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In almost all of the studies on the circular hydraulic jump (CHJ), gravity had been
considered as a significant variable that affects the formation of the jump. Most recently,
gravity was deprived of being important in the origin of the CHJ, which challenged
researchers in this field of fluid mechanics. This study addresses in detail the physical
concepts behind this intriguing phenomenon occurring in the radial outspreading of a
vertically downward free-surface liquid impinging jet upon a horizontal plate. The aim is
to find out whether gravity plays any role in the origin of the CHJ. Accordingly, the jump
evolution is investigated in two cases: first, the initial formation of the CHJ in which the
subcritical flow downstream from the jump is approaching the outlet boundary (developing
jump). Second, the final evolution of the CHJ in which a steady-state flow is circumventing
an obstacle at the edge of the impinged plate and falling uniformly down from the
outlet boundary (developed jump). The results indicate the existence of two different flow
regimes in the jump formation: gravity- and capillary-dominant flow regimes. In general,
the role of gravity in the formation of developing or developed jumps cannot be eliminated;
however, its importance lies in the fact of which regime dominates the flow. Intensification
of gravitational effects is observed when capillary waves are dampened by increasing
viscosity, density, or volume flow rate as well as by decreasing surface tension. Finally,
a generalized scaling relation for the jump radius is obtained considering both capillary
and gravitational effects in the critical flow condition. In contrast to the previous results,
this generalized scaling relation predicts more accurately the radius of both a developing
and a developed jump.

DOI: 10.1103/PhysRevFluids.4.114002

I. INTRODUCTION

Instantaneous changes in fluid flows bring many complexities into the analysis and assessment
of the flow. One of the well-known examples of such a state is the transition between super- and
subcritical free-surface liquid flows, where the occurrence of flow separations and counterrotating
vortices in the hydraulic jump region causes difficulties in characterizing the flow, apart from
mathematical complexities in solving elliptical equations for subcritical flows.

A circular hydraulic jump (CHJ) is a very common phenomenon and can be simply observed in
everyday life, such as in an empty sink, when a round vertical liquid jet impinges upon a horizontal
plate and spreads radially out in a thin film along the plate. Close to the stagnation point, the film
thickness first reduces due to the acceleration of the flow and subsequently begins to gradually
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FIG. 1. Formation of a CHJ before and after the arrival of the flow at the outlet boundary. (a) Developing
CHJ. (b) Developed CHJ.

increase as a result of drag forces up to the jump position, where a sudden change in the flow
thickness occurs. This intriguing phenomenon has been the subject of numerous studies. The first
effort for describing the nature of hydraulic jumps is attributed to Leonardo da Vinci [1]. Despite the
rich history of scientific research in this field, the origin of hydraulic jumps is still investigated in the
fluid mechanics community. Most recently, the study of Bhagat et al. [2] has challenged researchers
in the field to the question of whether gravity plays any role in the occurrence of the CHJ. Assigning
an insignificant role to gravity in the origin of the CHJ questions the results of more than a century
of scientific research in this field.

The idea of depriving gravity of being important in the origin of CHJs has been raised by Bhagat
etal. [2], because they observed that the orientation of a jet—a vertical impinging jet on a horizontal
plate either from above or from below, or the impingement of a similar but horizontal jet on a vertical
plate—does not change the position of the jump, as long as the subcritical flow after the jump has
not yet reached the outlet boundary. The initial formation of a CHJ, in which the flow downstream of
the jump has not yet arrived at the outlet boundary, is hereafter called a developing jump [Fig. 1(a)].
Once the flow downstream of the jump arrives at the outlet boundary, transport of information takes
place from the outlet boundary toward the jump, which considerably affects the final formation of a
CHI. The steady-state CHJ, in which the flow downstream of the jump falls uniformly down from
the outlet boundary, is hereafter called a developed jump [Fig. 1(b)].

Gravity, however, was considered as a main parameter defining the CHJ position in the well-
known studies of Watson [3] and Bohr et al. [4], who presented the following correlations for the
jump radius, respectively:

R’ @ 010132 -0.1207(%)Re™t  R; <7 o
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In the above equations, R; denotes the jump radius, d the downstream height, g the gravitational
acceleration, a the nozzle radius, Q the volume flow rate, Re the Reynolds number, v the kinematic
viscosity, and ry the radial position where the thickness of the boundary layer reaches the free

surface ry ~ 0.3155a Res [3]. Watson’s model, Eq. (1), requires experimental information on the
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downstream height to evaluate the jump position, and the scaling relation of Bohr et al. [4], Eq. (2),
has been criticized for excluding the effects of surface tension, density, and downstream height on
the jump [5,6].

Liu and Lienhard [7] reviewed the studies that had evaluated Watson’s model and explained
the reasons for its inaccuracy in supercritical high-Froude number flows and in cases having a
high downstream flow height in comparison to that of the upstream. In accordance with Ref. [7],
Bush and Aristoff [8] incorporated surface tension effects into Watson’s theory to improve its
accuracy for predicting the hydraulic jump radius. They showed that their correlation is in a slightly
better agreement with experimental results in comparison to that of Watson. However, they left
the investigation of the influences of surface tension gradients on the jump position for future
consideration owing to its complications. Mohajer and Li [9] showed that Watson’s theoretical
results can be successfully applied to develop a theory for CHJs with a capillary limit, in which
the outer film is bounded by a stable rim and the contact angle considerably affects the jump. In
accordance with the experimental observations, they showed that jump radius varies linearly with
the flow rate in these kinds of problems and the surface tension controls the slope of this linear
variation. Fernandez-Feria ef al. [10] showed that the flow downstream of the developed jump
depends significantly on the surface tension and downstream boundary condition. They found a
critical value for the surface tension (¢ *) in the range of 0.0250,, < ¢* < 0.050,, (o, is the surface
tension of water), above which a stationary jump no longer exists.

The scaling relation of Bohr ef al. [4], Eq. (2), was developed based on the theoretical model of
Tani [11] and Kurihara [12], who mainly studied the fully viscous sheet flow on an impinged plate
by a simple generalization of the shallow water theory. Accordingly, Bohr et al. [4] employed the
mean value approach to average the boundary layer equations over the flow thickness and applied a
parabolic velocity profile. They found that volume flow rate and viscosity strongly affect the jump
position and presented the scaling relation in Eq. (2). They later modified this approach including a
shape parameter in the velocity profile that makes the theory capable of treating the separation region
of the jump as well [13]. Using this theory, Watanabe et al. [14] obtained a system of two ordinary
differential equations describing the jump. Their solution shows that the hydraulic jump problem
with a separation bubble on the bottom surface can be properly solved. However, the absence of
the effects of surface tension forces and dynamic pressure variations in the theory of Bohr et al.
[13] was questioned by Yokoi and Xiao [15,5]. In accordance with Ref. [7], Yokoi and Xiao [15,5]
argued that transitions between jump structures are caused by the counteraction between surface
tension forces, which are due to the curvature in the jump region, and relatively high dynamic
pressure gradient zones, which occur underneath the interface in the jump region. The lack of surface
tension, downstream height, and density effects in the scaling relation of Eq. (2) was also questioned
in Ref. [6]. Rojas et al. [6] numerically solved the CHJ based on the inertial lubrication theory and
derived the following scaling relation, which includes the downstream height (s) and shows accurate
results at low and high Reynolds number flows, corroborating earlier findings [4,16—18]:

Rj ~ (q3v71g71s72)1/4. (3)

A simple model was recently developed by Wang and Khayat [19] that predicts the radius and
height of developed jumps for high-viscous liquid jets. The model explores effects of gravity on
the supercritical flow upstream of the jump and shows that if gravity is included, the location of
the jump will coincide with the singularity in the jump region, where the flow is separated. An
important advantage of this model is that the jump position can be determined in high-viscous
liquid jets without any knowledge of downstream flow conditions.

