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Stability analysis of stratified multiphase flow for a spanwise system of rotation plays
a pivotal role in micromixing and micromachines. In several such systems, centrifugal
actuation is the driving force, which creates a pressure gradient in a rotating channel and
Coriolis force enhances mixing in a short span by destabilizing the flow. Here, we focus
on the impact of the Coriolis force on a rotating two-fluid flow through a microchannel,
which is miscible in nature, having small viscosity difference and thereby forming a thin
diffusive interface between fluids due to viscosity stratification. Modal stability analysis is
used to estimate the critical flow parameters which are, in turn, responsible for regulating
the instability mechanism for different viscosity contrasts and mixed layer thicknesses.
Usually, viscosity stratified flow with respect to streamwise disturbance becomes more
unstable for a thinner mixed layer. On the contrary, our numerical computation confirms
a completely discrepant scenario by considering Coriolis force-driven instability of a
miscible flow system on account of spanwise disturbances. Possible physical mechanisms
for the same are discussed in terms of base flow pattern and the energy fluctuation between
the perturbed and base flow. Comparison of three-dimensional disturbances of the flow
field, in both clockwise and anticlockwise directions (for two different viscosity ratios),
is executed to provide an insight into the dynamics of the flow system. Distributions of
the velocity perturbations display a critical bonding between the vortices near and away
from the mixed layer. These vortices are, in turn, responsible for the variation in instability
mechanism with respect to different viscosity ratios and rotational directions.
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I. INTRODUCTION

Hydrodynamic stability of stratified flow (variation in density, viscosity, concentration, etc., or a
combination thereof) has drawn the attention of numerous researchers due to various industrial,
chemical, biological, and geophysical applications (which include lubrication, drag reduction,
manufacture of conjugated fibers, polymer melt, co-extrusion processes, filtration processes, etc.).
In recent years, bounded or semibounded flows (with or without stratification) in a rotating platform
have been receiving progressively increasing attention because of its potential role in portable
medical diagnostic devices. A proper understanding of instability mechanism in such flows is critical
to several other practical applications, [1] ranging from pumps, vacuum cleaners, jet engines, etc.,
on one side of the spectrum to the microfluidic mixer on the other side.

In a wide variety of fluid flows, the viscosity can vary with space, time, or both, resulting
in viscosity stratification, which can have a significant impact on flow instability [2–6]. Such
a viscosity stratification can be achieved by various means, for example (a) considering two or
more immiscible fluids which are in contact with each other (where slope of velocity profile is
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discontinuous), (b) including temperature or concentration difference between the fluids which can
create a new thin diffusive layer, and (c) deploying a non-Newtonian fluid, where the effective
viscosity is a nonlinear function of space or imposed shear rate [7,8].

Investigations on nonrotating viscosity stratified flow have often provided strikingly contradic-
tory results concerning their possible roles on stabilization or destabilization. Yih [9] was the first
researcher to explore the instability of multilayer viscosity stratified flow. He focused on a long-wave
perturbation analysis and arrived at the following significant conclusion: both plane Poiseuillle flow
and plane Couette flow can be unstable for arbitrarily small Reynolds numbers due to viscosity
stratification. Therefore, the multilayer flow has been a topic of many other theoretical investigations
[10–15] and different instability mechanisms have been discussed. Based on the aforementioned
studies and observations, it can be concluded that to achieve a linearly stable flow, the fluid of
relatively lesser viscosity must be placed close to a wall.

