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The intermittency of an incompressible passive vector convected by homogeneous
isotropic turbulence is studied by comparison with that of the velocity and passive scalar.
This is used to explore the physics underlying the differences in statistical properties
between the velocity vector and passive scalar. Direct numerical simulations with grid
points of 10243 and two types of forcing method are performed at Reynolds numbers
of Reλ ∼ 200, 300, and 400. It is found that the probability density function (PDF) of
the passive vector is wider than Gaussian. The PDFs of the logarithm of the dissipation
rates of the kinetic energy, for the velocity and passive vector, are close to each other
and well approximated by the log-normal distribution. Unlike the pressure PDF, which is
negatively skewed, the PDF for the pseudopressure P(q) is nearly symmetric. Visualization
results show that the pseudoenstrophy �w for the passive vector is close to sheetlike,
similar to the case of the passive scalar, while the enstrophy is tubelike. The scaling
exponents of the passive vector moments are found to be anomalous, nonuniversal at high
order, and intermediate between the velocity and passive scalar for the order p � 4. The
pseudopressure tends to reduce the extreme events, while the linearity of the fundamental
equation leads to stronger intermittency.
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I. INTRODUCTION

Scalar transport and mixing by turbulent flow are among the central problems in fundamental
research on turbulence. The equation of a passive scalar shares common features with the Navier-
Stokes equation, such as convection by turbulent velocity and dissipation (smearing) by molecular
diffusivity, but lacks a pressure term. These properties simplify the problem in that the equation is
for one component and is linear and local in space; this is unlike the Navier-Stokes equation, which
is for three components and is nonlinear and nonlocal in space. Therefore, it is reasonable to assume
that mathematical and physical analysis of the statistical properties of scalar fluctuations could be
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simpler than analyzing turbulent velocity fluctuations. Indeed, following Kolmogorov’s theory [1],
fundamental theories have been developed by Obukhov-Corrsin [2–4], Batchelor [5], Batchelor,
Howells, and Townsend [6], and many other researchers. Early studies are mostly concerned with
low-order statistics, such as scalar transport flux and the scalar spectrum. Subsequently, the issue of
intermittency has arisen in the fundamental study of turbulence [7,8].

A large number of studies on intermittency have been conducted, concerning both velocity and
scalar fluctuations [8–10]. One of the central quantities of interest in intermittency studies is the
scaling exponents of the moments of the velocity and scalar increments, which are assumed to obey
the power law in the inertial convective range [8]. It is now widely recognized that the exponents of
the passive scalar at high order are smaller than those of the velocity and tend to saturate, meaning
that the passive scalar is more intermittent than the velocity field [10–15].

Kraichnan proposed a model for the passive scalar, known as the Kraichnan model [16,17]. In
the model, the velocity field is assumed to follow a Gaussian distribution with the delta correlation
in time (Kraichnan velocity ensemble). The most distinctive aspect of the model is that the scaling
exponents for the moments of the scalar increments are derived analytically. A novel and important
aspect is the fact that the scaling exponents are determined by the zero mode (homogeneous
solution) of the linear operator for the scalar moments, and are thus universal [18]. The model has
been extended to many other problems, such as the passive magnetic field [19], passive scalars in the
inverse-cascading range for incompressible [20,21] and compressible Kraichnan velocity ensembles
[22], and finitely correlated Gaussian velocity ensembles [23]. It is argued that when the velocity
field is (nearly) Gaussian, analysis in terms of the zero mode of the linear operator is effective and
the universality of the scaling exponents for the passive scalar moments applies.

However, the turbulent velocity field in three dimensions obeying the Navier-Stokes equation
differs significantly from the Kraichnan velocity ensemble, being neither Gaussian nor white noise,
and the energy is forward cascading. Indeed, Gotoh and Watanabe [24] studied the intermittency of
two passive scalars in three dimensions that are convected by the same turbulent velocity field of
the Navier-Stokes equation, but are excited by different mechanisms, one being the uniform mean
gradient and the other being Gaussian random injection that is white in time. It has been found that
the scaling exponents of the moments of the scalar increments differ at large scales and are thus not
universal [24], suggesting that our understanding of universality and intermittency is insufficient.

In addition to the intrinsic properties of passive scalar intermittency, it is also important to
consider the physics underlying statistical differences between the velocity and passive scalar. One
method to explore is to introduce an equation that shares as many common properties and structure
as both of the Navier-Stokes and passive scalar equations, and to study its statistical properties. We
have previously studied fundamental statistical properties, i.e., low-order statistical properties of the
spectra and transfer fluxes of an incompressible passive vector convected by isotropic turbulence
[25].

The passive vector is assumed to obey(
∂

∂t
+ u · ∇

)
w = −∇q + α∇2w, ∇ · w = 0, (1)

where the pseudopressure q is introduced to ensure incompressibility of the vector w and α is the
pseudoviscosity [25–32]. The commonalities between Eq. (1) and the Navier-Stokes equation are as
follows: (1) three components in w, (2) the convection by the velocity u, (3) the pseudopressure
q and incompressibility of w, (4) the pseudoviscosity α, and (5) when α is absent, the total
pseudoenergy (1/2)

∫
w2dx is conserved. The presence of the pseudopressure introduces a nonlocal

interaction into the dynamics of the passive vector w. On the other hand, the difference is that the
convective term is linear.

