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A. G. Yiotis,* A. Dollari,† and M. E. Kainourgiakis
Environmental Research Laboratory, National Center for Scientific Research “Demokritos,”

15341 Agia Paraskevi, Greece

D. Salin and L. Talon
Laboratoire FAST, Université Paris Saclay, 91405 Orsay Cedex, France

(Received 19 June 2019; published 19 November 2019)

We study the steady-state displacement of nonwetting liquid ganglia during immisci-
ble two-phase flows in realistic, stochastically reconstructed porous domains, focusing
primarily on the nonlinear Darcian regime that arises when capillary to viscous (or
gravity) forces become comparable at the pore scale. During this process, the ganglia
undergo a continuous cycle of dynamic coalescence and fragmentation, resulting in two
populations (a mobile and a stranded one) with distinct structural and rheological features,
that continuously exchange mass between them under “stationary” flow conditions. We use
a lattice Boltzmann model for the explicit solution of flow and interfacial dynamics at the
pore scale driven by a constant body force field (i.e., gravity), and a periodic clustering
algorithm for the identification and classification of mobile and stranded ganglia. Our
simulation results reveal that an increase in the applied Bond number (Bo) leads to a
gradual mobilization of the initially stranded ganglia population, resulting in a power-law
scaling with an exponent being a strong function of the nonwetting-phase saturation. The
linear Darcian scaling for the nonwetting phase is progressively restored at high Bo, while
the wetting phase appears to maintain a linear Darcian scaling over the entire range of Bo
values. We show that the mobilization process is characterized by a critical Bo, which is
independent of saturation, above which new flow paths are created, in a similar fashion as
a yield-stress fluid flows in a porous medium. Our results also offer a unique insight on the
distinct structural characteristics of the mobile and stranded populations (e.g., ganglia size
and length), as well as on their velocity and orientation with respect to their size.
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I. INTRODUCTION

The flow of non-aqueous-phase liquids (NAPLs) in the form of disconnected droplets or ganglia
within macroporous media is a ubiquitous process in geologic, environmental, and energy-related
applications. These include, among others, the recovery of stranded oil residuals in petroleum
reservoirs during enhanced oil recovery operations [1], the remediation of soils from insoluble
anthropogenic pollutants [2], and the permanent trapping and storage of supercritical CO2 in deep
saline aquifers [3]. In recovery applications, the mobilization of such nonwetting-phase (nw-phase)
residuals, stranded due to capillary forces and flow by-pass in lower permeability regions of the
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FIG. 1. A schematic of a ganglion breakup (fragmentation) event during immiscible two-phase flow within
a disordered two-dimensional (2D) porous domain, as it is visualized at the pore scale. This event generates
a stranded ganglion in the upstream region and a mobile one that flows further downstream driven by the
surrounding w-phase. The ganglia (nw-phase) are shown in yellow (brighter color in gray scale), the w-phase
in gray, and the solid sites in black.

porous structure, is typically achieved by the injection of a purge wetting fluid (w-phase), in a
process that can be visualized as secondary imbibition. Due to the disconnected nature of such
residuals, the dominant physics controlling ganglia movement arises at the pore scale, where local
viscous forces that drive flow compete with capillary forces that impose ganglia stranding within
pore-space confinements. When local flow conditions are favorable, the normal and shear stresses
exerted by the flowing w-phase over ganglia interfaces results in their mobilization and advection
along the flow path [4,5].

Ganglia mobilization at increasing flow rate conditions is typically accompanied by their
dynamic breaking up (i.e., fragmentation) into smaller ones. This pore-scale process occurs when
viscous drag from the continuous w-phase significantly overcomes local interfacial tension [6–8],
causing the interface of mobile ganglia to deform as they “squeeze” through narrower pore
configurations (a process also known as snap-off; see, e.g., Fig. 1) [9]. The generation of smaller
ganglia (with typical sizes on the order of the average pore size) will in turn lead to their temporary
stranding further downstream within the porous structure, either until local flow conditions become
again favorable for their remobilization or until they coalesce with larger mobile ones [10,11].

This complex dynamic process of ganglia fragmentation and coalescence, accompanied by
continuous cycles of mobilization and stranding within the tortuous and heterogeneous void space
of macroporous media, is not well understood primarily due to technological limitations in the
visualization of ganglia dynamics within actual three-dimensional (3D) porous materials under
realistic flow conditions. A series of elaborate experimental studies have thus focused on simplified
2D permeable structures, such as individual capillaries [12], 2D pore networks [5,9,13,14], and
monolayers of glass beads [11,15]. These studies have provided significant insight on the complex
local flow dynamics that lead to ganglia mobilization and breaking up, revealing also the important
effects of capillarity [16], viscosity ratio [13], and flow history [14], among many other parameters,
on the residual ganglia saturation. Much more limited is the experimental work performed in
more realistic 3D domains, such as sand packings [17,18], glass bead packings [16,19,20], sintered
glass filters [21,22], and more recently in actual porous rocks [23–26], which were realized using
state-of-the-art visualization technologies, such as x-ray micro-CT and confocal microscopy. The
latter studies have focused primarily on the resulting size distributions of residual (i.e., stranded)
ganglia saturations after flushing the porous sample over several imbibition cycles. The dynamics
of ganglia coalescence and breaking up during such processes are typically not recovered due to the
limited temporal resolution of such methods.
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In parallel, experimental work in this field has been supported by theoretical and numerical
models relying either on mean-field approximations of the process dynamics [11,27] or rigorous
pore-network models [13,28–31], as well as combinations of both. In a seminal contribution, Ng
and Payatakes [32] provided the basis for the stochastic approximation of ganglia flow in porous
media based on locally defined mobilization and stranding probabilities, while also considering the
breaking up and coalescence rates as random events which were, however, expressed as a function
of ganglia size. This approach has been extended by more elaborate stochastic models, such as those
of Darcian dynamics by Amili and Yortsos [33], mechanistic models relying on the consideration
of “prototype” flows [34,35], and a probability density function approach in the framework of
continuous Markov processes by Tyagi and Jenny [36]. While providing invaluable information
for the coupling between microscale physics and field scale behavior, a common characteristic of
the above approaches is that they rely on microscale probabilities in the form of mechanistic rules
that need to be resolved by either rigorous pore-scale experiments or the direct solution of flow
and/or conservation equations for immiscible flow at this scale.