Several earlier studies have reported instabilities in viscosity stratified flows due to the variation
of either temperature or concentration by considering the formation of miscible layer flow inside
a channel [3,13,15–18] or over an inclined plane [19–24]. Correspondingly, Wall and Wilson [17]
explored the temperature dependent viscosity variation on a wall-bounded flow and showed that
the effect of Péclet number has negligible influence on the stability (the difference in their case in
calculating the critical Reynolds number for Péclet number 0 and 105 is less than 2%). Investigation
on Stokes flow (low Reynolds number flow) through a channel of elastic liquids (an Oldroyd-B
fluid) having continuously stratified constitutive properties has governed the instability mechanism
due to the rapid normal stress variation [25]. Various authors, notably Sahu and Matar [26],
considered the influence of viscous heating in different flows. They have shown a decrease in critical
Reynolds number as the viscous heating increases [27–29]. Tan and Homsy [30] explored the case
of stability of rectilinear displacement process in a porous medium by assuming a quasi-steady-state
approximation of the base state profile evolving slowly with respect to growth of the disturbances
and comparing the same with the uniform base state velocity and a dispersive time dependent
concentration profile. A similar study was there after reported by Tan and Homsy [31] for radial
source flow in a porous medium. Despite the absence of characteristic time or length scale available
for the system, it was shown that the stability of the system depends on a similarity variable
depending on Péclet number. Salin used an acoustic technique profile analysis to study the growth
rate for three-dimensional viscous fingers inside a porous medium [32]. Their experimental results
suggested an instability parameter that is liable to capture the essential features of viscous fingering
depending on viscosity ratio, flow rate and the nature of the porous medium.

Miscible multiphase flows with confined geometries are special kinds of stratified flows which
reveal many interesting facets of instability [13,15,18,33,34]. At very low miscibility, stratified flows
exhibit instability characteristics similar to immiscible fluids. Investigations further suggest that a
decrease in viscosity near the wall increases the critical Reynolds number significantly in some
situations [15]. However, such a reduction in viscosity can also bring about the opposite scenario,
i.e., instability at extremely low Reynolds numbers [35]. Ranganathan and Govindarajan [15] and
subsequently by Malik and Hooper [13] showed linear stability and energy growth of a viscosity
stratified flow, by replacing liquid-liquid interface with a miscible layer of variable viscosity.

Ern et al. [33] and Sahu et al. [34] have discussed the influence of diffusion and mixed layer
thickness on Couette type miscible two-fluid flow with a high degree of viscous stratification.
They observed the growth rate for the flow which shows a nonmonotonic behavior with respect
to diffusion and such flows with intermediate values of Péclet number is more unstable for a thinner
mixed layer. Govindarajan and coworkers [15,18] deliberated on the impact of a thin continuous
stratified layer created by miscibility of two fluids with different viscosities and examined the effect
of slow diffusion. They identified a new mode of instability, which is very sensitive to the diffusion
and associated with the overlapping of a critical layer and viscosity stratified layer. Thereafter,
Talon and Meiburg [36] considered stability analysis on similar kind channel flow in the Stokes
flow regime and demonstrated that instabilities develop due to the diffusion between the layers.
However, at large wave numbers, the onset of instability takes place at a highly viscous region
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(in the core of the pipe). In the recent past, the work of Govindarajan [18] was extended by Ghosh
et al. [24] to assess the effects of wall velocity slip on the instabilities of miscible viscosity stratified
flow. It was shown that the flow system could either be stabilized or destabilized by designing the
walls of the channel as hydrophobic surfaces, modeled by the Navier-slip boundary condition.