Compared to the passive scalar, the common properties of the equation of w are (1) the linearity
of the convective term and (2) the molecular dissipation. Here, while three components of w are
constrained through incompressibility, the passive scalar is free from constraints. Our expectation is
that the above common properties and structure could make it easier to find the physical explanation
for the differences and similarities in fluctuations of the velocity and passive scalar.
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The findings in Ref. [25] are as follows:
(1) The statistical property of w is close to u at large scales and close to θ at small scales, at the

Reynolds numbers investigated in the study.
(2) At large scales, the pseudopressure acts similarly to the pressure, but is less effective

compared to the pressure at small scales.
(3) Therefore, the resemblance between w and u at large scales is due to the nonlocal effect

arising from the pseudopressure, and the difference at small scales is due to the linearity of the
convective term.

(4) When this interpretation is applied to the velocity, the difference in the properties of
fluctuations between the velocity and passive scalar at small scales can ultimately be attributed
to whether the convective term is nonlinear.

In other words, differences arise due to the nonlinear dynamics, and the kinematic constraints
are of secondary importance. Since the above findings pertain only to low-order statistics, it is
important to examine whether they also apply to the intermittency of the passive vector. In this
paper, we examine the high-order statistics of three fields, in addition to the visualized field.

The paper is organized as follows. In Sec. II, the governing equations and the various statistical
quantities are defined, and in Sec. III the numerical scheme and parameters are described. In Sec. IV,
the results are presented, and a summary is given in Sec. V.

II. GOVERNING EQUATIONS

We consider three fields: the velocity field u for the incompressible turbulence, a solenoidal
passively convected vector w, and a passively convected scalar θ . These fields are assumed to be
governed by the following equations:(

∂

∂t
+ u · ∇

)
u = − ∇p + ν∇2u + f u, (2)

∇ · u =0, (3)(
∂

∂t
+ u · ∇

)
w = − ∇q + α∇2w + f w, (4)

∇ · w =0, (5)(
∂

∂t
+ u · ∇

)
θ = κ∇2θ + f θ , (6)

where p(x, t ) is the pressure, ν denotes the kinetic viscosity, and κ is the diffusive coefficient for
θ . The last terms on the right-hand side, f u(x, t ), f w(x, t ), and f θ (x, t ), are external forcings for
the vectors and the scalar injection; their statistical properties are described later. The vorticity,
pseudovorticity, and scalar gradient are defined as

ω = ∇ × u, ζ = ∇ × w, g = ∇θ, (7)

respectively.
We assume in this study that all three fields are in a statistically steady state and are homogeneous

and isotropic. Therefore, the mean values of the kinetic energy, the pseudokinetic energy, and the
scalar variance per unit mass and their corresponding spectra are defined by

Eu = 1

2
〈u2(x, t )〉 = 3

2
u2

rms =
∫ ∞

0
Eu(k)dk, (8)

Ew = 1

2
〈w2(x, t )〉 = 3

2
w2

rms =
∫ ∞

0
Ew(k)dk, (9)

Eθ = 1

2
〈θ2(x, t )〉 = 1

2
θ2

rms =
∫ ∞

0
Eθ (k)dk, (10)
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respectively, where 〈 〉 denotes the ensemble average. The mean dissipation rates of the kinetic
energy and the pseudokinetic energy, and the destruction rate of the passive scalar variance per unit
mass (hereafter referred to as dissipation rates), are defined as

ε̄u =〈εu(x, t )〉 = ν〈(∇u)2〉, (11)

ε̄w =〈εw(x, t )〉 = α〈(∇w)2〉, (12)

ε̄θ =〈εθ (x, t )〉 = κ〈(∇θ )2〉, (13)

respectively. Throughout this study the Schmidt numbers Scw = ν/α, Scθ = ν/κ are set to unity
to make the dissipation length the same. The fundamental turbulence parameters, such as the
integral length Lu, the Taylor micro-scale length λ, the Kolmogorov length η, the Taylor micro-scale
Reynolds number Reλ, the large eddy turn-over time Te = Lu/urms, and the time duration for time
average Tav, are defined in the standard way and as described in Ref. [25].