Such studies have highlighted some important scaling relations for the ganglia size with respect
to the capillary number, Ca, i.e., the ratio of viscous to capillary forces that control the movement
of interfaces at the pore scale. The ganglia size distribution is typically found to scale as p(s) ∝
s−τ exp(−s/s∗), where τ is a scaling exponent, s is the ganglion size, and s∗ is the maximum
ganglion size that is found to scale as s∗ ∝ Ca−ζ . The exponents τ and ζ have been experimentally
determined to be τ ≈ 2.07 and ζ ≈ 1 [14,15,25], without, however, an explicit distinction between
mobile and stranded ganglia populations. Furthermore, previous studies have demonstrated the
existence of a nonlinear Darcian regime, where the total flow rate follows a power-law scaling with
the applied pressure drop q ∝ (�P)β , with β being an exponent that depends on the experimental
protocol and which is found to be in the range 1.4–2.0 [15,27].

While the physical mechanism responsible for such a divergence from the classic Darcian linear
scaling is still not yet fully understood, a common consensus is that it is due to the gradual
mobilization of otherwise stranded ganglia at increasing Ca flow conditions. Ganglia mobilization
alters the effective permeability of the medium by allowing fluid flow from previously blocked flow
paths [10,11,27]. In this context, Sinha and Hansen [27] highlighted the similarity of this process to
the flow of yield-stress (Bingham) fluids in porous media [37,38], where new flow paths are created
as a critical stress value (which is a function of the local pore size) is exceeded. For such a process,
it has been shown that the total flow rate follows a quadratic relationship with the applied pressure
difference, where the power-law exponent appears to be quite robust and independent of the disorder
characteristics of the medium. In a similar fashion the physical origin of the nonlinear scaling for
ganglia dynamics appears to emanate at the pore scale due to the formation of new preferential
flow paths resulting from ganglia mobilization when a critical local pressure difference is achieved.
Using a mean-field approach Sinha and Hansen [27] proposed a power-law exponent of 2.0 for the
nonlinear regime. A possible flaw, however, of their argument, that could also explain the divergence
with the experimentally reported scaling exponents, is the consideration that the porous medium is
homogeneously filled with an “effective” yield-stress fluid.

In this contribution, we study numerically the effective rheology of the specific two-phase flow
process (particularly within the nonlinear Darcian regime) in realistic, stochastically reconstructed
2D porous domains, focusing primarily on the discrete contributions of the mobile and stranded
ganglia populations and their characteristics. Our main objective is to highlight the physical origin
of the reported power-law dependence and quantify the contribution of each phase in the resulting
flow dynamics. For this purpose, we use a lattice Boltzmann (LB) scheme that solves explicitly for
immiscible two-phase flow and interfacial dynamics at a very fine (sub-pore-scale) resolution within
the disordered void space of the medium. This approach can be applied to extremely structurally
complex domains without the need to explicitly define “mechanistic” or “stochastic” rules for
the pore-scale behavior of fluid interfaces at the expense, however, of significant computational
resources and simulation times [10].
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Assuming a periodic 2D domain in all directions and an appropriately selected volume-averaged
intrinsic velocity threshold to distinguish stranded from mobile ganglia, we simulate the coexistence
of both mobile and stranded ganglia populations, and resolve the dynamic repartitioning of mass
between them through breaking up and coalescence at steady-state flow conditions. The ratio
of mobile to stranded saturations is thus a dependent variable at a fixed nw-phase saturation
value, unlike typical earlier experimental studies, where the nw-phase mass is recovered from the
medium at increasing Ca, starting with the mobilization and removal of larger ganglia [14,20],
and thus only stranded ganglia are accounted for. Such a configuration appears in very few
experimental studies where steady-state flow is achieved through the co-injection of both fluids
at fixed ratios [5,11,16,39]. These works, however, fail to distinguish between mobile and stranded
ganglia populations and report their individual characteristics. Thus the previously reported values
for the scaling exponent of the nonlinear Darcy regime typically refer to the combined Darcy flow
of both phases.

II. NUMERICAL MODEL

In the present study, we use a LB simulator for the solution of two-phase flow through a
stochastically reconstructed and disordered porous domain. Our numerical model relies on the
two equation diffuse-interface model originally proposed by He et al. [40], appropriately modified
to account also for capillarity using an alternative forcing scheme (as described in our previous
works [10,41]), and a series of robust numerical stabilization strategies, proposed initially by Lee
and co-workers [42,43]. This model effectively recovers the incompressible Navier-Stokes equation
with an additional forcing term that accounts for interfacial tension and wettability, coupled with an
evolution equation that tracks the convective interface motion, in a similar fashion as the level set
and phase field diffuse interface methods (see, e.g., Ref. [44]), or other LB schemes [45,46]. For a
detailed description of the LB formulation used in this study, the reader is referred to Refs [10,41].

