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In this study, realizable algebraic Reynolds stress modeling based on the square root
tensor [Phys. Rev. E 92, 053010 (2015)] is further developed for extending its applicability
to more complex flows. In conventional methods, it was difficult to construct an algebraic
Reynolds stress model satisfying the realizability conditions when the model involves
higher-order nonlinear terms on the mean velocity gradient. Such higher-order nonlinear
terms are required to predict turbulent flows with three-dimensional mean velocity. The
present modeling based on the square root tensor enables us to make the model always
satisfy the realizability conditions, even when it involves higher-order nonlinearity. To
construct a realizable algebraic Reynolds stress model applicable to turbulent flows with
three-dimensional mean velocity, a quartic-nonlinear eddy-viscosity model is proposed.
The performance of the model is numerically verified in a turbulent channel flow, a
homogeneous turbulent shear flow, and an axially rotating turbulent pipe flow. The present
model gives a good result in each turbulent flow. Note that the mean swirl flow in an
axially rotating turbulent pipe flow is reproduced because the present model involves cubic
nonlinearity. Such a higher-order realizable algebraic Reynolds stress model, involving
quartic nonlinearity on the mean velocity, is expected to be useful in numerically stable
predictions of turbulent flows with three-dimensional mean velocity.

DOI: 10.1103/PhysRevFluids.4.114601

I. INTRODUCTION

Turbulent flows are ubiquitous in real-world fluid flows. Despite remarkable advancements in
modern computational technology, most of real-world turbulent flows of high-Reynolds number are
still out of reach of direct numerical simulation (DNS). In this sense, the Reynolds averaged Navier-
Stokes (RANS) modeling, which treats the statistically averaged quantities of turbulent flows, is a
useful tool in predicting high-Reynolds-number turbulent flows.

In a variety of RANS modeling, Reynolds stress transport modeling (RSM, also referred to as
second-order closure modeling) is expected to have a potential to give a good prediction for several
complex turbulent flows. This is because RSM explicitly calculates the production, dissipation, and
diffusion of the Reynolds stress. However, RSM has a problem of realizability; namely, it sometimes
gives unphysical predictions such as negative normal stresses [1,2]. Schumann [3] showed three
inequality conditions, referred to as the realizability conditions for the Reynolds stress Ri j = 〈u′

iu
′
j〉,

where u′
i denotes the velocity fluctuation. They are written as follows:

Rαα � 0, (1a)

RααRββ � R2
αβ, (1b)

det[Ri j] � 0, (1c)
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where α, β = 1, 2, 3, det[Ri j] = εi j�εabcRiaR jbR�c/6, and εi j� is the alternating tensor. Note that
summations are not taken for Greek indices. The above conditions, Eqs. (1a)–(1c), are mathe-
matically rigorous and provide a physical importance. For example, the first condition, Eq. (1a),
prevents an excessively anisotropic condition caused by the negative normal stresses Rαα < 0, and
the second condition, Eq. (1b), gives the upper bound of the Reynolds shear stress. These lead to
the numerical stability of the model. Hence, the realizability conditions given by Eqs. (1a)–(1c)
form a fundamental guideline for the development of physically consistent and numerically stable
RANS modeling. However, majority of existing RANS models, even for the standard eddy-viscosity
model, do not necessarily satisfy the realizability conditions.

For RSM, realizability is often discussed in terms of the time development of the Lumley’s
flatness F {=det[Ri j/(R��/3)]} around F = 0. Here, F = 0 indicates that turbulence field involves
only two-component velocity fluctuation, which is referred to as two-component limit (TCL)
condition. In this context, two types of realizability conditions are argued [4]; one is the strong
realizability,

dF

dt

∣∣∣∣
F=0

= 0,
d2F

dt2

∣∣∣∣
F=0

> 0, (2)

and the other is the weak realizability,

dF

dt

∣∣∣∣
F=0

> 0. (3)

Durbin and Speziale [5] gave a stochastic analysis on the weak realizability of the conventional
RSM in terms of Langevin equations. Craft and Launder [6,7] proposed highly sophisticated RSM
by considering TCL condition in the vicinity of the solid wall. On further development of the
realizability conditions for RSM, Girimaji [8] discussed and proposed a new constraint on the
pressure–strain correlation, and its utility was demonstrated by Mishra and Girimaji [9].

Although RSM has an advantage that it involves production, dissipation, and diffusion process
of the Reynolds stress, its numerical cost is still large because RSM, by nature, demands to solve six
individual transport equations for the Reynolds stress. To reduce the numerical cost while retaining
the advantages of RSM, the algebraic Reynolds stress modeling (ARSM, or the so-called eddy-
viscosity–type modeling) is a useful method. ARSM gives an algebraic expression for the Reynolds
stress instead of numerically integrating its transport equation. In case of explicit algebraic Reynolds
stress modeling (EARSM) which is constructed based on RSM, the realizability of the based RSM
is tightly connected to the property of the proposed model. However, when we give an algebraic
expression independent of RSM, we should concern Eqs. (1a)–(1c) instead of Eqs. (2) or (3). In
this paper, we discuss the realizability conditions for ARSM independent of a specific RSM. Note
that the third condition (1c) is equivalent to the positive semidefiniteness of the Lumley’s flatness,
F � 0. Therefore, ARSM satisfying Eqs. (1a)–(1c) ensures the weak realizability at least.

To date, many studies on ARSM have been proposed (see, e.g., Refs. [10–21]). However, only
a few studies on ARSM consider the realizability conditions. A representative study of realizable
ARSM was conducted by Shih et al. [14,15]. They constructed ARSM incorporated with quadratic
nonlinearity on the mean velocity gradient. Note that the model proposed by Shih et al. [14,15]
is a quadratic-nonlinear model, and hence, is adequate for turbulent flows with two-dimensional
mean velocity [10]. Such flows denote the flows in which the mean velocity field is settled in two
dimensions, such as turbulent flows in a plane channel or a straight pipe. Hereafter, we simply refer
to turbulent flows with two- or three-dimensional mean velocity as two- or three-dimensional flows,
respectively. Some other ARSM which consider the realizability [17,19,20] are also quadratic-
nonlinear models. However, it was pointed out that cubic nonlinearity is essential for predicting the
mean swirl or tangential velocity in an axially rotating turbulent pipe flow, which is an example of
the three-dimensional flow [22]. The realizable ARSM involving cubic or higher-order nonlinearity
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is required to make numerically stable predictions of three-dimensional flows of high-Reynolds
number.