III. NUMERICAL SIMULATIONS

The numerical simulation method is the same as in Refs. [25,33], and the majority of the
computation was carried out on a plasma simulator (FX100, Fujitsu) at the Toki site of the National
Institute for Fusion Science, Japan. Two kinds of random forcing and scalar injection (hereafter
referred to as forcing) were employed to see the effects of large-scale properties on the small-scale
statistics. The first type of forcing is Gaussian random forcing, which is white in time, has spectral
support at low wavenumbers, and is used for runs A–C:

〈
f A
i (k, t ) f A

j (−k, s)
〉 = 1

2

F0(k)

2πk2
Pi j (k)δ(t − s), (14)

〈 f θ (k, t ) f θ (−k, s)〉 = F0(k)

2πk2
δ(t − s), (15)

F0(k) =
{

εB
inj

k fmax −k fmin
for k fmin � |k| < k fmax

0 otherwise.
(16)

The second type of forcing is linearly proportional to the field at low-k band and is applied to run
D:

f A(k, t ) = cA(t )G(k)A(k, t ), (17)

f θ (k, t ) = cθ (t )G(k)θ (k, t ), (18)

G(k) =
{

1 for k fmin � k < k fmax

0 otherwise, (19)

cA(t ) = εA
inj∫

G(k)EA(k, t )dk
, (20)

where A denotes u or w, respectively, and A stands for u, w, or θ , respectively. The initial fields are
chosen to be Gaussian random variables in k-space with spectrum

EA(k, t = 0) = NAk−5
0 k4e−2(k/k0 )2

, (21)
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TABLE I. Direct numerical simulation parameters and characteristic statistics. Cu
K , Cw

K , and Cθ
OC are

Kolmogorov and Obukhov-Cossin constants, respectively. See Eqs. (25)–(27).

Run A Run B Run C Run D

N 1024 1024 1024 1024
Reλ 194.2 300.9 397.1 300.9
kmaxη 2.25 1.14 0.80 1.22
[kflow , kfhigh ] [2,3] [2,3] [2,3] [2,3]
t 2 × 10−4 10−4 5 × 10−5 10−4

ν 5 × 10−4 2 × 10−4 1.2 × 10−4 2 × 10−4

Te 0.79 0.79 0.82 0.88
Tav/Te 11.16 10.58 10.29 10.02
Ēu 0.98 0.94 0.91 0.82
Ēw 0.61 0.60 0.67 0.60
Ēθ 0.15 0.15 0.15 0.13
εu

inj 0.3 0.3 0.3 0.3
εw

inj 0.3 0.3 0.3 0.3
εθ

inj 0.1 0.1 0.1 0.1
ε̄u 0.34 0.32 0.29 0.25
ε̄w 0.32 0.30 0.33 0.26
ε̄θ 0.10 0.10 0.10 0.09
Lu 0.64 0.62 0.64 0.65
Lw 0.65 0.65 0.64 0.67
Lθ 0.43 0.44 0.43 0.42
λu 0.120 0.076 0.061 0.081
λw 0.097 0.063 0.050 0.068
λθ 0.055 0.035 0.027 0.035
Cu

K 1.57 1.55 1.57 1.59
Cw

K 0.93 1.00 1.00 1.06
Cθ

OC 0.65 0.69 0.68 0.69

where NA is the normalization constant to set the initial (pseudo)energy to be 3/2 or the variance to
be unity. Each run is started from the Gaussian random initial field with low Reynolds number on
the small number of grid points of 2563, and integrated until a statistically steady state is attained.
The decision whether or not the steady state is achieved is made by observing that the energy spectra
do not change in time and that the evolution of the energy dissipation rates stays around the energy
injection rates. Then the Reynolds numbers and the number of grid points are increased to 5123,
and the same process is repeated to attain steady state on the 10243 grid points. It takes longer time
to become stationary for higher Reynolds number, i.e., for run C, over 5Te is required, and all the
data in the transient period of runs are not taken into account to determine the statistical properties
of the flow.

The averages are taken as the volume average over the domain and/or the time average only at
steady state. Their mean values at steady state are listed in Table I. It is argued that the spatial
resolution in direct numerical simulation (DNS) requires kmaxη̄ > 1.5 for the velocity but the
resolution for the passive scalar is more demanding because of the efficient transfer of the scalar
variances to high wavenumbers and strong intermittency [13,25,34–36]. In particular the accurate
computation of the extreme values or high-order moments of the scalar gradient requires large
values of kmaxη̄B, say greater than 5 or more as reported in Refs. [34,35], where ηB = η/Sc1/2

is the Batchelor length. In the present DNSs ηB = η because Sc = 1, and the spatial resolution
is kmaxη̄ = 2.25, 1.14, 0.80, and 1.22 for runs A, B, C, and D, respectively. Run A meets the
requirement, and the spatial resolution of other runs is lower than the standard. However, in this
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FIG. 1. Time variation of energy dissipation rates: red, εu(t ) + 0.2; blue, εw (t ); green, εθ (t ). Thin
horizontal lines show the injection rates εA

inj for A = u, w, θ .

study, our concern is mostly on the statistical behavior in the inertial-convective range; therefore, we
consider that as far as the scale of interests lies in the inertial-convective range the spatial resolution
in the present DNS study does not affect the analysis. Indeed, it has been shown that the inertial
range statistics are insensitive to the dissipation range [36].

IV. RESULTS

After examining the time evolution of the dissipation rates and three spectra, the intermittency
of the three fields is studied by focusing mainly on three aspects: (1) the spatial geometry of the
enstrophy, the pseudoenstrophy, and the square of the scalar gradient, (2) the probability density
functions (PDFs), with a particular focus on their tails (related to extreme events), and (3) the scaling
exponents of the moments of increments for various field variables as functions of the separation
distance.