None of the studies, mentioned above, considered a developing CHJ, i.e., before the flow reaches
the outlet boundary, which has been recently investigated by Bhagat et al. [2]. They presented a
theory by introducing an energy equation that includes the flux of surface energy and leads to a new
critical flow condition We™' + Fr~2 = 1 for the jump position. This theory has been just recently
criticized by Duchesne et al. [20], showing that such a condition (actually, a?We l +Fr2=1,
where o = h/r is the aspect ratio of radial variations of the flow thickness over the radius) can at
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best predict an upper bound on the jump radius. This problem apart, Bhagat et al. [2] found the
significant role of the density (o) as well as surface tension (o) in the scaling of a developing jump
instead of the role of gravity as follows:

Ry~ (g’ pv~'a"HA )

In this study, a developing CHJ as well as a developed one are scrutinized in order to distinguish
the dominant parameters in the formation of a CHJ and also to find out to which extent the claim of
Bhagat et al. [2] for depriving the role of gravity in the origin of CHIJs is applicable. Accordingly, the
presence of two kinds of flow regimes is indicated: gravity- and capillary-dominant regimes. When
capillary effects dominate the flow, gravity shows a negligible effect on the formation of the jump.
On the other hand, when gravitational effects dominate the flow, the significant role of gravity in the
origin of CHIJs is depicted, which clarifies that the claim of Bhagat et al. [2] is not unconditionally
true. Hence, it is shown that predictions of the scaling relation of Bhagat et al. [2], Eq. (4), can
noticeably deviate from the jump position in gravity-dominated flow regimes. Furthermore, it is
clarified how the variation of other parameters such as the volume flow rate, density and viscosity
affects the formation of a CHJ in capillary- and gravity-dominated regimes. Eventually, the scaling
analysis of Bhagat ef al. [2] is modified to obtain a generalized scaling relation for the jump position,
which includes both gravity and capillary effects. For these purposes, the applied numerical method
and the governing equations together with the proof of the numerical accuracy are presented in
Sec. II, and Sec. III depicts the contribution of the important parameters to the formation of CHJs.

II. NUMERICAL METHODOLOGY
A. Governing equations

Under the assumption of a laminar free-surface radial flow, fully incompressible two-phase
Navier-Stokes equations applying the volume of fluid (VOF) method [21] can be written out using
the Einstein summation convention for continuity, momentum, and volume fraction («), respectively
as follows:
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To incorporate surface tension forces, f” (o stands for the surface tension), the continuum surface
tension model [22] is applied in which the surface curvature, ¥, is estimated through the following
second derivative of the volume fraction field («):

Va
| Voo |

o =okii=—o(V-M)ii, A= ()

Note that the surface tension force has two components and is modeled through a continuum
surface force method in a VOF analysis. The first component is due to the local curvature and is
normal to the interface. The second one is due to local variations of the surface tension coefficient
and is tangential to the interface. In the VOF approach, a continuous volume force, which applies
to fluid elements everywhere within a thin transition region near the interface, replaces the surface
force localized at the fluid interface. The continuum surface force method removes topological
restrictions without losing accuracy [22], and it has thus been widely and successfully used in a
variety of studies [23-26].
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Under the application of the VOF method, the phase fraction values are used in the following
manner to calculate any required property, x, for the mixed fluid of liquid (/) and gas (g):

x =oax + 1 —a)y,. )

The open field operation and manipulation library (OpenFOAM) [27-29] is used to solve the jet
flow under the interFoam solver, a finite-volume implementation of the VOF method [21]. It models
multifluid flows by the cell-average volume fractions of the secondary phase. The free-surface flow
of two immiscible and incompressible fluids is numerically calculated by solving the advection of
the volume fractions and the fully resolved Navier-Stokes equations for mass and momentum.

As the finite-volume discretization defines cell-average volume fractions, the interface is rep-
resented by mixed cells that contain both fluids. To avoid numerical diffusion of the interface,
interFoam introduces an artificial antidiffusive flux in the direction normal to the interface, known as
the interface compression method. In capillary-dominated flows, interfacial forces must be obtained
from the curvature of the interface. If the exact interface location is not required, interface curvature
can be reconstructed from the divergence of the interface normal vector using vector field calculus,
which is implemented in the interFoam solver. The resulting interfacial forces are converted into
cell-average volume forces by the continuum surface force method [22].

Because of the accuracy limitations inherent to the interFoam solver [30], the interface com-
pression scheme is amended by a limiter to avoid artificial oversharpening of the interface, and
interfacial forces are calculated by the continuum surface stress method [31]. This variant of
interFoam has the following advantages over its original. First, capillary pressures are predicted
correctly. Second, predictions do not depend on the strength of the antidiffusive flux. Third,
predictions are independent on the frame of reference that is crucial to calculations of traveling
waves in liquid films and leads to steady-state problems in a frame of reference moving at the phase
velocity. A detailed description of the model together with its validation is given in Rohlfs and
Pischke [32]. In addition, validation of the model has been shown for falling liquid films by Rohlfs
et al. [33], and it is shown for CHJs in Sec. II B.

B. Verification and validation

The numerical procedure is similar to the approaches described in Refs. [33-36]. Figures 2(a)
and 2(b) show the computational domain and the boundary conditions as well as the qualitative
distribution of the grid cells. The wall group with the no-slip condition consists of the impinged
plate, obstacle (provided that a developed CHIJ is under consideration), and upper wall, which is
related to outer diameter of the nozzle. The dimensionless height and length of the obstacle are ¢, =
h,/D = 0.2 and &, = [,/D = 2 (D is the nozzle diameter), respectively. It should be noted that the
obstacle is used only for the simulation of developed jumps. For the surrounding condition where the
pressure is specified and either an inflow or an outflow may occur, a velocity inlet/outlet boundary
condition is applied, in which the patch normal velocity is calculated according to the pressure
gradient. At the inlet, a fully developed parabolic velocity profile in conjunction with the static
atmospheric pressure is imposed. The spatial derivatives are discretized using a central difference
scheme and the temporal ones by a first-order bounded implicit scheme.