Generally, the conventional realizable ARSM can hardly be extended to the models incorporated
with higher-order nonlinearity on the mean velocity gradient. Recently, Ariki [23] proposed an
alternative approach to realizable ARSM by introducing the square root tensor of the Reynolds
stress. In other words, all of eigenvalues of the Reynolds stress constructed by this modeling must
be positive semidefinite. Although this approach is a sufficient condition that the model is realizable,
it provides a rigorous realizability in a systematic procedure. In the present study, we further
develop the square root modeling method, aiming at its application to more complex turbulent flows.
Considering the application to three-dimensional flows, a model involving quartic nonlinearity on
the mean velocity gradient is proposed and its performance is numerically verified in a turbulent
channel flow, a homogeneous turbulent shear flow as basic two-dimensional flow, and an axially
rotating turbulent pipe flow as an example of the three-dimensional flow.

The rest of this paper is organized as follows. In Sec. II, we review the conventional realizable
turbulence modeling. Here, we also give an introduction and further development of the turbulence
modeling based on the square root tensor [23]. In Sec. III, we construct a quartic-nonlinear model
of the Reynolds stress and examine the basic property of the model for the unidirectional shear
flow. In Sec. IV, numerical verifications of the proposed model are given. A summary is given and
conclusions are discussed in Sec V.

II. MODELING THE REYNOLDS STRESS BASED ON THE SQUARE ROOT TENSOR

A. Realizability and conventional turbulence modeling

The simplest and frequently used model for the Reynolds stress is the linear eddy-viscosity
model:

Ri j = 2
3 Kδi j − νTSi j, (4)

where K (=〈u′
iu

′
i〉/2)) denotes the turbulent energy, νT denotes the eddy viscosity, and Si j denotes

the mean strain tensor, which is written in an inertial frame of the Cartesian coordinates as

Si j = ∂Ui

∂x j
+ ∂Uj

∂xi
. (5)

Here, Ui denotes the mean velocity. In the case of the standard K-ε model, νT is written as

νT = Cν

K2

ε
, (6)

where ε = ν〈(∂u′
i/∂x j )2〉 denotes the dissipation rate of the turbulent energy and Cν is the model

constant often optimized as Cν = 0.09 in a turbulent channel flow [4,24]. In this model, Rxx is
written as

Rxx = 2

3
K − νT

∂Ux

∂x
= 2

3
K

(
1 − 3

2
Cν

K

ε

∂Ux

∂x

)
. (7)

As seen from Eq. (7), Rxx can take a negative value when (3Cν/2)(K/ε)∂Ux/∂x > 1, which violates
Eq. (1a). Such an unphysical behavior of the Reynolds stress can cause numerical instability. An
easy approach to rectify this problem is to extend the constant Cν to a functional of the mean strain
rate, e.g., Cν → Cν/(1 + C′

νK2S2/ε2), where S2 = Si jSi j . Such a functionalization of the coefficient
is a primitive method for the realizable modeling. It is also known that the eddy-viscosity model
with Cν = 0.09 often overestimates the turbulent energy production rate in homogeneous turbulent
shear flows [24]. In this sense, the eddy-viscosity coefficient νT should be generally modeled as a
functional form in terms of S2 or other scalar variables in addition to K and ε. In this course, a
systematic way of functionalization of the eddy-viscosity coefficient is a matter of modeling.

114601-3



INAGAKI, ARIKI, AND HAMBA

For the generalization of ARSM, the Reynolds stress is often expanded by the mean velocity
gradient [10], which leads to the following nonlinear eddy-viscosity model:

Ri j = 2
3 Kδi j − νTSi j + ζSS

(
SiaSa j − 1

3 S2δi j
) + ζSW (SiaWa j + S jaWai )

+ ζWW
(
WiaWa j + 1

3W 2δi j
) + ζSSW (SiaSabWb j + S jaSabWbi )

+ ζSWW
(
SiaWabWb j + S jaWabWbi − 2

3 SabWbcWcaδi j
) + · · · , (8)

where ζ ’s are dimensional coefficients, W 2 = Wi jWi j , and Wi j denotes the mean absolute vorticity
tensor, which is written in an inertial frame of the Cartesian coordinates as

Wi j = ∂Ui

∂x j
− ∂Uj

∂xi
. (9)

For a representative of realizable ARSM, Shih et al. [14,15] constructed a simple expression for
the Reynolds stress in which νT and ζSW are retained but other ζ ’s are neglected. In their modeling,
the functional form of νT and ζSW were determined to satisfy the realizability conditions for simple
shear or rotating turbulent flows. Hamba [19] discussed a realizable ARSM through the statistical
theory for inhomogeneous turbulence referred to as the two-scale direct-interaction approximation
(TSDIA) [11]. Abe et al. [17] modified the ARSM proposed by Gatski and Speziale [13] to satisfy
the realizability conditions for simple flows and Abe et al. [20] further developed its model with
careful consideration on the near wall TCL condition. Note that all of them are quadratic-nonlinear
eddy-viscosity models. Although these models can capture the anisotropic property of the Reynolds
stress in turbulent shear flows owing to the quadratic-nonlinear terms, it is almost impossible
to extend these models to higher-order nonlinear ones because the freedom for the dimensional
coefficients ζ ’s is too large to analytically determine their form. However, Speziale et al. [22]
pointed out that cubic nonlinearity is essential for predicting the mean swirl or tangential velocity
in an axially rotating turbulent pipe flow, which is an example of the three-dimensional flow.
Furthermore, the Reynolds stress should be affected not only by the mean velocity gradient but
also the turbulent helicity [25–27] or the time history effect of the mean strain [21,28,29]. The
conventional realizable modeling method is hardly extended to such a more general turbulent flow.