A. Evolution of energy dissipation rate and energy spectrum

The time variation of the dissipation rates after the initial transient period is shown in Fig. 1 (the
origin of time means the initial time in steady state). For ease of visibility, the curves of εu(t ) are
shifted by 0.2. All dissipation rates for runs A, B, and C relax with oscillation to the injection rate
with a period of about 6Te, while the dissipation rates for run D quickly reach steady-state values
that are slightly smaller than the injection rates. The oscillation with a long period for the dissipation
rates implies the need for a long time average to obtain well-converged statistics, especially for the
high-order statistics. Indeed, the time average in this study is taken over a period longer than 10Te

(see Table I).
The mean spectra of the three fields can be normalized in terms of the Kolmogorov variables as

E∗
u (kη) = ε̄−1/4

u ν−5/4Eu(k), (22)

E∗
w(kη) = ε̄−1

w ε̄3/4
u α−2ν3/4Ew(k), (23)

E∗
θ (kη) = ε̄−1

θ ε̄3/4
u κ−2ν3/4Eθ (k), (24)

114602-6



INTERMITTENCY OF AN INCOMPRESSIBLE PASSIVE …

10-2

100

102

104

106

108

 0.001  0.01  0.1  1

Run B
Run C

Run D

k-5/3

Run A

no
rm

al
iz

ed
 e

ne
rg

y 
sp

ec
tr

um

kη

100 Eu(k)
10 Ew(k)

Eθ(k)

FIG. 2. Normalized mean spectra. The thin straight line indicates the −5/3 slope. For ease of visibility,
curves of E∗

u (k) and E∗
w (k) are shifted by 100 and 10, respectively.

respectively, and shown in Fig. 2 [25]. For ease of visibility, the spectra Eu(k) and Ew(k) are
multiplied by 100 and 10, respectively. The curves of the spectra for four runs collapse well onto a
single curve, irrespective of the Reynolds number and forcing mechanism. The −5/3 power law for
Eu(k), Ew(k), and Eθ (k) can be observed for kη ∈ [0.01, 0.1]. The nondimensional constants in the
inertial-convective range are defined by

Eu(k) = CK ε̄2/3k−5/3, (25)

Ew(k) = Cw
K ε̄−1/3ε̄wk−5/3, (26)

Eθ (k) = COC ε̄−1/3ε̄θk−5/3, (27)

and were found to be

CK = 1.57, Cw
K = 1.00, COC = 0.68, (28)

for run C. These values are consistent with those reported in the literature [9,10,13,24,25,33,37–39]
and are insensitive to differences in the large-scale forcing mechanisms, suggesting the universality
of these spectra at the inertial-convective range.

B. Visualization

Before studying intermittency in terms of the PDFs and scaling exponents, we present the
visualization results of flow fields because it is useful to interpret the various properties of those
statistics by relating them to the flow structure. Here, we examine the enstrophy, pseudoenstrophy,
and square of the scalar gradient, defined as

�u(x, t ) = [∇ × u]2, (29)

�w(x, t ) = [∇ × w]2, (30)

�θ (x, t ) = [∇θ ]2, (31)

respectively.
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FIG. 3. Isosurface for �u (top), �w (middle), and �θ (bottom) for run A with level of 8〈εA〉/ν.

The isosurfaces of �A (for A = ω,w, θ ) at instantaneous time in the sub-box x, y, z ∈ [0, L/4]
for run A are shown in Fig. 3 with level �A(x, t ) > 8〈�A〉. The geometry of the pseudovorticity for
the passive vector is sheetlike. This is dissimilar to the tubelike geometry of the vorticity [40], but
similar to the sheetlike geometry of the passive scalar gradient [41–43]. In the tubelike structure, the
vortex lines are bundled in a circle, while in the sheetlike structure of the pseudovortex, the vortex
lines are bundled into a sheet.

As we demonstrated in Ref. [25], the low-order statistics of the passive vector, such as the third-
order structure function, energy spectrum, and flux, are close to those of the velocity field at large
scales, while being close to those of the passive scalar at small scales. These findings are consistent
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FIG. 4. Normalized probability density functions (PDFs) of u1, w1, and θ for run B. A = u1, w1, θ and σA

denotes the standard deviation of A.

with the visualization, in that the sheetlike geometry of the passive vector is mostly attributed to the
small-scale structure.

C. One-point probability density functions

Normalized one-point PDFs of u1,w1, θ for run B are shown in Fig. 4. Slight asymmetry of the
PDFs is observed and we consider it is due to the finite length of the time average and to the forcing
at low wave number band. The curve of P(u1) is close to a Gaussian distribution and P(θ ) decays
faster than the Gaussian on the right tail, which is consistent with the observation in Refs. [13,21,33].
However, there are also studies reporting the facts that the PDF of the passive scalar is Gaussian,
exponential, or stretched exponential depending on conditions [44–47]. We also note that the PDF
P(w1) is wider than the Gaussian at large amplitude. It is not known how this trend of P(w1) is
generated, which is the subject of a future study.