The porous medium is represented by 2D domains in the form of discrete and periodic
permeability fields of size L2δx2, where δx is the lattice space unit. Each domain consists of solid
(impermeable to flow) and void (permeable) sites, where the spatial distribution of the solid sites is
accomplished using a standard spectral method that pursues the recovery of the statistical properties
of naturally occurring porous media, such as sandstone. In our case, these properties are the porosity,
φ, and the two-point autocorrelation function, parametrized by the correlation length λs, for the
spatial distribution of the solid phase [47,48]. Such a discrete periodic 2D domain is shown in
Fig. 2(a). A detailed description of the stochastic reconstruction algorithm used in this study can be
also found in Ref. [10].

It is straightforward to show that the superficial (Darcy) velocity of a Newtonian liquid flowing
in such a domain is proportional to the applied body force �F by solving the previously described
LB scheme under single-phase flow conditions (namely, Sw = 1). The intrinsic permeability of the
medium k, determined by Darcy’s law, is also found to scale with the correlation length, k ∝ λ2

s ,
and thus the parameter λs can be used as a proxy for the average pore size.

III. NUMERICAL SIMULATIONS

We performed a series of numerical simulations in 2D reconstructed porous domains to study the
effects of the flow rates and the nw-phase (ganglia) saturation, Snw, on the rheological behavior of
the system and the distinct characteristics of the resulting mobile and stranded ganglia populations.
In all our simulations, the nw-phase is initially randomly distributed in the void space using the
same stochastic algorithm as the one for the solid phase, and a correlation length of λnw = 30δx. All
simulations are performed over three different random domains of size 2048 × 2048δx2, however,
with the same correlation length, λs = 15δx, and the same porosity, φ = 0.7. Such a high value
for the porosity is required to ensure the existence of a sufficient number of percolating flow paths
across the 2D periodic domain.
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FIG. 2. (a) A typical reconstructed 2D porous domain used in this study. The black and white colors denote
solid (impermeable to flow) and void (permeable) space, respectively. (b) Scaled velocity magnitude, |u|/ût ,
during creeping single-phase flow within the domain. Lighter colors correspond to higher velocities, while
darker blue colors correspond to solid sites or flow stagnation regions. The calculated intrinsic permeability of
the domain is k = 9.9δx2. Reported lengths are in lattice space units [δx].

A constant body force, �F = ρ�g, where ρ is the fluid density and �g is the acceleration of gravity,
is then applied to generate flow, while periodic flow conditions are considered along all four sides.
This particular approximation was selected over a fixed pressure difference due to the technical
complexity of applying pressure boundary conditions across the sides of periodic domains, where
two-phase flows occurs. Our approach is, however, exact for gravity-driven flows at the pore scale,
while we expect that it also holds at the much coarser representative elementary volume (REV)
scale.

By initially performing a single-phase flow simulation, the intrinsic permeability of the medium
was found to be practically equal to k = 9.9δx2 for all three domains. Figure 2(a) shows one of the
reconstructed domains used in this study, while Fig. 2(b) shows the calculated velocity magnitude
for creeping single-phase flow with a body force applied in the x direction. The dominant flow paths
that span the entire periodic domain in the x direction appear in this figure with lighter blue color,
while the solid phase [corresponding to the black sites of Fig. 2(a)] and the stagnant flow regions
appear in darker blue color. For two-phase flow within the same domain, we expect that the presence
of the stranded ganglia will block some of these flow paths, thus effectively decreasing the relative
permeability of the domain.

The flow process is then characterized by two dimensionless numbers: the capillary number,
Ca = ûtμe/γ , which expresses the ratio of viscous to capillary forces across interfaces, and the
Bond number, Bo = |�g|(ρw − ρnw )λ2

s /γ , which expresses the ratio of gravity to capillary forces
at the pore scale. Here, ρw and ρnw are the densities of the w- and nw-phases, respectively, γ is
the fluid-fluid interfacial tension, μe is an effective saturation-weighted viscosity, defined as μe =
Snwμnw + (1 − Snw )μw, and ût = ûw + ûnw is the total superficial (Darcy) velocity of both fluids,
where

ûi = 1

A

∫
A

(�ui · �n)dA, i = w, nw. (1)
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The equivalent interstitial (pore-scale) velocity for each phase is defined as

ui = 1

Ai

∫
Ai

(�ui · �n)dA, i = w, nw. (2)

In the above equations, �n = �g
|�g| is the unit vector in the direction of the applied body force and �ui is

the local fluid velocity vector for each phase, i = w, nw. Note that A = Aw ∪ Anw ∪ As, where Aw,
Anw, and As are the domain sites occupied by the wetting, nonwetting, and solid phases, respectively.

In all our simulations, we keep the fluid densities and the interfacial tension as constants, while
�g is the real control parameter. Thus the resulting Bo is used as a proxy for the applied pressure
difference at the REV scale, and Ca is a dependent variable. Here, we take a value for ρnw = 0.579ρ0

and ρw = 1.461ρ0, where ρ0 is a reference density in our system. This is a convenient choice to
match the density ratio of an oil/aqueous system, while also taking advantage of the underlying van
der Waals equation of state which is used by our LB model to induce phase separation at the interface
of the two phases (see Ref. [10] for more details). The kinematic viscosity is taken again equal in
both phases, νi = 1

6 cδx, where c = δx/δt is the lattice speed and δt is the time step. The interfacial
tension is controlled by an adjustable parameter κ (as also discussed in Ref. [10]), taken equal to
κ = 1 × 10−1cδx2/ρ0, which produces a constant interfacial tension equal to γ = 10−2ρ0c2δx.

