar across different Reynolds numbers. Further, it is
approximated using a power-law form as a(i − 1)α + λ1, where i is the LE index. The value of a is
chosen such that the fit passes through a certain λi. For the finest resolution, i is chosen to be 49,
which is the largest index available. For the other cases, i is chosen such that λi/λ1 is the same as
for the highest Reλ. As a result, the fit is parametrized using only one variable, α.

In Fig. 15 the parameter α is plotted for the three lowest-Reλ cases. Based on this result, α is
extrapolated linearly with respect to the Reλ. For this purpose, the slope is estimated using any two
combinations of the three available points and the extrapolation is done starting from any of the
three available points. Nine possible values for α are obtained. All of these values are used to fit the
first 49 LEs of the largest-Reλ case. Finally, the average of all these possible dimensions is taken
to be the best dimension estimate. The uncertainty estimate is obtained from the maximal and the
minimal dimensions obtained using all the possible α.

At this stage, an estimate of the attractor dimension for cases 1–4 along with an uncertainty
estimate has been obtained. In addition, an uncertainty estimate for the mean turbulent quantities
(here the Kolmogorov length scale η) can be obtained using the method outlined in Ref. [56]. Given
these dimension estimates for the four Reynolds numbers, the goal is to determine the scaling of the
dimension as a function of L

η
, where L = 2π . In other terms, one wants to fit a curve of the form
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FIG. 15. Value of α obtained from the fit applied to the LE computed with cases 1–3.

axb through the data points and get an estimate as well as an uncertainty estimate for b. To do so,
different possible scalings are generated and are used to obtain an uncertainty estimate.

Schematically, the points that are used to compute the scaling are arranged in a manner illustrated
in Fig. 16. The x axis represents the L

η
and the y axis represents the estimated dimension. For each

case 1–4, an uncertainty estimate for both axes is available. In Fig. 16 the data of only two cases
(for simplification) through which a fit goes are schematically shown. Given the estimates, many
different fits are possible. For each case, one can consider that one fit intersects any of the five
points indicated in Fig. 16 (represented by the dashed lines), which implies that there are then 54

possible fits for the data.
All of these fits are generated here, resulting in 54 possible values for b. At each data point, if a

fit uses any point different from point 5 shown in Fig. 16, it is attributed to a lower weight equal to
the ratio e−1/2

e0 . The lowest possible weight for a fit is then e−2

e0 ≈ 0.135. The estimates for b and for
its uncertainty are obtained as a weighted average of the b and b2 values generated by each fit. In
the end, this procedure leads to the scaling b = 2.8 ± 0.095.

The same procedure can be used for the three lowest Reynolds numbers in order to remove the
possible influence of extrapolation errors. In that case, b = 2.35 ± 0.055. The discrepancy between
both values of b could indicate that the dimension scales differently with L/η at different Reynolds
numbers. This property was also observed for two-dimensional turbulence [26].

FIG. 16. Schematic of the uncertainty estimation method for the attractor dimension scaling. For each case,
five points are considered using the uncertainty estimate of the dimension. The horizontal error bar represents
the statistical error for the value of the average L

η
; the vertical error bar contains the statistical uncertainty and

the extrapolation uncertainty used to compute the dimension. The dashed lines represent examples of the fits
considered.
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APPENDIX E: CONSEQUENCES OF THE ENERGY SPECTRUM OF THE GSV
ON THE ENERGY SPECTRUM OF THE CLV

From Fig. 12 it can be seen that the energy spectra of the GSVs do not change much based on the
index. This feature is used to relate the energy spectra of the GSV to that of the CLV. In particular,
it is shown that the first few CLVs cannot be localized in Fourier space. Let φi be the ith CLV and
gi be the ith GSV; then the CLV can be expressed as [28]

φ j (x) =
j∑

i=1

ai, jgi(x) ∀ x, (E1)

where x denotes the physical space location and ai, j ∈ R. For ease of notation, the physical space
location x is dropped from the notation. Since φ j are normalized,

j∑
i=1

a2
i, j = 1. (E2)

Equation (E1) can be rewritten using the Galerkin projection onto the Fourier modes as

φ̂ j (κ) =
j∑

i=1

aiĝi(κ) ∀ κ, (E3)

where κ is a three-dimensional wave number and φ̂ j (κ) and ĝi(κ) ∈ C3 are the Fourier amplitudes
of the mode κ. Let K0 ∈ R. The goal is to find a relation to the energy at the wave number K0 for
the jth CLV, which is defined as

Eφ j
(K0) =

∑
κ

|κ| = K0

φ̂ j (κ)∗ · φ̂ j (κ), (E4)

where the asterisk superscript denotes the complex conjugate. Using Eq. (E3), one obtains

Eφ j
(K0) =

j∑
i=1

a2
i, jEgi

(K0) +
∑

κ
|κ|=K0

∑
k,l� j
k �=l

ak, jal, j[ĝk (κ)∗ · ĝl (κ) + ĝl (κ)∗ · ĝk (κ)]. (E5)

Due the fact that the energy spectra of the GSV are relatively independent of the index, Eq. (E2) can
be used to write

Eφ j
(K0) ≈ EGSV(K0) + 2

∑
k, l

k �= l

ak, jal, jEcorr,kl (K0), (E6)

where EGSV(K0) is the energy of the GSV for Fourier modes of amplitude K0 and Ecorr,kl (K0) =
1
2

∑
κ |κ|=K0

[ĝk (κ)∗ · ĝl (κ) + ĝl (κ)∗ · ĝk (κ)].
The second term on the right-hand side of Eq. (E6) is what distinguishes the energy spectrum of

the GSV from the spectrum of the CLV. Note that this term is real but not necessarily positive. This
term can be estimated from the database generated in the present study. In Fig. 17 the ratio |Ecorr,kl (κ)|

EGSV(κ)
is plotted against κ for all combinations of GSVs from 1–19 indices. For all of these combinations,
the ratio can be reasonably estimated to be equal to 0.5 for all the wave-number amplitudes.

Further, to bound the CLV spectrum, bounds on the product of coefficients ak, jal, j are needed. To
do so, it can be recognized that the possible ap, j are the points located on the j sphere (hypersphere
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FIG. 17. Ratio |Ecorr,kl (κ)|
EGSV(κ) plotted for case 1 and the first 19 pairs of the LVs, plotted against the wave-number

amplitude.

of dimension j) of radius 1, which leads to

|ap, jaq, j | =
∣∣∣∣cosγpcosγq

p−1∏
k=1

sinγk

q−1∏
l=1

sinγl

∣∣∣∣∀ p, q, (E7)

where γi ∈ [0, π ] if i � j − 2 and γ j−1 ∈ [0, 2π ]. By recognizing that |ap, jaq, j | contains a product
of the form |cosγpsinγp| or |cosγqsinγq|,

|ap, jaq, j | � 0.5 ∀ p, q. (E8)

Using the triangle inequality, one can then obtain bounds for the energy spectrum of φ j :

max

[
EGSV(K0) − 1

2

(
j

2

)
EGSV(K0), 0

]
� Eφ j

(K0) � EGSV(K0) + 1

2

(
j

2

)
EGSV(K0). (E9)

Note that the bounds increase in range as the index of the CLV increases. As a result, these bounds
are useful only for the first few CLVs. For example, the bounds for the second CLV can be obtained

FIG. 18. Estimated bounds for the energy spectrum of the second CLV.
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as 0.5EGSV(K0) � Eφ2
(K0) � 1.5EGSV(K0). These bounds are shown in Fig. 18 and follow the shape

of the GSV spectrum. As a result, the first few CLVs are not localized in Fourier space.
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