The normalized PDFs P(p) and P(q) for run B are compared in Fig. 5. P(p) is negatively skewed
and has a long left tail, consistent with previous studies [48,49]. The left tail of P(q) for run B is
slightly longer than the right tail but the degree of the symmetry is stronger than that of P(p). On
the other hand, we observe that for runs A, C, and D the right tails of P(q) are longer than the left
tails (figures not shown). It is not known whether the asymmetry of P(q) remains finite or vanishes
when the time average is extended or whether it depends on the method of external injection.

10-9
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10-6
10-5
10-4
10-3
10-2
10-1
100

-20 -10  0  10  20
A/σA

P(p)
P(q)

FIG. 5. Normalized PDFs of pressure p and pseudopressure q for run B. A = p, q.
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∂x1

, ∂w1
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, and ∂θ

∂x1
) for run A.

As seen in the top panel of Fig. 3, there are strong vortex tubes. For a fluid particle to rotate
around the centerline of the thin tube, the pressure inside the tube must be much lower than the
outside pressure; therefore, the longer left (negative) tail of P(p) prevails. On the other hand, the
domain of large �θ is sheetlike. The sheetlike structure can be formed at the interface where two
scalar blobs with a large difference in amplitude, of the order of θrms, meet under the convective
motion of fluid [50]. As for �w, the domain at large amplitude is roughly sheetlike. We infer from
the sheetlike structure of the passive scalar that a w blob is passively compressed from both sides
of the sheet under the convective motion of fluid. Since the pseudopressure gradient acts to keep a
w blob incompressible, this can be achieved by q on one side of the sheet which is higher or lower
than that on the other side. This is unlike the vortex tube.

The PDFs of the gradient fields for run A are compared in Fig. 6. The observations are as follows:
(1) P( ∂u1

∂x1
) is negatively skewed, linked to energy transfer from large scales to smaller scales [33].

On the other hand, P( ∂w1
∂x1

) is symmetric and has a longer tail than that of P( ∂u1
∂x1

), and (2) the PDF
tails of the transverse gradient of the velocity and passive vector are symmetric, very close to each
other, and also close to P( ∂θ

∂x1
) up to moderate amplitudes.

The normalized PDFs of the gradients of pressure and pseudopressure P( ∂ p
∂x ) and P( ∂q

∂x ) are
shown in Fig. 7. The PDFs are symmetric and almost collapse onto each other [49,51].

The PDFs of log10(εA/ε̄A) where A = u,w, θ are shown in Fig. 8. The PDFs of log10(εu/ε̄u) and
log10(εw/ε̄w ) collapse very well, and very close to the log-normal distribution [52]. On the other
hand, the left tail of the PDF for log10(εθ/ε̄θ ) decays linearly with slope nθ = 3/2, which means
that

P(ln εθ )d ln εθ ∝ exp(nθ | ln(εθ/ε̄θ )|)d ln εθ ∝ (εθ )nθ−1dεθ , (32)

so that

P(εθ ) ∝ ε
1/2
θ , (33)

for small εθ . The left tails of P( log10(εu/ε̄u)) and P( log10(εw/ε̄w )) look to have slope nu = nw = 4.
The above behavior is also observed in runs B, C, and D, and the exponent nθ = 3/2 is unchanged.

Yeung et al. [53] studied the PDFs for x = ε/(ν�), the ratio of the kinetic energy dissipation
rate to the enstrophy, and found that the PDF tails obey the power law as P(x) ∝ x3/2 and x−5/2 for
small and large x, respectively. The essence of the argument is that the weak dissipation or weak
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FIG. 7. Normalized PDFs of gradient of pressure and pseudopressure ( ∂ p
∂x1

and ∂q
∂x1

) for run A.

enstrophy corresponds to the nearly Gaussian velocity field and obeys the chi-square distribution

χk (z) = 1

�
(

k
2

) zk/2−1e−z/2 (34)

with the degree of freedom k, where � is the gamma function. If the same argument is applied to
the scalar destruction rate εθ , we obtain χ3(εθ ) ∝ ε

1/2
θ with k = 3 because εθ is the sum of three

squared terms, which agrees well with Eq. (33). On the other hand, the dissipation rate is computed
as εu = ν(∂ui/∂x j )2 (and the same formula for εw) so that the number of terms is counted as eight
under the incompressibility condition. Then we have χ8(εA) ∝ ε3

A with k = 8 in agreement with
nA − 1 = 3 for nA = 4, where A = u or w. Instead, if we compute the dissipation rate by εs

u =
(ν/2)(∂ui/∂x j + ∂u j/∂xi )2 under the incompressibility condition we have five terms so that k = 5
and nA = k/2 = 5/2. Indeed we confirmed by the additional DNS that the left tail of P(βs

A), where
βs

A = log10(εs
A/ε̄s

A), has the slope of 5/2 while the right tail collapses almost on P(βA) (figure not
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FIG. 8. PDFs of βu = log10(εu/ε̄u ) (red), βw = log10(εw/ε̄w ) (blue), and βθ = log10(εθ/ε̄θ ) (green) for run
A. Thin black line shows the log-normal distribution and the straight line shows slope 3/2, respectively.
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FIG. 9. PDFs of εu, εw , εθ , ω2, and ζ2 for run A.

shown) in the similar plot to Fig. 8. This suggests that for weak amplitudes of the dissipations the
statistics dominates the dynamics.