For each value of Snw, we start our simulations with a very dispersed initial size distribution
for the ganglia phase pursuing an average size much smaller than the typical pore size. This is
achieved by appropriately setting the correlation length values for the solid phase, λs, and the nw-
phase, λnw, respectively. This initial condition was selected in order to minimize the capillary effects
at early times and allow for the mobilization of the entire ganglia population. Starting from this
distribution, the system is simulated over several million time steps, δt , at a constant Bo value, and it
progressively reaches a quasisteady state, where the superficial velocity of both phases, ûw and ûnw,
and the number of ganglia remain practically constant with time. This corresponds to a dynamic
equilibrium, where the rate of ganglia coalescence becomes equal to the rate of fragmentation,
as already discussed in Ref. [10]. When this condition is fulfilled, a spatially periodic clustering
algorithm is applied over all recorded steady-state time steps in order to identify isolated nw-phase
clusters (i.e., individual ganglia) and the x, y velocity components of each ganglion are calculated
by integrating over their surface. This is discussed in more detail in a subsequent section. We should
note here that the clustering algorithm is based on MATLAB’s “regionprops” function that measures
the structural properties (i.e., number of pixels, center of mass, and acentricity) of isolated ganglia
in the phase distribution snapshots produced by our LB code. This is appropriately modified to
identify all the clusters of the nw-phase that extend over the sides of our domains and then resolve
their periodicity by merging those that appear on both the opposite sides. Once the ganglia velocity
has been identified, the ganglia are characterized as immobile, corresponding to the criterion ug <

0.15u0(Bo; Snw = 1).
Figure 3 shows three snapshots of the phase distribution patterns under steady-state flow

conditions for different values of the applied Bo. The complete videos for these simulations are
also provided in the Supplemental Material [49]. We can clearly distinguish significant structural
differences for the ganglia populations across these snapshots (and the corresponding videos) as the
body force is increased from the lower value of Bo = 0.01 shown in Fig. 3(a) towards higher values
in Figs. 3(b) and 3(c). These structural changes and their effects on the rheological behavior of the
fluids are discussed in the following sections.

A. Effective phase rheology

We first focus on the superficial two-phase velocity of both phases, ût , with respect to the applied
body force. These are calculated using Eq. (1) averaged over all recorded time steps after the system
has reached its “steady state.” Figure 4(a) shows the overall Darcy velocity ût = ûnw + ûw as a
function of the applied Bo for different values of the nw-phase saturation, Snw � 0.5, where the
nw-phase flows in the form of disconnected ganglia rather than as a percolating phase that spans the
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FIG. 3. Snapshots of ganglia distributions over the entire computational domain at steady-state flow
conditions for Snw = 0.3 and three different values of Bo: (a) Bo = 0.01, (b) Bo = 0.1, and (c) Bo = 0.2.
The mobile ganglia are shown in yellow, the stranded ganglia are shown in red, and the solid sites in darker
blue color. The complete videos for these simulations are provided in the Supplemental Material [49]. Reported
lengths are in lattice space units, δx, while the simulation time is denoted above each snapshot in δt units.

entire domain. Also shown with a dot-dashed line is the corresponding single-phase Darcy velocity
scaling, calculated in the limit where Snw = 0.

Interestingly enough, the presence of the nw-phase in the domain leads to a significant decrease
of ût over the entire range of Bo values and a divergence from the reference single-phase curve
which becomes particularly apparent for larger values of Snw and lower values of Bo. Furthermore,
the two-phase velocity curves are found to exhibit three distinct flow regimes: (a) a low-Bo
regime, where ût scales as ût ∝ Bo in a similar fashion as the reference single-phase curve, but
exhibiting a monotonically decreasing relative permeability for increasing values of Snw (as denoted
by the intercept of each curve with the velocity axis), (b) an intermediate-Bo regime, where a
saturation-dependent nonlinear Darcian scaling is evident, i.e., ût ∝ Boa with a = a(Snw ) > 1, and
(c) a high-Bo regime, where the linear Darcian scaling, ût ∝ Bo, is progressively restored, reaching

FIG. 4. (a) Superficial (Darcy) two-phase velocity, ût , scaling with applied Bo for various values of the
nw-phase saturation, Snw . The dot-dashed line corresponds to our reference single-phase flow scaling, namely,
for Snw = 0. (b) Mobile nw-phase saturation, Snw,mb, as a function of applied Bo. Note that at high Bo values all
curves reach asymptotically a plateau, Snw,mb = Snw − Snw,r , which corresponds to a fixed residual nw-phase
saturation value of Snw,r ≈ 0.05.
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asymptotically the single-phase reference curve, namely, the relative permeability reaches unity
regardless of the value of Snw.

A similar sequence of scalings has also been reported both experimentally and numerically in
recent literature [15,27]. Our simulations, however, reveal an additional dependence of the scaling
exponent a on the nw-phase saturation, Snw, which has not been reported in the literature.

A straightforward reasoning for the above behavior becomes apparent when we plot the mobile
nw-phase saturation, Snw,mb (namely, the overall saturation corresponding to the ganglia that have
been identified as mobile) vs Bo, shown in Fig. 4(b). This reveals that within the low-Bo regime
all ganglia remain stranded (i.e., Snw,mb ≈ 0), thus blocking some of the available flow paths and
decreasing the effective permeability of the medium. It is in this region that the most important
divergence from the reference single-phase velocity is observed. Therefore, this particular regime
can be viewed as a single-phase flow process where the relative permeability of the wetting phase
is a decreasing function of Snw, as revealed by the ever decreasing curve intercept with the ût axis.

As Bo increases above a critical value Boc (which appears to be independent of Snw in our study,
but could depend on the characteristics of the medium), the mobile ganglia saturation increases,
abruptly reaching asymptotically the value Snw − Snw,r , where Snw,r is the residual (irreducible)
nw-phase saturation. It is interesting to note that, despite the stochastic nature of all our domains,
Snw,r is found approximately equal to 0.05 in all our simulations, and independent of the value of
Snw. This fact implies that Snw,r may depend solely on the geometrical characteristics of the domain,
i.e., the porosity, solid-phase correlation length, and its autocorrelation function.