In order to verify the independence of the numerical results from the used grid, in which
the grid cells are uniformly distributed in both directions, two aspects have been inspected; the
dependence of the wall gradient and that of the interface profile on the grid resolution. Figures 3
and 4 present the suitability of the grid resolution for further computations with a dimensionless
cell size A& = Ar/D = At = Az/D = 5.0 x 1073, where £ and ¢ are the dimensionless radial
and axial coordinates, respectively. The presented interface profiles in Fig. 3(a) and the wall
gradient in Fig. 4(a) result from the simulation of a flow that is approaching the outlet, i.e., a
developing jump, at the dimensionless time T = tv/D? = 8 x 1072, The variations of wall gradient
and interface profiles in the jump region are magnified in the insets of these figures. At the contact
point of the liquid, gas, and plate, the application of zero gradient boundary condition for volume
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FIG. 2. (a) Computational domain with the boundary conditions; dashed lines schematically show an
initial formation of the jump before the flow reaches the outlet boundary (a developing jump) and the light
blue background segment illustrates a steady-state flow dropping down from the outlet (a developed jump)
(b) Qualitative grid cells distribution and the dimensionless length scales based on the nozzle diameter.

fraction provides a 90° contact angle. At this point, a sudden variation of the wall gradient due
to the discontinuity is expected, which is enlarged in Fig. 4(a). It should be kept in mind that the
contact angle would expectedly affect the developing jump [38,39]. However, Bhagat et al. [2]
experimentally found that there is a very small difference between the jump positions forming on
the glass (hydrophilic) and Teflon (hydrophibic) surfaces. Therefore, the effects of the contact angle
are not investigated in this study, which restricts the results to a constant contact angle.

Figure 3(b) shows that the grid resolution is fine enough to be applicable for the steady-state
flow over the obstacle (developed jump) as well. It should be noted that the presented grid study
has been done for the dimensionless nozzle-to-plate distance H/D = 2 and the dimensionless plate
radius R/D = 8 in conjunction with the entrance Reynolds, Re; = 4Q/vn D = 764, Weber, We; =
Re% o v?/oD = 288, and Froude, Fr; = 4Q/(nD*/gD) = 9.756, numbers. This configuration has
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FIG. 3. Independence of the interface profile from the grid resolution: (a) Flow approaching the outlet
boundary at T = 8 x 1072; (b) final evolution of the flow over the obstacle.
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FIG. 4. (a) Independence of the wall gradient from the grid resolution. (b) Comparison with the experi-
mental study by Duchesne et al. [37].

been used for all the studied cases in this paper. However, the grid resolution was also checked
for the cases with the highest entrance Reynolds, Weber, and Froude numbers presented in this
study, showing the trustworthiness of the used grid in the range Re; < 1.186 x 10°, We; < 1.296 x
103, Fr; < 13.798.

To validate the results of the computational scheme, a comparison with the experimental study of
Duchesne [37] on the impingement of a laminar oil jet is presented in Fig. 4(b). The authors thank
Prof. T. Bohr for sharing the relevant experimental results with us. The numerical results are in
good agreement with the jump radius and the up- and downstream heights of the flow. The working
fluid is silicon oil at room temperature (v = 20 cSt, 0 = 20 mN m~!, and p=096¢g cm™3) that is
released from a circular nozzle with a diameter of 3.2 mm as a developed flow. Hence, a parabolic
entrance velocity profile is applied for the simulation. The volume flow rate is 17 cm® s~! and the
flow passes through a 4 cm nozzle-to-plate distance to impinge on a circular plate with the diameter
of 30 cm and without any obstacle at the edge of the plate.

III. RESULTS AND DISCUSSIONS

The results chapter is divided into three sections. First, the question raised by Bhagat et al.
[2] is addressed whether and to which extent gravity influences the initial formation of a CHJ (a
developing jump). Further, the influence of the most important parameters on the formation and
positioning of a CHJ is addressed. Finally, a generalized scaling analysis for the jump radius is
presented.

A. Gravity- versus capillary-dominated developing CHJs

Gravity-dominated free-surface flows, such as open channel flows, exhibit sub- and supercritical
flow behavior based on the ratio between flow velocity and wave velocity. In the supercritical state,
the flow velocity exceeds the wave velocity, such that the transport of information is downstream
only. The Froude number, which can be seen as the ratio between the flow velocity and the gravity
waves velocity, is the relevant dimensionless number. In the subcritical state, the Froude number is
less than one. The distinction between sub- and supercritical flow behaviors is also relevant for a
CH]J to determine the jump position [3,4]. The corresponding local variation of the Froude number
is Fr(r) = Q/2nrh(r)s/gh(r), where h(r) is the radial variation of the flow thickness.

For a CHJ, however, the small length scales of the wall jet (flow thickness) prior to the appearance
of the jump suggest that capillary forces and waves could be of significance as well. The critical
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wave velocity to distinguish between sub- and supercritical flow conditions is thus also the capillary
wave velocity, not only the gravity waves velocity. In the subcritical state, capillary waves can travel
towards the stagnation point, in the opposite direction of the flow velocity. The local variation of the
Weber number, We(r) = pQ? /4w 2r?ah(r), is the relevant parameter to estimate capillary effects.

In this regard and to comprehend the origin of CHIJs, it is necessary to clarify whether the speed
of the transport of information by capillary waves and/or by gravity waves exceeds the flow velocity
to distinguish between super- and subcritical flows. The superposition of both mechanisms hinders
in most cases a clear distinction. The presented theory by Bhagat et al. [2] introduces a new critical
flow condition, Fr=2 + We™! = 1, in which the roles of both capillary and gravity waves are taken
into account. This condition is further investigated here.

Figure 5 presents the numerical simulation results for two different developing CHIJs. The flow
conditions are summarized in Table 1. The surface tension is chosen such that the developing jump
is significantly affected by gravitational forces on the left side while it is essentially affected by
capillary forces on the right side. The evolution of the interface geometry shown in the top row is in
accordance with the observations of Bhagat et al. [2] on a fixed position of the jump before the flow
reaches the outlet boundary. However, an increased surface tension (right side) delays the arrival of
the flow at the outlet boundary by increasing the downstream height [Fig. 5(a2)]. This is the result
of higher capillary forces that cause a droplet-shape fluid bulb downstream of the jump. The deeper
fluid flow downstream of the jump reinforces hydrostatic pressure acting against momentum and
slightly shifts the jump position upstream.

To distinguish between the role of gravitational and capillary forces, various criteria for the loca-
tion of the hydraulic jump are compared in the second and third rows of Fig. 5. A phenomenological
characteristic is the location of the highest interfacial gradient, dh/dr [15]. To identify the role of
gravitational and capillary waves, variations of the inverse Weber number and the Froude number
squared as well as their combination Fr=2 4 We ™! are plotted.