The PDFs as functions of εA/ε̄A for A = u,w, θ are plotted in Fig. 9. They are also compared
with the PDFs of the enstrophy and pseudoenstrophy. The PDF tail of ω2 is longer than that of the
PDF of εu at the Reynolds number studied, which is consistent with the results of Ref. [54]. The
same trend is observed in the comparison of P(εw ) and P(ζ2), but the difference between the two
curves is smaller.

D. Two-point probability density functions

Figure 10 shows the two-point PDFs for δruL = u(x + rex ) − u(x), δruT , δrwL, δrwT , and
δrθ for r = nx for n = 4, 16, and 64, where L and T denote the longitudinal and transverse
components of δv and δw, respectively. Similarly, the PDFs of the increments of the pressure and
pseudopressure are shown in Fig. 11. As reported in the literature, the PDFs become wider as the
separation distance decreases and their tails change from convex to concave [13,33]. The PDF tails
at large amplitudes, as a measure of the wideness of the PDF, are on the order of P(δuL ), P(δwL ),
and P(δuT ) ∼ P(δwT ) for all separation distances studied. P(δq) and P(δp) are symmetric and
close to each other at a small separation distance, but P(δq) becomes slightly narrower than P(δp)
as the separation distance increases.

E. Scaling exponents of increment moments

The way that the increment moments change as a function of the separation distance provides
information on how the fluctuation intensity changes with scales. It is expected that, in the inertial
range, they obey the power law. The moments examined here are

SuL
p (r) =〈|δuL(r)|p〉 ∝ rξ uL

p , (35)

SuT
p (r) =〈|δuT (r)|p〉 ∝ rξ uT

p , (36)

SwL
p (r) =〈|δwL(r)|p〉 ∝ rξwL

p , (37)

SwT
p (r) =〈|δwT (r)|p〉 ∝ rξwT

p , (38)

Sθ
p(r) =〈|δθ (r)|p〉 ∝ rξθ

p , (39)
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FIG. 10. Normalized PDFs of increments δruL , δruT , δrwL , δrwT , and δrθ for run B. Top, r = 64x;
middle, r = 16x, r = 4x.

where δuL = (u(x + r) − u(x)) · r
r denotes the component of δu(r) parallel to the separation vector

r, and δuT is one of the components of δu perpendicular to r, and similarly for δwT .
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The transfer fluxes of the (pseudo)kinetic energy and the scalar variance are defined in terms of
the filtered variables, for example, as the product of the rate of strain tensor and the Reynolds stress
with filter width , which requires a large number of computations. To avoid this, in this study,
we consider the moments as surrogates of the transfer fluxes of the (pseudo)kinetic energy and the
scalar variance,

rp/3�u
p/3(r) = Qu

p(r) = 〈|δuL(r)[δu(r)]2|p/3〉 ∝ rμu
p, (40)

rp/3�w
p/3(r) = Qw

p (r) = 〈|δuL(r)[δw(r)]2|p/3〉 ∝ rμw
p , (41)

rp/3�θ
p/3(r) = Qθ

p(r) = 〈|δuL(r)[δθ (r)]2|p/3〉 ∝ rμθ
p, (42)

respectively. As far as the scaling arguments are concerned, the above moments are expected to
provide equivalent knowledge of the scaling behavior of the transfer fluxes.

To evaluate how the scaling behavior varies with respect to the separation distance, we examine
their logarithmic derivatives:

ξA
p (r) =d ln SA

p (r)

d ln r
, (43)

μA
p (r) =d ln QA

p (r)

d ln r
, (44)

where A denotes any of the above quantities.
Since we are interested in the scaling behavior in the inertial-convective range at high Reynolds

number which is expected to be insensitive to the dissipation range [36], we examine the curves
of the local scaling exponents for run C at the highest Reynolds number in the present study. The
results for other runs are qualitatively the same. Figure 12 compares the local scaling exponents as
functions of r for the order p = 4, 6, and 8 for run C. The general trend of the curves is that when
r/η increases from the dissipation range, the curves decrease from values close to the analytical
value p for pth-order moments, becoming nearly horizontal at around r/η ≈ 100, thus signifying
power-law scaling; finally, decay occurs at large separation distances. Further examination shows
that (1) the width of the horizontal portion becomes wider approximately in the order of δruL, δruT ,
δrw

L, and δrw
T , and (2) the crossover length rA,L

∗,p is defined as the length scale at the low end of
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FIG. 12. Comparison of local scaling exponents for run C: top, fourth order; middle, sixth order; bottom,
eighth order. Horizontal line with SL(p) shows the exponents according to the She-Lévêque model [55].

the horizontal part of the curve. Then, rA,T
∗,p < rA,L

∗,p for A = u or w and rw,B
∗,p < ru,B

∗,p for B = L or T
[33], and (3) in the curve for the local scaling exponents of the passive scalar, the horizontal parts
are not observed and the curves attain a local minimum at around r/η ≈ 60, linearly increase with
log(r/η) in the range 70 < r/η < 300, and reach local maxima at around r/η ≈ 600, as reported in
Refs. [13,24]. (4) The local scaling exponents ξw,L

p and ξw,T
p at p = 8 behave similarly to ξ θ

p for the
passive scalar, which suggests that the scaling exponents of the passive vector at high order are not
universal [24].