The intermediate-Bo regime thus exhibits a scaling exponent larger than unity due to the gradual
mobilization of ganglia and the subsequent opening of new flow paths. Finally, the high-Ca regime
corresponds to a viscosity-dominated flow, where the energy dissipated due to capillarity effects is
negligible. Therefore, the velocity scaling gradually converges towards the reference single-phase
flow curve. An interesting observation is also that the residual saturation (due to stranded ganglia),
Snw,r , does not significantly alter the effective permeability of the domains (as it happens in the low-
Bo regime) given that the residual ganglia are expected to be small and stranded in flow stagnation
regions that have a negligible contribution to the effective flow paths.

In order to further analyze the physical origins of the above scalings, we study the distinct
behavior of each of the two phases, separately. Starting from the w-phase, we observe in Fig. 5(a)
that it exhibits a practically linear scaling with Bo regardless of Snw. In fact, the whole flow rate
curve could be fitted with a power law with an exponent slightly different than 1, although the higher
Bo data points clearly exhibit the expected linear behavior. This could suggest that the w-phase curve
also undergoes a change of behavior depending on the value of Bo, but this would fall below the
statistical error in our simulation. Moreover, it is evident that the relative permeability of the w-phase
is a decreasing function of Snw regardless of the ratio of stranded to total nw-phase saturation.

The nw-phase [shown in Fig. 5(b)], however, exhibits a more complex behavior which is
consistent with the two-phase velocity scaling. Here, again we can distinguish three regimes. At low
Bo, the nw-phase velocity is practically equal to zero and does not appear in this logarithmic plot.
Above a certain critical Bond number Boc, the nw-phase starts to flow with a flow rate increasing
faster than linear growth. Finally, for larger Bo values the flow rate recovers a linear relationship.
Interestingly, we find that all the data points from all our simulations collapse to a single curve using
the following scaling laws: ûnw ∝ k

ν
(Snw − Snw,r ) f (|Bo − Boc|), where Snw,r ≈ 0.05 is the residual

saturation, Boc ≈ 3 × 10−2, and f (x) is a function that undergoes a change of power-law scalings
with an exponent equal to 3/2 when x is small and an exponent of 1 for large values of x. This law
also expresses the fact that below Bo < Boc (or S < Sr), the nonwetting phase is not flowing. It also
suggests that at a given Bo, the relative permeability is linear with saturation.

B. Single- and two-phase flow paths

We proceed with the study of the statistical properties of the flow field in order to shed light
upon the pore-scale origins of the nonlinear scaling regime observed both for the total and the
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FIG. 5. Superficial (Darcy) velocity scaling with Bo (a) for the w-phase and (b) for the nw-phase (ganglia).
(c) The rescaled nw-phase velocity with respect to |Bo − Boc|.

nw-phase velocities in the intermediate-Bo region. As discussed in the Introduction and also
indirectly observed in Fig. 4(b), it was hypothesized that this regime may be related to the gradual
mobilization of ganglia that results in the “opening” of new flow paths, in a similar fashion as the
nonlinear flow of yield-stress fluids in porous media near critical pressure. We postulate that the
pore-scale disorder generates two-phase flow paths with different characteristic (average) hydraulic
diameters normal to the dominant flow direction. This variance of flow path diameters results in a
nonlinear increase of the flow rate with the imposed pressure drop (or Bo) as viscous (or gravity)
forces gradually overcome capillary ones (the latter being inversely proportional to the characteristic
flow path diameter).

To verify this assumption, we define a nw-phase residence function, P(x, y, t ), as being equal
to unity for sites occupied by the nw-phase, and equal to zero, otherwise. We can therefore
define the spatial probability function p(x, y) = 〈P(x, y, t )〉t , which is averaged over the entire
range of the recorded “steady-state” time steps for each realization. Figure 6 shows the nw-phase
residence probability function p(x, y) for a single reconstructed domain and different Bo values in
the intermediate-Bo regime. For the lower Bo value [shown in Fig. 6(a)], the nw-phase is mainly
immobile, which is characterized by p(x, y) being equal to either zero (always w-phase or solid
sites) or unity (always nw-phase). As Bo increases in Figs. 6(b) and 6(c), p(x, y) takes intermediate
values corresponding to regions alternating between the w- and nw-phases, due to the progressive
mobilization of ganglia. Some preferential flow paths can be distinguished using this approach.
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FIG. 6. Mean presence maps p(x, y) of ganglia saturation (nw-phase) over all recorded time steps at steady-
state conditions for Snw = 0.3 and (a) Bo = 0.06, (b) Bo = 0.08, and (c) Bo = 0.1. All lengths are in lattice
space units, δx.

The flow paths are even more evident when we plot the nw-phase probability velocity, defined
as the steady-state temporally averaged local velocity multiplied by nw-phase presence function,
C(x, y) = 〈P(x, y, t ) × unw(x, y, t )〉t . Using this approach, we can eliminate the velocity of the w-
phase, as well as the stranded ganglia (but not entirely because there is always a small recirculation
flow within each stranded ganglion). Figure 7 shows this correlation map for the same Bo values
as in Fig. 6 (i.e., in the intermediate-Bo regime where the nonlinear Darcian scaling was previously
reported). For all Bo values, several nw-phase flow paths percolating from one side to the other (or
the top and the bottom) of the periodic domain can be clearly distinguished. We can also observe
that the number of these flow paths is increasing with Bo in a similar fashion to the yield-stress fluid
problem, as initially hypothesized. In this case, however, pore throats are invaded when the body
force exceeds the local capillary pressure and therefore ganglia become mobilized. In addition,
this condition must be met along an entire percolating path; otherwise, the ganglion will become
once again stranded after a transitional time of short-term mobility. As Bo (or the pressure drop)
increases, more flow paths meet this condition, resulting in an apparent increase in the relative
permeability of the medium. In our simulations, this is manifested by the power-law scaling of the
total and the nw-phase velocity with Bo, as discussed in the previous sections.