B. Modeling based on the square root tensor

Ariki [23] presented another possibility of realizable ARSM by introducing the square root tensor
of the Reynolds stress

√
Ri j , which is defined as

Ri j =
√

Ria

√
R ja. (10)

Note that
√

Ri j does not signify the square root of each component of the Reynolds stress Ri j ,
i.e.,

√
Ri j �= √

Ri j . A physical interpretation of the square root tensor is discussed in the Appendix.
In this modeling, we choose the square root tensor

√
Ri j as a target of modeling instead of Ri j

itself. It should be emphasized that the ARSM proposed by this methodology always satisfies the
realizability conditions given by Eqs. (1a)–(1c). In other words, all of eigenvalues of the Reynolds
stress are always positive semidefinite. A primitive model for

√
Ri j is an eddy-viscosity–type model:

√
Ri j = γ0δi j − γSSi j . (11)

The model given by Eqs. (10) and (11) yields the following model of the Reynolds stress:

Ri j = γ 2
0 δi j − 2γ0γSSi j + γ 2

S SiaS ja. (12)

Thus, even a linear model for
√

Ri j corresponds to a quadratic-nonlinear expression for Ri j on the
mean velocity gradient The linear eddy-viscosity model can be derived when we add −γSSSiaSa j to
Eq. (11) and choose γSS to vanish SiaSa j term in Ri j . Let us write a general expression for the model
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of
√

Ri j as
√

Ri j = γ0δi j +
∑

m

γmT m
i j , (13)

where {T m
i j } indicate arbitrary algebraic model terms for

√
Ri j , such as Si j , Wi j , or higher-order

tensors composed by them. In a previous study by Ariki [23], {T m
i j } were restricted to symmetric

real tensors, but this was not a necessary condition. In this study, {T m
i j } are allowed to include

antisymmetric real tensors.

C. Further development of square root modeling

As a further development of square root modeling [23], we propose a systematical approach to
determine the functional form of γm’s following Hamba [19]. As the trace of the Reynolds stress
must correspond to the turbulent energy K = 〈u′

iu
′
i〉/2 as Rii = 2K , the model given by Eqs. (10)

and (13) should satisfy

2K = Rii =
√

Ri j

√
Ri j = 3γ 2

0 + 2
∑

m

γ0γmT m
ii +

∑
m,n

γmγnT m
i j T n

i j . (14)

Here, we introduce a fraction fm(=γm/γ0) by assuming γ0 �= 0. Then, Eq. (14) reads

2K = 3γ 2
0

(
1 + 2

3

∑
m

fmT m
ii + 1

3

∑
m,n

fm fnT m
i j T n

i j

)
. (15)

Thus, γ0 can be defined as

γ0 =
√

2K

3D
, D = 1 + 2

3

∑
m

fmT m
ii + 1

3

∑
m,n

fm fnT m
i j T n

i j . (16)

Using this definition of γ0, the model given by Eqs. (10) and (13) always satisfies Eq. (14). Note that
D > 0 always holds because it is expressed by a square value, namely D = (δi j + ∑

m fmT m
i j )2/3.

Hence, the present modeling gives regular dimensional coefficients corresponding to νT and ζ ’s, in
contrast to the singular behavior of coefficients in EARSM [13,16–18]. Although the present way to
determine γm’s is not a unique method for making the model satisfy Eq. (14), it suggests a physically
interesting feature of the model. To see this point clearly, we consider the following model:

√
Ri j = γ0δi j − γSSi j − γW Wi j − γN Ni j, (17)

where Ni j represents an additional model term. To construct a higher-order nonlinear eddy-viscosity
model, we substitute SiaS ja or SiaWa j + S jaWai into Ni j . To construct a more general model for
the Reynolds stress, we substitute the helicity term [25–27] or the time history effect of the mean
strain tensor [21,28,29] into Ni j . It should be emphasized that the square root modeling makes the
Reynolds stress always realizable, even when the complex model terms stated above are adopted to
Ni j . The Reynolds stress given by Eqs. (10), (16), and (17) is written as

Ri j = 2K

3D

[
δi j − 2 fSSi j − fN (Ni j + Nji ) + f 2

S SiaSa j − fS fW (SiaWa j + S jaWai ) − f 2
W WiaWa j

+ fN fS (NiaSa j + NjaSai ) − fN fW (NiaWa j + NjaWai) + f 2
N NiaNja

]
, (18)

where

D = 1 + 1
3 f 2

S S2 + 1
3 f 2

W W 2 − 2
3 fN Nii + 2

3 fS fN Si jNi j + 2
3 fW fNWi jNi j + 1

3 f 2
N N2, (19)

and N2 = Ni jNi j . To observe the physical property of the model more clearly, we adopt a simple
coefficient form to fS and fW ; namely, we give fS = CSK/ε and fW = CW K/ε, where CS and CW
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are constant. In such a case, the dimensional coefficient corresponds to the eddy viscosity νT [see
Eq. (8)] in the model given by Eqs. (18) and (19) is written as follows:

νT = 4K fS

3D
= 4CS

3D

K2

ε
= 4CS

3

1

1 + C2
S Ŝ2/3 + C2

W Ŵ 2/3 + · · ·
K2

ε
, (20)

where Ŝ2 = K2S2/ε2 and Ŵ 2 = K2W 2/ε2. Namely, the eddy viscosity is not simply expressed by
Eq. (6) but is incorporated with the effect of the mean strain rate and vorticity, Ŝ2 and Ŵ 2, through its
denominator. Equation (20) suggests that the eddy viscosity depends on the mean strain or rotation
rate. The mean strain rate- and vorticity-dependent expression of eddy viscosity is physically natural
because νT given by Eq. (6) with a constant Cν is not universal for several turbulent shear flows, as
mentioned in Sec. II A. This functionalization of the dimensional coefficients leads to the regular
behavior of the Reynolds stress for strongly strained or rotating turbulent flows. Moreover, the effect
of the additional term Ni j deductively enters the denominator of each term on the right-hand side
of the Reynolds stress, as shown in Eqs. (18) and (19). The present modeling provides a systematic
way to determine a functional form of the dimensional coefficients for more general cases such as
one that involves higher-order nonlinearity on the mean velocity gradient.