The local scaling exponents of the transfer fluxes μA
p (r) for run C are compared in Fig. 13. All

curves decay from their analytical values at small r/η, nearly plateau over the inertial-convective
range separation distance, and finally reach zero as r/η increases further.
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Since the Reynolds numbers in the present DNSs are not high enough and the plateau width of
the curves is rather short, it is difficult to compute the scaling exponents in the inertial-convective
range. In this circumstance, we evaluate the mean, standard deviation, and maximum and minimum
values of the local scaling exponent for each curve as follows. First we examine the local slope of
the ξA

4 (r) curve by computing sA
4 (r) = dξA

4 (r)/d ln r for A = u,w, θ and identify the range of scale
r/η satisfying the condition |sA

4 (r)| < 0.1, say, rmin < r < rmax. Within this range, we computed

the mean value of ξ
A
p and the minimum value ξA

p,min and the maximum value ξA
p,max. When the

condition |sA
4 (r)| < 0.1 is not satisfied, the exponents are not computed. The mean values of the

scaling exponents with error bars (in terms of the maximum and minimum values) are plotted as
functions of the order p in Fig. 14 for ξA

p (top) and for μA
p (bottom), respectively [15,24,33,55].

Also the scaling exponents for all runs are summarized in Table II. It is found that ξ θ
p < ξwT

p <

ξwL
p < ξ uT

p < ξ uL
p for p > 4. If it is measured in terms of the scaling exponents, the intermittency

intensity of the passive vector is intermediate between the velocity and passive scalar. The μw
p is

slightly smaller than, but close to, μu
p, and larger than μθ

p. Again, the value is intermediate between
the velocity and passive scalar.

F. Effects of Reynolds number and forcing method

The effects of the Reynolds number and large-scale forcing on the scaling exponents can be
examined by comparing the values in Table II. The effects of the Reynolds number are seen by
comparing runs A, B, and C for the same forcing, while the large-scale forcing effects are found
by comparing runs B and D at a fixed Reynolds number. Although the Reynolds numbers in the
present computations are not large enough to fully determine the trend and the scaling exponents
are slightly scattered, the general trend is that the scaling exponents of the passive vector at low to
moderate order are insensitive to variation in the Reynolds numbers and the large-scale forcing in
the present study.

V. SUMMARY

To explore the physical mechanism that causes similarities and differences in statistical properties
between the velocity and passive scalar fluctuations, we introduced an incompressible passive
vector w accompanied by the pseudopressure which shares as many common properties and
structure as both of the Navier-Stokes and passive scalar equations. The statistical properties of
the passive vector have been examined in comparison with those of the velocity and passive
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FIG. 14. Variation of scaling exponents of moments of increments (top) and transfer fluxes (bottom) over
p for run C.

scalar, especially focusing on the high-order statistics for various Reynolds numbers and different
large-scale forcings.

The following properties are observed: (1) P(w) is wider than P(u), while P(θ ) is narrower than
the two PDFs, and (2) P( log10(εw/ε̄w )) and P( log10(εu/ε̄u)) are close to each other and almost
log-normal distribution, while P( log10(εθ/ε̄θ )) has a long tail on the negative side and decays faster
than the log-normal distribution on the positive side.

The most striking differences between the incompressible velocity and passive vector are found
in the visualized field and the PDFs of the pressure and pseudopressure. The visualization of the
three fields showed that the pseudoenstrophy �w is roughly sheetlike, similar to �θ for the passive
scalar, while the enstrophy is tubelike. Unlike the pressure PDF, which is negatively skewed, the
PDF P(q) has long tails on both sides and is closer to symmetry than the pressure PDF which can
be understood in relation to the sheetlike structure of �w.

The local scaling exponents for the velocity are consistent with those in the previous studies
and those of the passive scalar are found to slowly increase as the separation distance increases,
as found in Ref. [24]. The local scaling exponents of the moments 〈|δwL,T (r)|p〉 for p = 4, 6 have
approximate plateaus in the inertial convective range; however, the local scaling exponents at high
order p = 8 behave similarly to that of the passive scalar. The scaling exponents of the passive
vector are anomalous, intermediate between those of the velocity and passive scalar, and the high-
order exponents are nonuniversal, unlike the normal scaling of the passive vector for the Kraichnan
velocity ensemble as shown by Adzhemyan and Antonov [27]. The crossover length rw,B

∗,p for B = L
or T from the dissipation to the inertial range for the passive vector is examined; it was found that
rw,T
∗,p < rw,L

∗,p for p = 4, 6, 8 which is again similar to the case of the velocity. The scaling exponents
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TABLE II. Scaling exponents of moments of increments and transfer fluxes in the inertial-convective range.
Mean, standard deviation, maximum, and minimum values are computed in the range [rmin/η, rmax/η] in which
the absolute value of the local slope is smaller than 0.1 (see more in the text). For run A, ξLu

p and μA
p are not

computed because of short range.