For a gravity-dominated CHJ (left side), the inverse Weber number is significantly below unity
[Fig. 5(b1)]. In contrast, the inverse Froude number squared quickly increases near the location
of the hydraulic jump and surpasses unity. Due to the small effect of the Weber number, the
combination of the Froude and Weber numbers (Fr=2 + We™!) surpasses unity slightly upstream.
Note that the highest interfacial gradient is very close to the location defined by Fr = 1.

For a capillary-dominated CHJ (right side), the inverse Weber number surpasses unity upstream
of the location where the inverse of the Froude number squared surpasses the value of unity
[Fig. 5(b2)]. Both courses, Fr—2 and We™, increase significantly downstream of the hydraulic
jump. However, at the location defined by Fr=2 4+ We™! = 1 the inverse Weber number dominates.
Figure 5(c2) shows the surface geometry that exhibits a significant capillary wave before the
hydraulic jump. The highest interfacial gradient is also close to the location defined by We = 1.

Therefore, the claim of Bhagat et al. [2] for neglecting gravitational effects on developing jumps
and being content with We = 1 as the critical flow condition to obtain the position of a developing
jump does not hold up in gravity-dominated flow regimes. In other words, the traditional way of
demarcating between sub- and supercritical flows, Fr = 1, is quite accurate in gravity-dominated
flow regimes for developing jumps.

Accordingly, it is expected that the scaling relation presented by Bhagat et al. [2], Eq. (4), does
not work well in gravity-dominated flow regimes. To show this, Fig. 6(a) compares the locations
of developing CHJs on the basis of the condition of Fr=2 + We~! = 1 with those on the basis of
Eq. (4) for a broad variation of the surface tension, which includes the transition between capillary-
and gravity-dominated flow regimes. In this case, the transition occurs around o &~ 0.03 N m~!. For
high capillary forces (o > 0.03 N m~'), good agreement is observed. However, for low capillary
forces (0 < 0.03 N m~'), predictions of Eq. (4) noticeably deviate from the jump position owing
to the increasing significance of gravitational effects. For & = 0.01 N m~!, the error of Eq. (4) in
predicting the jump position is about 27%. In capillary-dominant flow regimes, however, the jump
positions are well captured, applying a constant coefficient ¢ = 0.262 [which is needed in Eq. (4);
see Fig. 6(a) as well] instead of the theoretical (0.277) and experimental (0.289) values reported by
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FIG. 5. Formation of a CHJ in gravity-dominant (left column) and in capillary-dominant (right column)
regimes. (a) Initial formation of a CHJ showing a constant position for the jump, before the flow reaches
the outlet boundary. (b) Distributions of the inverse Weber number and the Froude number squared, and that
of Fr™2 4+ We™! before (supercritical flow) and after (subcritical flow) the jump position at 7 =7 x 1072,
(¢) Jump position (£§; = R;/D) based on the conditions Fr = 1, We = 1, Fr2 + We™! = 1 or where dh/dr
has its maximum. (d) Gravity (/gh), capillary (/o /ph), and capillary-gravity (/gh + o /ph waves velocities
before and after the jump at T = 7 x 1072,
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TABLE I. Simulation parameters. The nozzle diameter is D = 5 mm for all cases.

Figure p(gem™) v (cSt) 0 (mls™) g(ms?) o (mNm™)
5,6 1.11 10 30 9.81 Variable
7, 12(a) 1.11 Variable 30 9.81 45

8, 12(b) 1.11 10 Variable 9.81 45

9, 13(a) 1.11 10 30 9.81 Variable
10, 13(b) 1.11 10 30 Variable 45

11, 12(c) Variable 10 30 9.81 45
14(a) 1.11 Variable 30 9.81 45

Bhagat et al. [2]. The RMS percentage of applying the theoretical and experimental coefficients is
about 6% and 10%, respectively.

Figure 6(b) depicts the approximate boundaries for pure capillary and gravity waves in water
according to the study by Hansen ef al. [18]. These boundaries can be obtained by neglecting the
role of gravity or surface tension in the dispersion relation of capillary-gravity waves (for more
details see Appendix B in Ref. [18]). As Fig. 6(b) shows, both gravity and capillary waves can
be important in shallow water. Therefore, to study thin liquid film flows, it is necessary to clarify
which regime dominates the flow. For instance, shallow-water gravity waves dominate the flow for
frequencies lower than 5 Hz. For frequencies more than 30 Hz, the waves are essentially of capillary
type. The flows measured by Bhagat et al. [2] have been in a capillary regime and so they did not
observe gravitational effects on developing jumps.

A comparison between gravity, capillary, and capillary-gravity wave velocities is presented in
the last row of Fig. 5. It shows that gravity waves overcome capillary ones in a gravity-dominant
regime before the occurrence of the jump [marked with a circle in Fig. 5(d1)]. The jump position
has been highlighted with a square and calculated based on the criterion of Fr=> + We™! = I, which
shows the position at which the flow mean velocity equals the gravity-capillary wave velocities (z =
Jgh+o/ph, u= Q/2nrh), which is a superposition of gravity (,/gh) and capillary (/o /ph)
wave velocities. In addition, Fig. 5(d1) depicts that nowhere throughout the domain in this

45 103 =
(@ - ==—- theoretical coefficient: ¢ =0.277 (b) —-—-— capillary waves gravity-
. . ) dominated
---------- experimental coefficient: c = 0.289 —=—=—: gravity waves -
40~ 0 e numerical coefficient: c=0.262 capillary-gravity waves gl
T \‘ o  jump positions (Fr’ we'= 1)
g« \ \"“ 2 L
N AN 10
o 35p & \\ 6=30mNm?!
> \’\, N = F~— capillary-gravity
[ NN . = =~ “\\_ regime
g N, N capillary- = S~
> 30 N S, dominant regime
N g 1}
< ~., ~
n %o, o . 10
Bl o ~
25 o¢ .
ity-dominant capillary-
gravll;y in(:;nman Qoo = dominated
g g regime
20 10° 7 2
0.01 0.03 0.05 0.07 10 10

A (cm)

FIG. 6. (a) Possible deviations of the scaling relation of Bhagat er al. [2], Eq. (4), from the jump position.
(b) Dispersion relation of undamped capillary-gravity waves in water. The different chromatic regions represent
the approximate boundaries for pure capillary waves (small wavelengths, A < 0.7 cm) and gravity waves (long
wavelengths, A > 4 cm). The region in the middle has mixed capillary-gravity waves. The solid line represents
the relatively sharp boundary between the shallow- and deep-water limits [18].
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FIG. 7. Influence of viscosity on developing (left column) and developed (right column) CHJs: (a) interface
geometry; (b) and (c) variation of capillary and gravity effects in the jump region.

gravity-dominant regime are the capillary wave velocities equal to the flow mean velocity to result
in the critical flow condition We = 1. However, gravity wave velocities become equal to the mean
flow velocity (highlighted with a star), which is close enough to the calculated jump position on the
basis of the criterion of Fr=2 4 We™! = 1 to prove that the classical way of demarcating between
super- and subcritical flows (Fr = 1) can be applied for developing CHIJs in a gravity-dominant
regime. Hence, gravity plays a profound role in the origin of CHJs, showing that depriving the role
of gravity in the origin of CHIJs is not unconditionally true. However, Fig. 5(d2) depicts the minor
contribution of gravity waves to positioning a developing jump in a capillary-dominated regime.