The dependence of the eddy viscosity on the mean strain or rotation rate was analytically
suggested by Okamoto [30] through TSDIA [11]. In their study, such an effect of the mean
velocity gradient on the eddy viscosity appears as part of the cubic-nonlinear term. In the present
modeling, it rather comes from the constraint given by Eqs. (15) and (16). The mean strain rate- and
vorticity-dependent form of the eddy viscosity was also discussed as the synthesized or composite
time scale [31]. Hamba [19] analytically obtained a quadratic-nonlinear realizable model through
TSDIA [11]. In contrast to the theoretical approach by Hamba [19], we have to choose a set of terms
for {T m

i j }, such as Si j and Wi j , in the present modeling. However, this freedom of choice of {T m
i j }

enables us to easily extend the realizable modeling to more general turbulent flows involving the
turbulent helicity effect [25–27] or the time-history effect of the mean strain rate [21,28,29].

III. CONSTRUCTION OF THE MODEL BASED ON THE SQUARE ROOT TECHNIQUE

A. Quartic-nonlinear model of the Reynolds stress

To construct a realizable model applicable to three-dimensional flows, we consider a simple
quadratic-nonlinear form of the square root tensor on the velocity gradient:

√
Ri j = γ0δi j − γSSi j − γW Wi j − γCCi j, (21)

Ci j = SiaWa j + S jaWai. (22)

Using Eq. (10), the Reynolds stress is written as

Ri j = 2K

3D

[
δi j − 2 fSSi j + f 2

S SiaSa j − (2 fC + fS fW )Ci j − f 2
W WiaWa j

+ fC fS (CiaSa j + CjaSai ) − fC fW (CiaWa j + CjaWai ) + f 2
CCiaCa j

]
, (23)

where

D = 1 + 1
3 f 2

S S2 + 1
3 f 2

W W 2 + 1
3 f 2

CC2, (24)

and C2 = Ci jCi j . Note that Si jCi j = Wi jCi j = 0. Because Ci j is a quadratic-nonlinear term on the
mean velocity gradient, the model given by Eq. (23) corresponds to a quartic-nonlinear eddy-
viscosity model. Although Eq. (23) can be put into irreducible form through Cayley-Hamlitom’s
theorem as suggested by Pope [10], we retain Eq. (23) as the present form to simply express
coefficients only by fS , fW , and fC . The model given by Eq. (23) comprises seven independent
tensor bases except for δi j . In the conventional turbulence modeling, there is no systematic way
to determine the seven-dimensional coefficients, which makes the Reynolds stress satisfy the
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realizability. The square root modeling reduces the freedom of the dimensional coefficients by
imposing the realizability as a guiding constraint. Consequently, we only need to determine three
coefficients, fS , fW , and fC , in the present modeling.

To see some basic properties of the model given by Eq. (23), we consider a unidirectional
shear flow defined by U = (Ux,Uy,Uz )t = (Ux(y), 0, 0)t. In this flow, the Reynolds stress given
by Eq. (23) reads

Rxx = 2K

3D
[(1 + 2 fCG2)2 + ( fSG + fW G)2], (25a)

Ryy = 2K

3D
[(1 − 2 fCG2)2 + ( fSG − fW G)2], (25b)

Rzz = 2K

3D
, (25c)

Rxy = −4K

3D
( fS − 2 fW fCG2)G, (25d)

D = 1 + 2
3 f 2

S G2 + 2
3 f 2

W G2 + 8
3 f 2

C G4, (25e)

where G = ∂Ux/∂y and Rxz = Ryz = 0. There are two points that should be noted. The first point
is the anisotropy of the Reynolds stress. From many DNS and experiments of shear flows, such as
a turbulent channel flow or a homogeneous turbulent shear flow, it is well-known that the diagonal
components of the Reynolds stress show the inequality Rxx > Rzz > Ryy. However, the model given
by Eqs. (25a)–(25c) results in Rzz � Ryy when fC = 0. Hence, we demand fC > 0. As seen from
Eqs. (25a) and (25b), Ci j term plays the role of redistribution of the turbulence intensity between
Rxx and Ryy. When fC > 0, the model given by Eqs. (25a)–(25c) can accurately predict the inequality
for turbulent shear flows, Rxx > Rzz > Ryy.

The second point is the sign of the shear stress Rxy. If the shear rate increases and 2 fW fCG2

becomes larger than fS , fS < 2 fW fCG2, the sign of Rxy becomes the same as the mean velocity
gradient G. This implies that the effective viscosity can be negative. The negative effective
viscosity not only causes numerical instability but also gives a physically invalid condition for the
unidirectional shear flow of the high-shear rate condition. Hence, we demand fS > 2 fW fCG2 for an
arbitrary shear rate G and adopt an appropriate expression for fW or fC .

Considering the above discussion, we propose a K-ε model expression for the present model.
Here, the following expressions for the coefficients fS , fW , and fC are adopted:

fS = fW = C1 fν
K

ε
, (26a)

fC = C2

1 + C3(Ŝ2 + Ŵ 2)

K2

ε2
, (26b)

where fν is a damping function introduced for the connection of the model to the solid wall
and Ŝ2 and Ŵ 2 are already defined in connection to Eq. (20). C1, C2, and C3 are positive model
constants. Because fC depends on the mean strain and rotation rate, it can be calibrated to satisfy
fS > 2 fW fCG2 for a high-shear-rate condition of the unidirectional shear flow. Of course, Eqs. (26a)
and (26b) are not a unique choice of fS , fW , and fC , but are a simple form that avoids the irregular
condition for the shear stress Rxy. In addition, we do not pay much attention to the behavior of
the model around TCL condition in the present study. To consider TCL condition of ARSM in the
vicinity of the solid wall, we may have to put additional terms expressing the near wall effect [20],
which may be left for future studies. In the present study, we rather focus on the bulk behavior away
from the solid wall.
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FIG. 1. Profile of the anisotropy tensor of the Reynolds stress bi j against the nondimensional shear rate Ĝ.