If we want to schematize this flow problem, one can distinguish two types of regions in Fig. 6.
The first one consists of channels where two-phase flow takes place and whose number depends
strongly on the applied Bo. In between these channels, there are also regions composed of the
immobile ganglia with the w-phase flowing around them. Therefore, the w-phase flows in both

FIG. 7. Mean correlation maps of nw-phase flux, C(x, y) = 〈P(x, y, t ) × unw (x, y, t )〉t , over all recorded
time steps at steady-state conditions for Snw = 0.3 and (a) Bo = 0.06, (b) Bo = 0.08, and (c) Bo = 0.1. All
lengths are in lattice space units, δx.
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FIG. 8. Probability density functions of the (a) total, (b) mobile, and (c) stranded ganglia populations for
Snw = 0.30 and different values of Bo. Also shown is the initial ganglia size distribution at t = 0, and the
curves corresponding to the power-law scalings with an exponent of −0.5 (dashed line) and −2 (dotted line).

regions and the analogy with yield-stress fluids should be only applied to the nw-phase liquid. This
may explain why the partial flow scaling law in Fig. 5 is more obvious for the nw- than the w-phase.
In addition, it should also be noted that the immobile nw-phase regions consist mainly of immobile
fluid that has almost never moved. Hence, its configuration depends mostly on the initial state (or
history) of nw-phase distribution. For this reason, trying to determine a universal behavior does not
seem relevant in our simulations.

C. Ganglia morphology and size and length probability distributions

A distinct feature of our numerical approach lies in its ability to identify individual ganglia and
classify them as mobile or stranded based on a preselected mobility criterion. We identify individual
ganglia at each recorded time step by applying a periodic Hoshen-Kopelman algorithm [50] on the
calculated digital phase distribution domains. This algorithm identifies neighboring nw-phase pixels
(i.e., lattice voxels occupied by the nw-phase at the current t) and marks their domain coordinates
in order to treat them as a single entity. Given the number of pixels and their coordinates for each
ganglion, it is straightforward to calculate its velocity and size by integrating as follows:

ux,g = 1

sg

∫
sg

uxds and uy,g = 1

sg

∫
sg

uyds, (3)

where ux, uy are the calculated velocity components at each voxel (x, y), and sg is the ganglion
size in δx2 units calculated as the total number of neighboring voxels belonging to each individual
ganglion [i.e., local phase index (or density) equal to ρnw]. The velocity magnitude of each ganglion
is then calculated as ug = (u2

x,g + u2
y,g)0.5 and the ganglia are subsequently characterized as mobile

when their velocity magnitude is at least 15% that of the single-phase interstitial velocity for the
same applied body force, i.e., ug � 0.15unw(Bo; Snw = 1). The latter interstitial nw-phase velocity,
unw, is calculated based on a single-phase flow realization using only the nw-phase fluid, i.e., by
setting Snw = 1.

Based on the size and mobility of each ganglion, we plot in Fig. 8 the probability density
functions (PDFs) for the entire population [Fig. 8(a)], and separately for the mobile [Fig. 8(b)] and
stranded [Fig. 8(c)] ganglia. Note that the ganglion size, sg, in these plots has been normalized with
λ2

s , which denotes the typical pore size in our domains. Figure 8 shows the results obtained over all
domain realizations at all recorded steady-state time steps and reveals some distinct characteristics
of the two populations that to the knowledge of the authors have never been reported before. The
PDF of the stranded population is reminiscent of those reported in earlier experimental works (e.g.,
Ref. [14]), which is characterized by a smaller-than-average pore size scaling of p(s) ∝ s−0.5 and
a larger-than-average pore size scaling of p(s) ∝ s−2. These two scalings are also plotted in the
stranded and total ganglia population PDFs with dashed and dotted lines, respectively, along with the
initial ganglia size PDF (i.e., at t = 0) that appears to follow a  probability distribution. Although
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FIG. 9. Probability density maps of ganglia velocity in the flow direction, ux,g/u0, and size, sg/λ
2
s , over two

orders of magnitude of Bo for Snw = 0.4. The dashed red line denotes the applied threshold criterion between
mobile and stranded ganglia and corresponds to a relative permeability of 0.15.

our results are not conclusive regarding these scalings, there also appears to be a non-negligible
dependence of these curves on Bo, which should be further investigated.

The behavior, however, of the mobile ganglia population is clearly strongly dependent on Bo and
the curves are qualitatively different from previously published results. Our results show a clear shift
of the mobile population towards larger sizes as Bo decreases, while smaller sizes are dominant at
larger Bo values. This should be attributed to the pore-scale physics related to ganglia mobilization.
As also discussed in the previous sections, larger ganglia become mobilized at smaller Bo due to
the larger pressure difference (or overall larger body force) across their length in the flow direction.
Therefore, at lower Bo values in the intermediate regime, flow is dominated by larger ganglia while
those of size comparable to the typical pore size remain stranded. As Bo increases, viscous (or
gravity) forces dominate over capillarity leading to the subsequent mobilization of smaller ones, but
also to the intensification of the dynamic fragmentation process. This results in the shifting of the
curves towards smaller sizes, while the large ones become more rare.