B. Developing versus developed CHJs

This section is allocated to clarifying the influences of the outlet boundary condition on the jump.
In this regard, the developing jump is compared with the developed one. Figures 7 to 11 present
simulation results for both types of the CHJ combined with a variation of the most significant
parameters (viscosity, volume flow rate, surface tension, gravity, and density). The simulation
parameters for each case are given in Table I. It should be noted that a 90° contact angle, as
mentioned in Sec. II B, is applied for simulations of developing jumps. Since Bhagat et al. [2]
observed that the contact angle has a negligible effect on developing jumps, we restrict ourselves to
the consideration of a constant contact angle.

To have a better understanding of the influence of every single parameter on gravitational and
surface tension effects, the results are not presented on the basis of dimensionless numbers. For
instance, an increase in the volume flow rate leads to the higher Reynolds and Weber numbers.
Since the flow becomes thinner for a higher Reynolds number, stronger capillary effects could be
expected. However, a higher Weber number decreases those effects on the jump.
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FIG. 8. Influence of volume flow rate on developing (left column) and developed (right column) CHIJs:
(a) interface geometry; (b) and (c) variation of capillary and gravity effects in the jump region.

1. Viscosity

The top row in Fig. 7 indicates the profound role of viscosity in the positioning of both a
developing (left column) and a developed (right column) CHJ. Increasing viscosity for the same
volume flow rate results in an earlier (upstream) decrease in the flow velocity and thus an increase
in the film thickness. This in turn increases the velocity of gravity waves and their influence on the
formation of the jump, as can be seen by comparing the distributions of We™! and Fr=2 in Fig. 7(b1)
with that of in Fig. 7(b2) for a developing CHJ. For a developed CHJ, such a comparison is provided
in Figs. 7(c1) and 7(c2). For both cases, a higher viscosity increases the distance between the jump
positions obtained from the criteria We = 1 and Fr 2 + We~! = 1. Moreover, the location of the
highest interfacial gradient becomes a bit closer to the jump position (Fr—2 4+ We™! = 1) as viscosity
increases in the case of a developed jump. For a developing jump, however, dh/dr becomes a bit
farther from the jump position (Fr=2 + We™! = 1) for a higher viscosity.

2. Volume flow rate

Influence of the volume flow rate on developing and developed jumps is presented in the left
and right columns of Fig. 8, respectively. Position of the jump noticeably changes with a change in
the volume flow rate. At the same comparable position in the supercritical flow upstream the jump
[marked with a circle in Figs. 8(al) and 8(a2)], the velocity of gravity waves decreases for a higher
volume flow rate, because the flow thickness decreases. Nevertheless, the flow is thicker for a higher
volume flow rate just before the occurrence of the jump. It means that capillary effects are decreased
in the jump region for a higher volume flow rate, despite their increase in the supercritical region.
This is shown in Figs. 8(b) and 8(c), where as can be seen the distance between the distributions
of We™! increases from that of Fr=2 4+ We ™! for a higher volume flow rate. Notably, the effect of
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FIG. 9. Surface tension effects on the formation of CHIJs: interface geometry for a developing (al) and
a developed (a2 and b) CHIJ; (c) local variation of the inverse Froude number squared, the inverse Weber
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(+/gh + o /ph), and the mean flow () velocities for a developed jump.

higher volume flow rate on the maximum of dh/dr is similar to the effect of higher viscosity on it,
because both lead to the increase in gravitational effects in the jump region.

3. Surface tension

As Fig. 9 shows, influence of the surface tension on a developing jump is stronger than on
a developed one. For a developing jump, in contrast to a developed one, surface tension forces
considerably act against momentum and contribute noticeably to satisfy the critical flow condition
at the jump, which is schematically shown in the insets of Fig. 9(a). Since the flow downstream
of the jump has not yet reached the outlet boundary, it has a rim bulb shape, which is enlarged by
increasing the surface tension [Fig. 9(al)]. Hence, the inverse pressure gradient is increased and
shifts the jump position upstream. For a developed jump, on the other hand, increasing surface
tension does not lead to any noticeable variation of the flow thickness downstream of the jump
[Fig. 9(a2)], where the height of the flow is already formed and the influence of the surface tension
is only on the smoothness of the interface in the jump region. It means, for a developing jump, that
higher surface tension leads to the earlier (upstream) satisfaction of the critical flow condition and
consequently to the earlier occurrence of the jump as is presented in Fig. 9(al). On the other hand,
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Fig. 9(a2) indicates that variation of the surface tension results in a minor change in the position of
a developed jump.

Nevertheless, the interface profile of a developed jump is still affected by variation of the surface
tension, where a significant capillary wave occurs just before the jump by increasing the surface
tension [Fig. 9(b)]. A same behavior can be seen for a developing jump [Fig. 5(c)]. Simplifying
the critical flow condition from Fr=2 + We™! =1 to Fr =1 and/or to We = 1 depends on the
strength of this wave. Similar to a developing jump (right column of Fig. 5), the presence of this
wave in a capillary-dominant regime [ = 70 mN m~! in Fig. 9(b)] shows that the assumption of
Bhagat et al. [2], We = 1, is quite a good approximation to locate the jump, because the velocity of
capillary waves is very close to the velocity of gravity-capillary waves [Fig. 9(d2)]. However, the
disappearance of such a capillary wave in a regime dominated by gravitational effects [c = 10 mN
m~!in Fig. 9(b)] leads to the detachment of We™! from Fr—2 + We™! [Fig. 9(c1)]. In such a case,
the assumption of We = 1 poorly projects the jump position [Fig. 9(b)], and the estimated jump
radius based on Fr = 1 is highly accurate, because the velocity of gravity waves overcomes that of
capillary ones just before the occurrence of the jump [Fig. 9(d1)].

It should be noted that the highest interfacial gradient, dh/dr, accurately predicts the position
of a developed jump in a gravity-dominated regime [Fig. 9(c1)]; however, its prediction becomes
worse for a capillary-dominated regime [Fig. 9(c2)]. This is contrary to a developing jump, where
the maximum value of dh/dr is closer to the jump position if the flow regime is capillary dominated
[Fig. 5(c)].

Another aspect is the smoother interface profile of a developing jump for lower surface tension
[Fig. 9(al)]. Since a higher surface tension causes higher capillary forces trying to minimize the
interface (as discussed in Sec. IIT A), the downstream height thickens, which yield a steeper jump
profile. For a developed jump, however, Fig. 9(a2) shows that a lower surface tension yields to a
steeper interface in the jump region, which goes down to the lower magnitude of surface tension
forces compared to pressure forces in the jump region.