B. Anisotropy tensor in unidirectional shear flow

We examine the anisotropic behavior of the model given by Eqs. (25a)–(25e), (26a), and (26b)
for a high-shear-rate case in the unidirectional shear flow. The anisotropy tensor of the Reynolds
stress bi j is defined as

bi j = Ri j

K
− 2

3
δi j . (27)

The anisotropy tensor for the model given by Eqs. (25a)–(25e), (26a), and (26b) is written as

bxx = 2

3D

[(
1 + 2C2

1 + 4C3Ĝ2
Ĝ2

)2

+ (2C1Ĝ)2

]
− 2

3
, (28a)

byy = 2

3D

(
1 − 2C2

1 + 4C3Ĝ2
Ĝ2

)2

− 2

3
, (28b)

bzz = 2

3D
− 2

3
, (28c)

bxy = −4C1

3D

(
1 − 2C2

1 + 4C3Ĝ2
Ĝ2

)
Ĝ, (28d)

D = 1 + 4

3
C2

1 Ĝ2 + 8

3

(
C2

1 + 4C3Ĝ2

)2

Ĝ4, (28e)

where Ĝ = KG/ε and bxz = byz = 0. Note that the damping function fν is not concerned here;
namely, fν = 1. In this case, bi j is determined only by the nondimensional shear rate Ĝ. It is clearly
seen that the condition bzz > byy is satisfied for finite Ĝ when C2/(2C3) < 1. Moreover, the sign
of bxy is always opposite to that of Ĝ as long as C2/(2C3) < 1. Figure 1 shows the profile of the
anisotropy tensor against the nondimensional shear rate Ĝ. Here, C1 = 0.13, C2 = 0.021, and C3 =
0.018 are adopted. The first equation of the realizability condition given by Eq. (1a) is rewritten as

− 2
3 � bαα � 4

3 . (29)

It is confirmed that the present model exactly satisfies Eq. (29) and reproduces the physical features
in shear flows, namely bxx > bzz > byy and bxy < 0, even when the nondimensional shear rate Ĝ is
large.
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FIG. 2. Profiles of bxy against the nondimensional shear rate Ĝ for �F/G = 0, 0.25, and −0.25 in the
spanwise rotating shear flow.

C. Shear stress in rotating shear flow

For another simple shear flow case, we consider a spanwise rotating shear flow [32]. We consider
the same unidirectional shear flow as previous sections and set the rotation axis in the z direction,
�F = (0, 0,�F)t, where �F denotes the angular velocity of frame rotation. In this condition, bxy is
written as

bxy = −4C1

3D

{
1 − 2C2

1 + 2C3Ĝ2[1 + (1 − 2�F/G)2]
Ĝ2(1 − 2�F/G)2

}
Ĝ, (30a)

D = 1 + 2

3
C2

1 Ĝ2[1 + (1 − 2�F/G)2] + 8

3

{
C2

1 + 2C3Ĝ2[1 + (1 − 2�F/G)2]

}2

Ĝ4(1 − 2�F/G)2.

(30b)

Here, a new parameter, �F/G, appears compared with Eqs. (28d) and (28e). Of course, Eqs. (30a)
and (30b) reduce to Eqs. (28d) and (28e) when �F/G = 0. Figure 2 shows the profiles of bxy against
the nondimensional shear rate Ĝ for �F/G = 0, 0.25, and −0.25. When the rotation is against the
shear, �F/G = 0.25, the shear stress bxy decreases, while it increases when the rotation is with
the shear, �F/G = −0.25. This result is consistent with the large-eddy simulation performed by
Bardina et al. [32].

IV. NUMERICAL VERIFICATION

In this section, we numerically verify the performance of the present model in fundamental
turbulent shear flows. First, we perform a turbulent channel flow as a basic wall shear flow. Second,
we perform a homogeneous turbulent shear flow as an example where the linear eddy-viscosity
model given by Eqs. (4) and (6) fails to predict the evolution of the turbulent kinetic energy. Third,
we perform an axially rotating turbulent pipe flow as an example of the three-dimensional flow.
In this flow, no quadratic-nonlinear eddy-viscosity model can predict the mean tangential or swirl
velocity [22]. In contrast to the conventional realizable model, such as that given by Shih et al.
[14,15], the present model involves cubic nonlinearity on the velocity gradient, as seen in Eq. (23),
and thus, is able to predict the mean tangential or swirl velocity.
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TABLE I. Model constants.

Model C1 C2 C3 Cν Cε1 Cε2 σK σε a1 a2 a3 aε1 aε2 aε3

Present 0.13 0.021 0.018 0.09 1.5 1.9 1.4 1.4 14 5 200 3.1 0.3 6.5
Linear [33] – – – 0.09 1.5 1.9 1.4 1.4 14 5 200 3.1 0.3 6.5

A. Turbulent channel flow

In the turbulent channel flow, the governing equations for the K-ε model are given by

∂Ux

∂t
= −∂Rxy

∂y
+ ν

∂2Ux

∂y2
+ 1, (31)

∂K

∂t
= −Rxy

∂Ux

∂y
− ε + ∂

∂y

[(
νT

σK
+ ν

)
∂K

∂y

]
, (32)

∂ε

∂t
= −Cε1

ε

K
Rxy

∂Ux

∂y
− Cε2 fε

ε2

K
+ ∂

∂y

[(
νT

σε

+ ν

)
∂ε

∂y

]
, (33)

where x and y denote the streamwise and wall-normal directions, respectively. The length and veloc-
ity are normalized by the channel half width h and the wall friction velocity uτ (=√