The distinct characteristics of the two ganglia populations are further investigated in the bivariate
frequency maps shown in Fig. 9. Here we plot the combined occurrence probability of ganglia with
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ux,g/u0 velocity in the flow direction and size equal to sg/λ
2
s , where u0 = unw(Bo; Snw = 1) stands

for the average interstitial velocity of the nw-phase at the same Bo for Snw = 1. The plots cover
the entire population of mobile and stranded ganglia and include all three domain realizations and
all time steps recorded at steady state. We have also plotted with a red dashed line the threshold
velocity above which the ganglia are characterized as mobile, corresponding to the criterion ug �
0.15u0(Bo; Snw = 1).

Starting from the lower value of Bo = 0.01 [Fig. 9(a)], which was selected to be below Boc, it is
clear that practically the entire population lies below the selected velocity threshold, regardless of
size, and in a velocity region between 0.1u0 and 0.01u0. Furthermore, it appears to follow a Gaussian
size distribution with a mean in the region 10λ2

s –100λ2
s . Given that all ganglia are macroscopically

“stranded,” these nonzero velocities should be attributed to an internal circulation inside them due
to the viscous shear stresses imposed across the interfaces by the flowing w-phase.

An increase of Bo by an order of magnitude [i.e., Bo = 0.1 in Fig. 9(b)] leads to the mobilization
of larger ganglia, demonstrated as a “jump” in velocity and repositioning in the mobile region with
a typical velocity on the order of 0.5u0–1.0u0. The majority, however, of the population still remains
in the stranded region as denoted by the relevant intensity colors.

A further increase of Bo leads to the transition of the majority of the population in the mobile
region [as more clearly shown for Bo = 1.2 in Fig. 9(d)], while the most probable size now becomes
much smaller and on the order of λ2

s –10λ2
s . The average ganglia velocity is now on the order of

magnitude of u0. This analysis further highlights the different size probability distributions of the
two populations, discussed also earlier, and verifies the proper choice of the velocity threshold to
distinguish between mobile and stranded ganglia.

We should also note here the presence of a very distinct population of stranded ganglia with
persistent and very small sizes, 20δx2 � sg � 230δx2, over the entire duration of our numerical
simulations. This population appears practically in all our simulations as scattered discontinuous
points in Figs. 9(a)–9(d) in the lower left region of the plots. We believe that this population is
associated with the residual saturation, Snw,r , and their persistent size is determined by the specific
structural characteristics of the three reconstructed porous domains.

Figure 10 shows the orientation of individual ganglia, θ = tan−1(uy,g/ux,g), with respect to the
dominant flow direction for Snw = 0.4 and increasing values of Bo. The selected Bo values match
exactly the ones of Fig. 9. Starting from the lower value of Bo = 10−2 in Fig. 10(a), where we have
seen previously that all ganglia are stranded, we note a practically uniform orientation distribution
of the ganglia regardless of their size, which ranges on the order of λ2

s -10λ2
s . Obviously, this

corresponds to a local movement of the ganglia within the pore space, where they remain stranded.
As Bo increases, the larger ganglia become mobilized and align their movement along the dominant
flow direction. It is also interesting to note that the distribution is symmetric around θ = 0, revealing
once again the isotropic nature of our digital domains. For Bo = 1.2 in Fig. 10(d), the ganglia
distribution becomes even wider, spanning from sizes on the order of 0.2λ2

s to 103λ2
s (i.e., more

than three orders of magnitude). The orientation of smaller ones in the range λ2
s –10λ2

s appears to
follow a Gaussian distribution, while the larger ones are practically oriented along the dominant
flow direction.

We conclude this section by discussing the length of the ganglia in relation to their size. For this
purpose, we used MATLAB to fit an ellipse over each ganglion that has the same normalized second
central moments. The calculated major and minor axes of the fitted ellipse correspond to the length
and width of the ganglion, lmax and lmin, respectively. Figure 11(a) shows the average ganglion
length lmax and width lmin with respect to their size sg, that clearly reveals an interesting structural
change around sg 	 λ2

s , which is reminiscent of the one also observed in the size PDFs. Indeed,
for smaller sizes, both lengths (lmax and lmin) seem to scale with ganglia size as lmax ∼ lmin ∝ s1/2,
which indicates that smaller ganglia have an invariant, almost isotropic shape. For larger sizes,
however, while both lengths still follow a power law with size, the exponent becomes quite different:
lmax ∝ s0.72 for the ganglion length, and lmin ∝ s0.5 for the ganglion width. This indicates a self-affine
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FIG. 10. Probability density maps of ganglia flow direction with respect to the applied body force, θ , and
size, sg/λ

2
s , over two orders of magnitude of Bo for Snw = 0.4. The scattered points in the left side of these maps

should be attributed to very small stranded ganglia with sizes determined by the specific structural properties
of our reconstructed domains. These constitute (at least partly) the reported residual saturation, Snw,r .

property. The fact that lmax increases faster than lmin confirms the visual observation that larger
ganglia are much more elongated than smaller ones (see also Fig. 3). In addition, it should be noted
that the average size is proportional to the product lmaxlmin ∝ s1.22, as shown in Fig. 11(b), which
would indicate that larger ganglia exhibit a fractal character.

It is interesting to compare these results with the work of Tallakstad et al. [11], who performed
two-phase flow experiments within monolayer bead packings. Contrary to what is observed here,
they reported similar exponents for both the length and width of ganglia, i.e., lmax ∝ s0.55 and
lmin ∝ s0.55, regardless of size. This apparent difference could be attributed to the large porosity
of our domains which allows for the formation of smaller-than-average pore size ganglia, while,
in the work of Tallakstad et al., even the smaller ganglia appear to cover several pore bodies.
Another contributing factor to this discrepancy could be related to the finite depth of the cells
in these experiments (compared to the infinite depth of our 2D simulations), which could further
intensify capillary effects, thus leading to more isotropic ganglia over the entire range of sizes.
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FIG. 11. (a) Mean ganglion length (lmax, crosses) and width (lmin, circles) as a function of size, sg/λ
2
s ,

for different Bo values. The dashed line represents a power law of s0.5
g and the dotted line represents s0.72

g .
(b) Product of mean ganglion length and width as a function of size. The dashed line represents s1.22

g .