4. Gravity

Comparison of Fig. 9(a) with Fig. 10(a) indicates that the response of CHJs to the variation of
gravity is in contrast to the variation of surface tension. The reason is the different functionality
of surface tension forces before and after the arrival of the flow at the outlet boundary, which is
schematically shown in the insets of Fig. 9(a). In fact, the net of surface tension forces along with
viscous forces cause an inverse pressure gradient that compensates the momentum of the flow at the
jump. Although lower gravity decreases the inverse pressure gradient, this effect is negligible for
developing jumps in comparison to the effects of surface tension and viscous forces. Hence, for the
same surface tension, lowering gravity slightly shifts the jump position [Figs. 10(al) and 10(b1)].
However, for a developed jump, the net of surface tension forces loses a considerable portion of its
opposition to the momentum of the flow, and the role of inverse pressure gradient in positioning
the jump becomes quite significant. Therefore, reducing gravity for a developed CHJ considerably
moves the jump position downstream [Figs. 10(a2) and 10(b2)], which is inconsistent with previous
findings [40-42].

This downstream movement of developed jumps by decreasing gravity means that the jump
in general becomes weaker, since a lower amount of momentum is dissipated, which results
in a smoother interface profile in the jump region. Such a downstream movement of the jump
by decreasing gravity can cause the disappearance of the jump in a developed case [41]. For a
developing jump, on the other hand, reducing gravity does not lead to a considerable downstream
movement of the jump position. It means that the same amount of momentum is dissipated through
a developing jump, despite the variation of gravity. The reason lies in the fact that the flow regime
is more sensitive to the variation of surface tension than that of gravity. Nevertheless, the interface
profile of a developing jump changes with gravity and becomes steeper in the jump region for lower
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gravitational accelerations. The reason is the reinforcement of capillary effects in the jump region
by decreasing gravity, which causes to a larger droplet-shape fluid bulb.

The weaker gravitational effects are accompanied by a stronger capillary wave just before both
a developing [Fig. 10(b1)] and a developed [Fig. 10(b2)] CHJ. The stronger capillary wave is
intertwined with the enhancement of capillary effects on the jump. This is given in Fig. 10(c) for a
developing and in Fig. 10(d) for a developed jump, where the distribution of We™! overlaps that of
Fr=2 + We~!. Consequently, the distance between the projected jump positions based on the critical
flow conditions Fr = 1 and Fr—2 + We™! = 1 is increased as gravity decreases for both a developing
[Fig. 10(c1)] and a developed Fig. 10(d1)] jump.

It should be noted that the maximum value of dh/dr does not experience a considerable change
for developing jumps as gravity varies [Figs. 10(cl) and 10(c2)]. This is different for developed
jumps [Figs. 10(d1) and 10(d2)]. Figure 10(d1) shows that the smoothness of the interface for low
gravity moves the location of the maximum value of dh/dr away from the jump position.

Another point is that the supercritical flow thickness upstream of the jump is not affected by
the variation of gravity [Fig. 10(a)]. Hence, the capillary wave velocities, /o /ph, almost remain
unchanged and overlap each other upstream the jump for both a developing [dashed lines in
Fig. 10(el)] and a developed [dashed lines in Fig. 10(e2)] jump. Nevertheless, higher gravity
increases the capillary-gravity wave velocities (1/gh + o/ ph), which is mainly due to the increase in
gravity wave velocities (4/gh). The marked positions 1 and 2 in Figs. 10(e1) and 10(e2) correspond
to the locations where the mean velocity of the wall-jet equals gravity wave velocities (Fr = 1)
for a high (g) and a low %g gravitational acceleration, respectively. It shows that the critical flow
condition of Fr =1 is not applicable to determine the jump position in low-gravity mediums
(capillary-dominated regimes) for both a developing and a developed jump.

5. Density

Variation of the density affects inertia forces which are balanced out at the jump through the
net of gravitational, viscous, and surface tension forces. Since the thickness of the supercritical flow
upstream of the jump undergoes no changes through the variation of the density in both a developing
and a developed CHJ [Fig. 11(a)], gravitational effects remain unchanged before the jump. This fact
can be observed in Fig. 11(e), where gravity wave velocities overlap each other in the upstream
region (see dashed-dotted lines). For a constant kinematic viscosity (see Table I for Fig. 11) and an
unchanged height of the flow in the supercritical region, viscous forces do not face any noticeable
change by the variation of the density as well. Hence, it is expected that variations of the density
mainly affect surface tension forces.

The second row in Fig. 11 shows the intensification of capillary effects by decreasing the density.
As aresult, a significant capillary wave prior to the jump appears that makes the assumption of We =
1 applicable to accurately predict the jump position for both a developing and a developed jump
[Fig. 11(b)] in low-density free-surface liquid jets. Nevertheless, the sudden rise of the interface
in the jump region of a developing jump results in the quick augmentation of gravitational effects
for low densities. Therefore, the predicted position of a developing jump by applying the critical
flow condition of Fr = 1 is also a relatively good approximation even though the capillary effects
are intensified by decreasing the density [Figs. 11(b1) and 11(c1)]. For a developed jump, however,
Fr = 1 inaccurately predicts the jump radius for low densities, because the interface profile smoothly
grows, and consequently gravitational effects do not swiftly become important [Figs. 11(b2) and
11(d1)].

Since increasing the density damps capillary waves right before the jump and weakens surface
tension forces [for both a developing, Fig. 11(b1), and a developed, Fig. 11(b2), jump), gravitational
effects become significant and comparable to that of capillary ones. This is shown in Figs. 11(el)
and 11(e2), where the velocities of gravity and capillary waves reach the mean flow velocity at the
same location. Accordingly, the obtained jump positions on the basis of We = 1 and Fr = 1 are
the same [Figs. 11(c2) and 11(d2)]. For a developed jump, high densities result in an instantaneous

114002-16



ROLE OF GRAVITY AND CAPILLARY WAVES IN THE ...

TMe t
..... p=0.555g cm3
————p= 1.110gcm'; P
p —_— p=2.220gcm //‘ e
0 0
0 8 0 2 4 6 8
0.7 0.7
(b1) — | mmm—— p=0.555g cm3 ®2)
AT =2.220 g cm’3 o Fr=t
// \\. pes g ot Wg =1 "
s o Fr=1 A + Fri+wel=1 L
0.5 !-I - Wi= 1 B ‘\_\ 0.5 ¢ max(dh/dr) '/l‘ ,
" + FreeWe'=1 -‘- —-———— p=0.555gcm”
. i ¢ max(dh/dr) —— p=2220gcm?
é
I
0.3 ! 0.3
!
i
0.1 0.1
0
3 4 5 6 7 8 3 4 5 6 7 8
3 4
(c1) i (d1) A i
p=0.555gcm™ :'1 " p=0555gcm™ i Y
N !
! /] !
! H 7
' AT mazx(dh/flr)
o Fr=1 H d Fr'+We
s We=1 H Fr?
+ FPewe's1| e ——— W'
) A 3@ IH
p=2220g em3 e mfxzx(dh/_{ir) .", p=2220g om3 : .'. et 1
2 Fr_2+ We il 2 _--
- Fr ) i . e
—_——— We Ptad I’
1 1 5 o Fr=1
T s We=1
T e -k + Friswe'=1
03 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6
0.6 =9 = — 0.6 = =
~ ~ X~
E E .§ E ............... \{(gh+y/ph)
s s S| 3 y
5 5 g B e Vigh
E & Bl Bl —-m-- Ja/ohy
Op=0555¢g cm3 04 b, 0O p=0.555g cm
\SD\,;: 2220gem™ | | | TTEEED Op=2220gcm™
03 3.5 4 4.5 5 5.5 6 03

FIG. 11. Influence of density on the formation of a developing (left column) and a developed (right column)
CHIJ: (a) and (b) interface geometry; (c) and (d) local variation of the inverse Froude number squared, the
inverse Weber, and that of Fr=2 4+ We™!; (e) gravity waves (/gh), capillary waves (/o /ph), gravity-capillary

waves (1/gh + o /ph), and the mean flow () velocities.