ν|∂Ux/∂y|wall|),
respectively. σK , Cε1, Cε2, and σε are the model constants. fε denotes the damping function for
the destruction rate of the dissipation rate ε. The performance of the present model is compared
with that of the linear eddy-viscosity model, in which the Reynolds stress is given by Eq. (4). For
the linear eddy-viscosity model, which is applicable to the nonslip boundary condition, we use
that given by Abe et al. [33] (hereafter the AKN model). The results are compared with those of the
DNS performed by Moser et al. [34] at Reτ (=uτ h/ν) = 590. We adopt the same damping functions
for the present model as those for the AKN model, which are described by the distance from the
wall normalized by the Kolmogorov length scale η[= (ν3/ε)1/4] and the turbulent Reynolds number
ReT(=K2/νε):

fν =
{

1 − exp

[
− y

a1η

]}2
{

1 + a2

Re3/4
T

exp

[
−

(
ReT

a3

)2
]}

, (34)

fε =
{

1 − exp

[
− y

aε1η

]}2
{

1 − aε2exp

[
−

(
ReT

aε3

)2
]}

. (35)

An advantage of using the Kolmogorov length scale for the damping functions is that they can have
a nonzero value even when the mean velocity gradient at the wall is zero, ∂Ux/∂y|wall = 0, while the
conventional damping functions described by the distance from the wall normalized by ν/uτ gives
fν = 0. The eddy viscosity νT in Eqs. (32) and (33) is given by

νT = Cν fν
K2

ε
. (36)

For the linear eddy-viscosity model given by Eq. (4), we use the same expression as Eq. (36). In the
present model, the same model constants as those in the AKN model are adopted and these values
are given in Table I. For the unidirectional shear flows, the only difference between the present and
AKN models is the model of the Reynolds shear stress Rxy; in the present model, Rxy is given by
Eqs. (25d), (26a), and (26b), while in the AKN model, it is given by

Rxy = −νT
∂Ux

∂y
= −Cν fν

K2

ε
G. (37)
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FIG. 3. Profiles of (a) the mean velocity U +
x , (b) the turbulent energy K+, and (c) the dissipation rate ε+ in

the turbulent channel flow at Reτ = 590. Here, y+ = yuτ /ν, U +
x = Ux/uτ , K+ = K/u2

τ , and ε+ = εν/u4
τ .

Owing to the damping function fν , both the present and AKN models achieve the near wall
asymptotic condition for the Reynolds shear stress, Rxy ∼ y3.

The profile of the mean velocity is shown in Fig. 3(a). Both the present and linear models give
a good result compared to DNS. Figures 3(b) and 3(c) show the profiles of the turbulent energy
and its dissipation rate, respectively. The prediction of the present model is almost similar to that
of the linear eddy-viscosity model. In the near wall region at y+ < 20, both the present and linear
models slightly underestimate the turbulent energy K and overestimate the dissipation rate ε. In this
sense, some modification is required for predicting the near wall behavior. Overall, however, the
present model gives a good prediction for the basic properties in the turbulent channel flow. Note
that the damping function works only at y+ < 100, so that the behavior of outer region, y+ > 100,
is independent of the damping function.

In the RANS model of the unidirectional shear flows, the diagonal components of the Reynolds
stress do not appear in the governing equations. In a turbulent flow in a square duct, however, the
anisotropic property of the Reynolds stress is essential for predicting the secondary flow [28]. In this
sense, it is worth examining the anisotropic property of the model for a wall-bounded turbulent flow.
It is well-known that the linear eddy-viscosity model given by Eq. (4) cannot predict the anisotropy
of the Reynolds stress in the unidirectional shear flow; namely, the linear eddy-viscosity model leads
to

Rxx = Ryy = Rzz = 2
3 K, (38)

while the experiments and DNS show Rxx > Rzz > Ryy in the turbulent channel flow. As discussed
in Sec. III, the present model can predict this inequality. The profile of each component of the
Reynolds stress for the present model is shown in Fig. 4(a). The profile of the anisotropy tensor of
the Reynolds stress bi j is also shown in Fig. 4(b). It is seen that the present model well-predicts
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FIG. 4. Profiles of (a) the Reynolds stress and (b) the anisotropy tensor of the Reynolds stress for the
present model in the turbulent channel flow at Reτ = 590.

the anisotropic property at 100 < y+ < 400. In the near wall region at y+ < 50, the present model
underestimates the streamwise component of the Reynolds stress, as seen in Figs. 4(a) and 4(b).
This is mainly caused by the failure of prediction of the nondimensional shear rate Ĝ. The profile of
Ĝ is shown in Fig. 5. It is seen that Ĝ at y+ ∼ 10 is about two-thirds the DNS for the present model.
This tendency is the same as that of the linear model. This result comes from the underestimation
of K and the overestimation of ε at y+ ∼ 10, because the mean velocity is well-predicted by both
the present and linear models. Hence, we need to modify the transport equations for K and ε at the
near wall region to improve the accuracy of the model. However, we do not treat this point further.

B. Homogeneous turbulent shear flow

As discussed in Sec. II A, the standard type of the linear eddy-viscosity model given by Eqs. (4)
and (6) overestimates the time evolution of the turbulent energy in a homogeneous turbulent shear
flow. As the conventional ARSM overcomes this shortfall with the aid of the mean strain or rotation
rate dependence of the dimensional coefficients [12–17,19,31], the present model also does. The
governing equations for the K-ε model are given by Eqs. (32) and (33), where the diffusion terms,
the third term in them, vanish and fν = fε = 1 in the homogeneous turbulent shear flow. The
reference DNS was performed by Hamba [19], where the mean shear rate was set to G = 7.67, the
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FIG. 5. Profile of the nondimensional shear rate Ĝ in the turbulent channel flow at Reτ = 590.
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the homogeneous turbulent shear flow.

initial value of the Taylor microscale Reynolds number Reλ(=
√

20K2/3νε) was set to Reλ = 24,
the initial value of the turbulent energy was set to K = 1/2, and the initial energy spectrum was
proportional to k4 exp[−2k2/k2

p], where kp = 9. As the initial conditions for the K-ε model, the
DNS values of K and ε at time Gt = 6 are adopted, where the energy spectrum is fully developed
in the high-wave-number region.