D. Flow velocity of the w-phase

We conclude our study with a discussion on the effects of the presence of ganglia on the w-phase
velocity distribution. As we discussed in the previous sections, in the low-Bo limit (i.e.,Bo � Boc)
all ganglia remain practically stranded and the system undergoes only single-phase flow of the w-
phase. The presence of the stranded ganglia affects the relative permeability of the w-phase (which
was found to be a monotonically decreasing function of Snw; see, e.g., Fig. 5) by blocking the
available flow paths (as revealed in Fig. 7). This is also expected to have a non-negligible effect on
the distribution of the w-phase velocities at the pore scale.

We thus define the local w-phase velocity as �uw(x, y), with components ux(x, y) = �n · �uw and
uy(x, y) = �t · �uw, where �n and �t are the unit vectors in the longitudinal and transverse direction of
the applied �F , respectively. Figure 12 shows the PDF of the longitudinal, ux(x, y)/(ûw/(φSw )), and
transverse velocity components, uy(x, y)/(ûw/(φSw )), of the w-phase over all domain realizations
and averaged over all recorded steady-state time steps for Bo ≈ Boc = 3 × 10−2. Here the velocity
components are rescaled with the average w-phase interstitial velocity, ûw/(φSw ). In the absence
of ganglia (Snw = 0), Fig. 12 reveals a remarkable exponential probability distribution for both
velocity components. For the transverse component, the PDF is found to be symmetric around
uy = 0, as expected, spanning over several orders of magnitude in probability. For the longitudinal

FIG. 12. Probability density functions (PDFs) of the rescaled (a) longitudinal, ux , and (b) transverse
velocity, uy, components, and (c) orientation, θ = tan−1(uy/ux ), of the w-phase velocity vector �uw for various
values of the nw-phase saturation in the limit where all ganglia are immobile (i.e., Bo � Boc).
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velocity components ux, the PDF is not symmetric, but rather biased towards the positive velocity
components in the flow direction, as intuitively expected. Only the largest longitudinal components
seem to follow an exponential decay.

The presence, however, of the stranded ganglia for Snw = 0.1 and 0.3 appears to increase the
tails of both distributions, indicating an increase of probability for larger velocity magnitudes,
compared to an actual single-phase simulation (i.e., Snw = 0). These changes should be attributed to
the decrease in the pore space available for the flow of the nw-phase (for increasing Snw) combined
with the “slip” (lubricating) effects at the fluid-fluid interfaces. Both these effects lead to increased
interstitial velocities for the w-phase.

Also shown in Fig. 12 is the w-phase flow orientation, θ = tan−1(uy/ux ), that reveals a broad
but symmetric distribution around θ = 0 (i.e., the principal flow direction) and exhibits again a
nearly exponential distribution. This demonstrates the isotropic and homogeneous character of the
medium on a length scale equal to the digital domain size. The presence of stranded ganglia once
again acts in the direction of “smoothing” the slopes towards a more uniform distribution for the
velocity orientation. These results are in excellent qualitative agreement with the experimental data
of Datta et al. [51] obtained using confocal microscopy in 3D sintered glass bead packings. This
demonstrates that the above reported exponential distributions are independent of the dimensionality
of the system.

IV. CONCLUSIONS

In this contribution, we studied the flow of immiscible nonwetting liquid ganglia in heteroge-
neous 2D porous structures using an elaborate pore-scale lattice Boltzmann simulator. In line with
earlier works, we observed the existence of a nonlinear Darcy-scale regime where the total flow
rate follows a power-law scaling with applied Bo. We found, however, that the scaling exponent is
a strong function of the nw-phase saturation, contrary to the conjecture of a universal exponent
proposed by Sinha and Hansen [27]. Considering each phase separately, we showed that the
nw-phase superficial velocity also exhibits a power-law regime with an exponent equal to 3/2 and
independent of Snw, while the w-phase appears to follow a practically linear scaling with Bo. By
analogy with the problem of yield-stress fluids in porous media [52], we attributed the emergence of
such a regime to the presence of spatial heterogeneities that lead to the development of preferential
flow paths for the nw-phase. Our simulations revealed that the number of such flow paths depends
strongly on Bo, thus leading to this nonlinear Darcy-scale behavior.

The above transitional regime is observed when the applied Bo increases above a critical value,
which was found in our study to be equal to Boc ≈ 3 × 10−2, and independent of Snw. As shown in
the supplemental videos [49], this value marks the transition from single-phase flow of the w-phase
around the entire population of stranded ganglia to the percolating mobilization of the first (larger)
ganglion and the creation of the first two-phase flow path. We expect that, assuming a very dispersed
initial ganglia distribution (as in this study), this critical value is a characteristic of the geometrical
(pore-scale) properties of the porous domain, including its dimensionality, pore connectivity, and
variance of the size distribution of the solid obstacles. We would also expect that a large variance
in the pore size distribution would result in a more extended nonlinear two-phase flow regime that
could well span over several orders of magnitude of Bo.

We also studied the rheological and structural characteristics of ganglia with respect to Snw

and Bo. The size distribution of the stranded ganglia was found to exhibit two distinct power-law
scalings at small and larger sizes, which were, however, insensitive to Bo. On the other hand, the size
distribution of the mobile ganglia was found to evolve significantly with Bo with a characteristic
shift towards smaller sizes for increasing Bo values. Furthermore, the shape of smaller ganglia was
found to be practically isotropic, while larger ganglia exhibit a self-affine property, where their
width and length both follow a power-law dependency with size, but with different exponents.
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