114002-17



HOSSEIN ASKARIZADEH et al.

increase of the flow thickness at the jump that promptly intensifies gravitational effects [Fig. 11(d2)].
Hence, the assumption of Fr = 1 works well to obtain the jump position.

In addition, the maximum value of dh/dr is accurate enough to be considered as the jump
position for high-density (gravity-dominated) liquid jets in a developed case [Fig. 11(e2)]. In a
developing case, predictions of dh/dr are more precise for low-density (capillary-dominated) liquid
jets [Fig. 11(cD)].

C. Scaling analysis

It was shown that the scaling relation of Bhagat er al. [2], Eq. (4), will result in considerable
deviations from the position of developing jumps if the flow regime is gravity dominated [Fig. 6(a)].
In addition, Bohr’s model, Eq. (2), was presented for developed CHIJs, but for cases in which the
jump occurs of its own accord and without forcing it to circumvent an obstacle. In this section,
a generalized scaling relation for the jump radius is presented which holds up in both gravity-
and capillary-dominant regimes not only for a developing, but also for a developed, CHJ. The key
point in this regard is the consideration of both gravity and capillary waves in the critical flow
condition. Therefore, adding gravity to the scaling analysis of Bhagat et al. [2] yields the following
dimensionless parameters for the vertical impingement of a round free-surface liquid jet upon a
horizontal plate shown in Fig. 1 (note that in this subsection « stands for the dimensionless flow
thickness):

Re =

= —2 =2
oW PR g (10)
v o gh R;

The assumption of balancing the radial flow by viscous drag at the jump, i#/R; ~ v/h?, implies
aRe = O(1) [2]. Then depriving the role of gravity of being important in the origin of CHIJs (setting
gequal to zero in Fr—2 4+ We™! = 1) and consequently applying the critical flow condition of We =
1 at the jump result in the scaling relation of Eq. (4) [2]. On the other hand, neglecting the surface
tension in the critical flow condition of Fr~? 4 We™! = 1 and keeping gravity (in other words,
applying Fr = 1 as the critical flow condition) lead to the scaling relation of Bohr et al. [4], Eq. (2).
Considering both gravity and surface tension by applying Fr=2 + We~! = 1 as the critical flow
condition together with the continuity equation, ¢ = Q/2m = R;hu, and retaining the assumption
of aRe = O(1) result in the following system of equations for the flow thickness, local mean flow
velocity, and jump radius:

R%v uh?
h=—-, Ri="", B=gh+t—. (11)
q v ph
Combination of the above set of equations in terms of the jump radius (R;) yields
v\’ o (v’
g<—> R} + —(—) Ri—v? =0. (12)
q P \q

The above equation can be solved to obtain the following generalized scaling relation:

Roe e (GO -2 o

Accordingly, Figs. 12 and 13 present the predictions of Eq. (2), R; = c(¢°v—3g~1)!/8, Eq. (4),
Rj=c(g’pv~'o™")/4 and that of the generalized scaling relation, Eq. (13), for the radius of
a developing (left columns) and a developed jump (right columns). For a developing jump (left
columns in these figures), it can be seen that applying the fixed constant coefficient of ¢ = 1.081
in Eq. (13) results in the more accurate predictions for the jump radius in comparison to the
predictions of Egs. (2) and (4). Notably, Eq. (4) properly estimates the position of a developing jump
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applying ¢ = 0.262, except when gravity effects dominate capillary ones. For instance, increasing
the viscosity [Fig. 12(al)], increasing the density [Fig. 12(c1)], or decreasing the surface tension
[Fig. 13(al)] leads to the attenuation of capillary waves, and consequently to the propulsion of
the flow regime toward being gravity dominated. It should be noted that the maximum error of
Eq. (4) lies under 4% for predicting the position of a developing jump in a capillary-dominant
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FIG. 13. Comparisons between the jump positions predicted by R; = c(¢°v—3g™")"/8 [Egs. (2)] and R; =
c(@®pv=to~H4 [Eq. (4)] and Eq. (13) in terms of surface tension (a) and gravity (b) for the developing (left

column) and developed (right column) CHJs.

regime [Fig. 13(b1)]. In a gravity-dominant regime, however, its error amounts to around 25%, as
the surface tension is decreased to o = 10 mN m™' [Fig. 13(al)]. By contrast, the maximum error of
the generalized scaling relation, Eq. (13), for predicting the position of a developing jump is around
1% irrespective of the flow regime. It can be also seen that the predictions of Eq. (2) for the radius
of a developing CHIJ are inaccurate, especially with the variation of the gravitational acceleration
[Fig. 13(b1)]. The reason is that the gravitational acceleration is scaled with the power of 1/8 in
Eq. (2), whereas it carries less weight in the positioning of a developing jump when the flow regime
is capillary dominant. Hence, Eq. (2) is not a proper choice to predict the position of a developing
jump.

For developed jumps created by forcing the flow to circumvent an obstacle (right columns in
Figs. 12 and 13), neither Eq. (2) nor Eq. (4) can accurately predict the jump position. Nevertheless,
the predictions of Eq. (4) are more or less acceptable, although it has not been inherently applied to
a developed jump. Deviations of the predictions of Eq. (4) from the position of developed jumps can
be observed when the flow is dominated by gravity effects (Figs. 12(c2) and 13(a2)]. In addition, the
effects of a variation in the surface tension on the position of a developed jump are overestimated
through applying Eq. (4) [Fig. 13(a2)], and the effects of a variation in the gravitational acceleration
on the position of a developed jump are not just included in Eq. (4) [Fig. 13(b2)].
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FIG. 14. (a) Influence of the obstacle height on the jump position and on the scaling relation of Eq. (13);
(b) evaluation of the constant coefficient of Eq. (13) for the developing (b1) and developed (b2) jumps.