The time evolution of the turbulent energy is shown in Fig. 6(a), which also plots the result of the
linear eddy-viscosity model for reference, where the set of the model constants is the same as that for
the AKN model [33] given in Table I. As seen in Fig. 6(a), the present model well-predicts the time
evolution of the turbulent energy, while the linear model overestimates it. The time evolution of the
anisotropy tensor of the Reynolds stress is shown in Fig, 6(b). The good agreement of bxy with the
DNS value provides the good prediction of the turbulent energy. However, the diagonal components
of the anisotropy tensor are somewhat overestimated. This result indicates that the present model
tends to overestimate the anisotropy for high-shear-rate turbulent flows.

In the present study, we construct a model for
√

Ri j in terms of Si j , Wi j , and Ci j for simplicity of
the model expression. Hence, there is still enough room for further development, e.g., introduction
of additional terms such as SiaSa j , WiaWa j , or the time history effect of the mean strain tensor
[21,28,29] to

√
Ri j , or modifications of fS , fW , and fC . Namely, the overestimation of anisotropy in

the homogeneous turbulent shear flow can be improved by more sophisticated modeling.

C. Axially rotating turbulent pipe flow

A prominent feature of the present model is that it involves cubic nonlinearity on the mean
velocity gradient, which is an essential for predicting the mean swirl flow in an axially rotating
turbulent pipe flow [22]. This point is a critical difference between the present and the conventional
realizable models [14,15,17,19]. Assuming the homogeneity of the turbulence field in the axial and
azimuthal directions, the mean velocity can be written as U = (Ur,Uθ ,Uz ) = (0,Uθ (r),Uz(r)) in
the cylindrical coordinates. The governing equations for the K-ε model in an inertial frame of the
cylindrical coordinates are written as follows:

∂Uθ

∂t
= −1

r

∂

∂r
(rRrθ ) − Rrθ

r
+ ν

[
1

r

∂

∂r

(
r
∂Uθ

∂r

)
− Uθ

r2

]
, (39)

∂Uz

∂t
= −1

r

∂

∂r
(rRrz ) + ν

1

r

∂

∂r

(
r
∂Uz

∂r

)
+ f ex, (40)

114601-13



INAGAKI, ARIKI, AND HAMBA

0

 0.2

 0.4

 0.6

 0.8

1

 1.2

 1.4

 1.6

0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9 1

U
z/

U
m

r/R

(a)

present model,N=0
present model,N=0.5
present model,N=1
linear model
Exp.,N=0
Exp.,N=0.5
Exp.,N=1

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9 1

U
θ/

U
θ,

w
al

l

r/R

(b)
present model,N=0.5
present model,N=1
linear model
Exp.,N=0.5
Exp.,N=1
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axially rotating turbulent pipe flow at Rem = 10 000.

∂K

∂t
= −Srθ Rrθ − SrzRrz − ε + 1

r

∂

∂r

[(
νT

σK
+ ν

)
r
∂K

∂r

]
, (41)

∂ε

∂t
= −Cε1

ε

K
(Srθ Rrθ + SrzRrz ) − Cε2 fε

ε2

K
+ 1

r

∂

∂r

[(
νT

σε

+ ν

)
r
∂ε

∂r

]
. (42)

Here, the velocity and length scale are normalized by the bulk mean velocity Um[= (2/R2)∫ R
0 dr rUz] and the pipe radius R, respectively. f ex denotes the external forcing that keeps the

bulk Reynolds number Rem(= UmR/ν) constant. In the cylindrical coordinates, we can write a
second-rank tensor T as

T =
⎡
⎣Trr Trθ Trz

Tθr Tθθ Tθz

Tzr Tzθ Tzz

⎤
⎦. (43)

In an axially rotating turbulent pipe flow, the mean strain rate and mean absolute vorticity tensors
are, respectively, written as follows:

S =

⎡
⎢⎣

0 r ∂
∂r

(Uθ

r

)
∂Uz

∂r

r ∂
∂r

(Uθ

r

)
0 0

∂Uz

∂r 0 0

⎤
⎥⎦, W =

⎡
⎢⎣

0 − 1
r

∂
∂r (rUθ ) − ∂Uz

∂r
1
r

∂
∂r (rUθ ) 0 0

∂Uz

∂r 0 0

⎤
⎥⎦. (44)

In this matrix form, the tensor C defined by Eq. (22) can be calculated as C = SW + (SW)t

(= SW − WS). Although the model expression of the Reynolds stress seems to be complicated,

as seen in Eq. (23), it can be easily calculated from the square root tensor as R = √
R

√
R

t
with

Eq. (21). This is another advantage of the usage of the square root tensor. We compare the results of
the present model with the experimental data provided by Imao et al. [35], where the bulk Reynolds
number is set to Rem = 10 000. The rotation rate N is defined as N = Uθ,wall/Um and experiments
of three parameters, N = 0, 0.5, and 1, were performed.

Figure 7(a) shows the profile of the mean axial velocity Uz in a steady state for each rotation
parameter. The result of the linear eddy-viscosity model is also plotted for reference. It is seen that
the present model predicts the rotation-dependent property of the mean axial velocity; namely, the
mean velocity gradient becomes steep as the rotation parameter increases. Figure 7(b) shows the
profile of the mean swirl velocity Uθ in a steady state for two rotating cases. Neither the linear
eddy-viscosity model nor quadratic-nonlinear models can predict the mean swirl velocity [22]; they
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just predict the solid body rotation solution, Uθ = rUθ,wall/R. As seen in Fig. 7(b), the present model
predicts the rotation-dependent mean swirl velocity. Although both trends of the mean axial velocity
and mean swirl velocity are reproduced by the present model, there is still room for improvement
in the quantitative sense. This point should be further discussed in the future. However, it should be
rather emphasized that the present model is a realizable quartic-nonlinear ARSM which has never
been proposed. It can reproduce a feature of three-dimensional flow owing to the quartic nonlinearity
on the mean velocity gradient with ensuring the realizability conditions.