Run A Run B Run C Run D

Range/p Mean Std Min Max Mean Std Min Max Mean Std Min Max Mean Std Min Max

ξuL
p Range [80,233] [82,310] [85,199]

4 1.28 0.02 1.24 1.33 1.30 0.02 1.25 1.34 1.26 0.03 1.21 1.30
6 1.76 0.04 1.69 1.83 1.79 0.03 1.72 1.85 1.72 0.04 1.64 1.79
8 2.15 0.05 2.00 2.24 2.19 0.03 2.00 2.26 2.08 0.06 1.99 2.18

ξuT
p Range [56,126] [52,159] [55,204] [52,120]

4 1.21 0.00 1.21 1.22 1.24 0.01 1.22 1.25 1.26 0.01 1.24 1.27 1.23 0.01 1.21 1.25
6 1.60 0.03 1.57 1.65 1.64 0.00 1.62 1.65 1.67 0.02 1.64 1.70 1.64 0.02 1.60 1.66
8 1.88 0.07 1.79 2.01 1.92 0.01 1.89 1.93 1.95 0.03 1.91 1.99 1.91 0.03 1.86 1.94

ξwL
p Range [70,146] [74,307] [78,424] [80,217]

4 1.22 0.01 1.20 1.23 1.19 0.01 1.17 1.21 1.19 0.01 1.18 1.21 1.19 0.02 1.17 1.22
6 1.60 0.00 1.60 1.61 1.55 0.02 1.53 1.58 1.55 0.01 1.54 1.58 1.57 0.02 1.53 1.61
8 1.88 0.03 1.85 1.92 1.79 0.03 1.76 1.86 1.81 0.04 1.77 1.89 1.81 0.03 1.78 1.87

ξwT
p range [36,125] [41,239] [43,350] [46,191]

4 1.20 0.01 1.19 1.21 1.17 0.01 1.16 1.18 1.17 0.01 1.16 1.19 1.14 0.01 1.12 1.16
6 1.54 0.03 1.51 1.58 1.49 0.01 1.47 1.51 1.50 0.03 1.46 1.54 1.44 0.01 1.43 1.46
8 1.77 0.06 1.71 1.90 1.68 0.02 1.65 1.73 1.71 0.06 1.64 1.79 1.59 0.05 1.53 1.69

ξθ
p Range [47,146] [54,294] [59, 412] [57,196]

4 1.03 0.05 0.96 1.11 1.00 0.07 0.90 1.10 1.01 0.08 0.90 1.13 0.94 0.03 0.90 0.98
6 1.29 0.09 1.17 1.45 1.23 0.11 1.09 1.42 1.25 0.13 1.07 1.50 1.15 0.04 1.09 1.21
8 1.50 0.13 1.33 1.73 1.41 0.14 1.22 1.68 1.44 0.20 1.19 1.84 1.29 0.05 1.23 1.36

Range [52,186] [47,275] [54,165]
μu

p 3 0.94 0.07 0.79 1.04 0.97 0.07 0.80 1.06 0.95 0.06 0.83 1.03
6 1.77 0.04 1.70 1.86 1.79 0.06 1.72 1.93 1.75 0.05 1.67 1.85

μw
p 3 0.95 0.06 0.81 1.02 0.96 0.07 0.79 1.04 0.94 0.05 0.83 1.01

6 1.72 0.03 1.66 1.79 1.72 0.04 1.66 1.83 1.72 0.04 1.66 1.79
μθ

p 3 0.93 0.06 0.78 1.00 0.95 0.06 0.79 1.02 0.94 0.05 0.83 1.00
6 1.58 0.01 1.56 1.62 1.60 0.02 1.58 1.67 1.54 0.03 1.49 1.60

of the passive vector moments and transfer fluxes are found to be between the velocity and passive
scalar for the order p � 4. As argued in Ref. [25], the pseudopressure behaves similarly to the
pressure at large scales, while its role is secondary at small scales. At small scales, the difference
between the velocity and passive vector manifests in the dynamics, i.e., whether they are linear or
nonlinear, and the nonlinearity dominates the small-scale (or local) structure of the flow field, such
as the vortex tube or sheet [56,57]. The sheetlike structure of the passive vector w resembles the
sheetlike structure of the current sheet in a magnetic field [58,59]. Although there are differences in
dynamics among the three passive fields, incompressible passive vector w, incompressible passive
magnetic field B, and the passive scalar θ , a common feature in the above findings is the linearity of
the fundamental equations. In contrast, the Navier-Stokes equation is nonlinear, so the vortex tube
is formed through Kelvin-Helmholtz instability.

Based on the above arguments, we conclude that the scaling exponents of the passive vector
are anomalous and nonuniversal at high order, and the strength of the intermittency is intermediate
between the velocity and passive scalar, and that the linearity of the fundamental equation tends to
lead to stronger intermittency.
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