Equation (2), which has been essentially obtained for developed jumps (Bohr et al. [4]), requires
different constant coefficients to yield proper approximations for the radius of developed jumps,
although the height of the obstacle remains constant, as is shown in the right columns of Figs. 12
and 13. Moreover, variation of the density is not included in Eq. (2), which causes incorrect
predictions for the jump position in low-density free-surface liquid jets [Fig. 12(c2)], where capillary
effects are intensified and cause the appearance of a relatively strong capillary wave right before the
jump [see Fig. 11(b2)]. The absence of the surface tension in Eq. (2), however, does not lead to
a considerable deviation of its predictions from the radius of developed jumps [Fig. 13(a2)]. The
reason is that surface tension forces act to a small degree against momentum once the flow arrives at
the outlet boundary, because the downstream thickness of the flow is high and gravitational effects
dominate the flow. Therefore, an increase in surface tension no longer changes the height of the free
surface as it affects the free surface in the case of a developing jump, where a progressive interface
approaches the outlet boundary [compare the insets of Figs. 9(al) and 9(a2)].

In contrast to the scaling relations of Bohr et al. [4] [Eq. (2)] and Bhagat ef al. [2] [Eq. (4)],
Eq. (13) shows that it can be applied to appropriately estimate the position of both a developing and
a developed jump for a wide range of liquids and laminar flow conditions. More importantly, it can
be seen that its constant coefficient, in contrast to the constant coefficients of Eqgs. (2) and (4), does
not depend on the variation of the fluid properties.

1. The influence of obstacle height on the scaling relation

The obstacle height, which applies for the developed jumps, considerably affects the jump by
increasing the flow thickness downstream of the jump and consequently by increasing gravitational
effects. It is a controlling factor not only to locate the jump, but also arguably to change the flow
structure in the hydraulic jump region [16]. To illustrate whether the scaling relation of Eq. (13)
depends on the height of the obstacle, Fig. 14(a) is provided showing the change of the jump position
with viscosity for different heights of the obstacle. The corresponding simulation parameters are
provided in Table 1. For each obstacle height a specific constant is necessary to be applied in the
scaling relation of Eq. (13). The resulting parallel curves for different obstacle heights indicate
that the scaling of viscosity in Eq. (13) does not depend on the height of the obstacle. The same
conclusion can be drawn for the other parameters in Eq. (13) as well.

2. Evaluation of the constant coefficient of the scaling relation

To determine the constant coefficient of Eq. (13), Fig. 14(b) is provided, which shows the
variation of the dimensionless jump radius with all the involved parameters. As can be seen,

114002-21



HOSSEIN ASKARIZADEH et al.

numerical results collapse on to the line R; /Ry = 1.081 £ 0.035 for a developing jump [Fig. 14(b1)]
and on to the line R; /Ry = 1.046 £ 0.122 for a developed one [Fig. 14(b2)] with the dimensionless
obstacle height of ¢, = h,/D = 0.2 over the entire range calculated (381.972 < Re; < 1.186 x
103, 127.962 < We; < 1.296 x 103, 5.633 < Fr; < 13.798). The subscript i indicates the entrance
values to the medium. Note that the nozzle diameter is the characteristic length for calculating the
inlet Froude number [19].

IV. CONCLUSIONS

This study scrutinizes the formation of circular hydraulic jumps (CHJs) in two cases, before and
after the arrival of the flow at the outlet boundary, trying to find out whether gravity plays any role
in both the initial [developing jump, Fig. 1(a)] and the final formation [developed jump, Fig. 1(b)]
of the jump. Numerical results coherently show the presence of two kinds of flow regimes in the
formation of the CHJ: the gravity- and the capillary-dominated regimes. The governing flow regime
is more sensitive to the variation of the surface tension rather than to the gravitational acceleration.
Nevertheless, the role of gravity in the formation and origin of the jump cannot be neglected. If the
flow regime is capillary dominant, a variation in the gravitational acceleration will slightly affect
developing CHIJs [Fig. 13(b1)]. This is consistent with the study by Bhagat et al. [2], where the role
of gravity was observed to be of minor importance in the initial formation of the jump. However,
when gravitational effects dominate the flow, which occurs for low surface tensions (Fig. 5, left
column), the role of gravity in the initial formation of developing CHJs becomes quite significant
[Fig. 6(a) and Fig. 13(al)].

A developed CHJ, on the other hand, is more sensitive to the variation of gravity [Fig. 10(a2)]
rather than surface tension [Fig. 9(a2)]. As long as the flow has not yet reached the outlet boundary
(in a developing jump), surface tension forces build a rim bulb flow around the jump approaching the
outlet boundary [see the inset of Fig. 9(al)]. Therefore, increasing the surface tension will enlarge
this rim bulb flow and will consequently decrease the jump radius [Fig. 9(al)]. Once the flow arrives
at the outlet boundary and a developed jump is formed, variation of the surface tension affects the
smoothness of the interface in the jump region and not the position of the jump, because the height
of the flow downstream of the jump is already formed and a progressive interface is no longer
exists that could be enlarged by an increase in the surface tension [see the inset of Fig. 9(a2)]. In
such a case, gravitational effects become quite important that strongly depend on the height of the
downstream flow, and this height remains constant with a variation in surface tension.

The effects of other important parameters such as viscosity, volume flow rate, and density
on a developing and a developed CHIJ are also presented. Variation of these parameters leads
to the intensification/abatement of capillary/gravitational effects. A decrease of capillary effects
occurs by increasing the viscosity, the density, or the gravitational acceleration and by decreasing
the surface tension. The assumption of Fr =1 to locate the jump is applicable when capillary
effects are decreased. By contrast, the critical flow condition We = 1 can be applied instead of
the superposition of capillary and gravitational effects Fr—2 4+ We™! = 1 only if the flow regime
is capillary dominant. When the orders of significance of capillary and gravitational forces are the
same, it is necessary to apply the critical flow condition of Fr=2 4+ We~! = 1 for obtaining the jump
position. The location of the highest interfacial derivation of the flow thickness, dh/dr, shows in
most cases to be a good approximation for the jump position. In particular, its predictions become
more accurate as the flow regime tends to be gravity dominated in developed jumps and to be
capillary dominated in developing jumps.

The scaling relation presented by Bhagat er al. [2] works well to predict the position of
developing jumps in capillary-dominant regimes, which is improved here to be applicable for
gravity-dominated flow regimes as well. In this regard, a generalized scaling relation is obtained
considering both capillary and gravity effects through applying Fr—? + We™! = 1 as the critical
flow condition. The resulted generalized scaling relation shows quite a good accuracy to predict the
jump position in both capillary- and gravity-dominant regimes. Moreover, it projects the radius of a
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developed CHJ more precisely than the available scaling relations of this kind. It is found that the
obstacle height affects only the constant coefficient of this generalized scaling relation and does not
change the scaling of fluid properties.

An important continuation of this work would be the investigation of the claim made by
Duchesne ez al. [20] for the critical flow condition «®We™! + Fr—2 = 1 instead of We™! + Fr™2 = 1.
The latter one was thoroughly investigated here. A detailed comparison between the applicability
of these two critical flow conditions with the aid of numerical simulations will be our next study in
this field.
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