V. CONCLUSIONS

In this study, the realizable ARSM based on the square root tensor of the Reynolds stress [23]
was further developed. By imposing the realizability conditions, we could develop a physically
consistent and numerically stable turbulence model. In contrast to the conventional method, the
square root modeling provides a systematic and simpler construction of the realizable model, even
when it involves higher-order nonlinearity on the mean velocity gradient. The cubic or higher-order
nonlinearity on the mean velocity gradient is required to predict three-dimensional flows, which
denote the turbulent flows with three-dimensional mean velocity. In fact, the cubic nonlinearity is
required to predict the mean swirl flow in an axially rotating turbulent pipe flow [22].

For the development from the previous study by Ariki [23], we proposed a systematic way
to determine the dimensional coefficients of the model. Consequently, a dependence of the eddy
viscosity on the mean strain and rotation rate is deductively introduced. Moreover, the dimensional
coefficients depend on the other additional terms chosen for an expansion basis of the square root
tensor. In this sense, the present modeling gives a generic way to determine a functional form of the
dimensional coefficients.

As a simple model applicable to three-dimensional flows, a quartic-nonlinear ARSM was
proposed through the square root tensor. The performance of the proposed model was numerically
verified in a turbulent channel flow, a homogeneous turbulent shear flow, and an axially rotating
turbulent pipe flow. The present model gave reasonable predictions for both mean velocity profile
in the turbulent channel flow and time evolution of the turbulent energy in the homogeneous
turbulent shear flow. Moreover, the rotation rate-dependent property of the mean axial and swirl
velocity in the axially rotating turbulent pipe flow was predicted, which cannot be predicted
by any quadratic-nonlinear eddy-viscosity model, including the conventional realizable models
[14,15,17,19,20].

The present model overestimated the anisotropy of the Reynolds stress in the homogeneous
turbulent shear flow and underestimated the mean axial and swirl velocity in the axially rotating
turbulent pipe flow; namely, there remains enough room for further improvement in the quantitative
sense. For simplicity of the model, we did not consider the effect of the turbulent helicity [25–27]
and the time history effect of the mean strain rate [21,28,29] in this study. Hence, the model can be
further developed. Nevertheless, it is worth recalling that the present model is a quartic-nonlinear
ARSM that always satisfies the realizability conditions, which has never been proposed. Such
a higher-order realizable turbulence model, involving quartic nonlinearity on the mean velocity
gradient, is expected to be useful in numerically stable predictions of turbulent flows with three-
dimensional mean velocity.

APPENDIX: PHYSICAL INTERPRETATION OF THE SQUARE ROOT TENSOR

Let us introduce an isotropic stochastic vector ξi, which satisfies 〈ξi〉 = 0 and 〈ξiξ j〉 = δi j . We
consider the anisotropic velocity fluctuation u′

i expressed by the following mapping form:

u′
i =

√
Ri jξ j, (A1)

where
√

Ri j denotes the anisotropic mapping operator. Note that we consider a nonfluctuating
√

Ri j ;
namely, 〈√Ri j〉 = √

Ri j and 〈√Ri jξ j〉 = √
Ri j〈ξ j〉 = 0. Then, the Reynolds stress is calculated by
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its definition, Ri j = 〈u′
iu

′
j〉, as

Ri j = 〈
√

Riaξa

√
R jbξb〉 =

√
Ria

√
R jb〈ξaξb〉 =

√
Ria

√
R ja. (A2)

This is just the definition of the square root tensor of the Reynolds stress given by Eq. (10). Hence,√
Ri j can be interpreted as an envelope representing the anisotropy of the velocity fluctuation.
Here, we discuss an expression for the velocity fluctuation in anisotropic turbulence in terms of

the mean velocity gradient. For theoretical convenience, we expand the velocity fluctuation around
the isotropic part as u′

i = u(0)
i + u(1)

i , where u(0)
i denotes the isotropic velocity fluctuation and u(1)

i

denotes the anisotropic velocity fluctuation around u(0)
i . The perturbation equation for u(1)

i from
isotropic turbulence can be written as [11,24,36]

Luu(1)
i = − 1

2 (Si j + Wi j )u
(0)
j , (A3)

where

Luu(1)
i = Du(1)

i

Dt
+ ∂

∂x j

(
u(1)

i u(0)
j + u(0)

i u(1)
j − 〈

u(1)
i u(0)

j

〉 − 〈
u(0)

i u(1)
j

〉) + ∂ p(1)

∂xi
− ν∇2u(1)

i . (A4)

Equation (A3) can be formally integrated as

u(1)
i = − 1

2 L−1
u (Si j + Wi j )u

(0)
j . (A5)

This inverse operation L−1
u denotes the time integration with a characteristic time scale of turbulence

and we approximate this integration as [24,36]

u(1)
i = − 1

2 L−1
u (Si j + Wi j )u

(0)
j = − 1

2τ (Si j + Wi j )u
(0)
j , (A6)

where τ represents a characteristic time scale of turbulence. When the isotropic velocity fluctuation
is written as u(0)

i = √
2K0/3ξi, the velocity fluctuation u′

i reads

u′
i = u(0)

i + u(1)
i =

√
2K0

3

[
δi j − 1

2
τ (Si j + Wi j )

]
ξ j . (A7)

Comparing Eqs. (A1) and (A7), the square root tensor
√

Ri j can be expressed as

√
Ri j =

√
2K0

3

[
δi j − 1

2
τ (Si j + Wi j )

]
. (A8)

This expression of
√

Ri j corresponds to Eq. (17), where γ0 = √
2K0/3, γS = γ0 fS , γW = γ0 fW ,

γN = 0, and fS = fW = τ/2. The higher-order nonlinear term can be obtained by considering the
higher-order perturbation. Consequently, the modeling based on the square root tensor is interpreted
as the modeling based on the generation mechanism of the anisotropy of the velocity fluctuation.
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