In the context of microfluidics, the viscous force commonly dominates over inertial force and
mixing due to turbulence driven by inertia is not common. However, the possibility of enhanced
mixing by employing instabilities in viscosity stratified layers has been explored as an alternative
approach [37–43]. In the case of centrifugal microfluidics, rotational effects can bring about inertial
perturbations, whereas the possibility of enhanced mixing can be probed by triggering the instability
mechanism [44–47]. Rotationally actuated microfluidic devices, like laboratory on a compact disc
(Lab-on-a-CD) platform [48], are inherently adept in generating secondary flow by virtue of the
Coriolis force [49,50]. Adding to this, in the rotationally actuated microfluidic device, viscosity
stratified miscible layers can depict many interesting flow phenomena. Plane Poiseuille flow, subject
to a spanwise perturbation, becomes unstable at very low Reynolds number (at �O(100)) in the
presence of rotation [51,52]. The transitional rotating flow patterns were marked by the appearance
of the streamwise roll-cell structure, which has been attributed to the Coriolis force [48,53]. Indeed,
researchers have suggested that the wavelength of the steady roll-cell instability can be predicted
using linear stability theory. The experiments and subsequent theoretical calculations [48] on
rotating flows, showing the ratio of Coriolis force to the centrifugal force was the key parameter for
achieving mixing in such flows. Investigators also reported that the molecular diffusion dominates
at low rotational speed due to the excess of centrifugal force rather than the Coriolis force. Coriolis
force-based mixing gets prominence when the rotational speed exceeds an emblematic critical
value. The transverse Coriolis force is large enough to set up a secondary flow in such a case [48].
Chakraborty and Chakraborty [54] developed an innovative method of generating microbubbles on a
rotationally actuated device in a lab-on-a-compact-disk setup. They have shown the spatiotemporal
frequency and size distribution of the generating bubbles by monitoring the rotational speed, for
a given channel dimension and fluid-substrate combination. Innovative approaches of generating
droplets, liquid threads and diverse configuration of liquid filled entities are reported in the literature
[55–62]. Recent work on Lab-On-a-CD-based platform [63] for a simple “Y”-shaped microchannel
depicted generation of simple to complex-shaped liquid objects by maneuvering the Coriolis
force for a two-fluid system with different viscosities. These investigators established a qualitative
relationship between the droplet generation frequency and droplet sizes by varying the rotation
speed. The underlying mechanism of generating droplets of simple and complex serpentine threads
was achieved by exploiting the Coriolis force. The study of deformation characteristics of red blood
cells (RBC or erythrocytes) on a rotating compact disk platform reveals the interplay between
hemoglobin content and deformability of RBCs in centrifugally actuated microfluidic device [64].
The study opens up the fact that the deformation of RBC follows a very similar trend of principal
stress distribution in a radial direction. Numerical simulations of Roy et al. [65] indicate that
increasing the channel aspect ratio leads to a nonmonotonic behavior in the critical Reynolds number
at which, the secondary flow sets in. Unstable modes sourcing from rotation may have a much larger
growth rate than that of the so-called two-dimensional spanwise-invariant Tollmien–Schlichting
(TS) mode. These observations raise a question as to how the Coriolis force destabilizes the flow
and if there is any technique to control the Coriolis force-driven instabilities.

Stability issues governed by Coriolis force on viscosity stratified flows offer with many
unanswered questions that can have a far-reaching consequence for future studies. For example, how
varying the rotation rate affects the perturbation growth of stratified flow, or how the fluid viscosity
ratio influences the stability boundaries for the Coriolis-driven instability, remain unaddressed.
Furthermore, how the presence of a miscible layer causes the mixing process in a rotating channel
flow also remains unclear. Here, we bring out unique aspects of rotationally driven instabilities
in stratified miscible viscous layers. One important concern of the present investigation is to
quantitatively pinpoint the onset condition of the primary instability in the subsistence of spanwise
disturbances. To address the unanswered questions on viscosity stratified rotating channel flows and
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to progress toward a prior theoretical knowledge for designing guidelines of rotational flows, we
conduct a modal stability analysis for the same.

The article is organized as follows: In Sec. II, we present the mathematical formulation of the
problem and the set of governing equations in the rotating platform. In Sec. III, we address the
stability regimes for infinitesimal disturbances (spanwise disturbances) with different viscosity
ratios, mixed layer thicknesses, and clockwise or anticlockwise rotations. Influence of three-
dimensional disturbances on the considered flow system is elaborated in Sec. IV. Finally, the
concluding section contains a complete summary of the current study.

II. THEORETICAL FORMULATION

The stability property of fluid flows having an interface with zero thickness is substantially
different from those of the miscible flow. The difference is mainly because of the finite thickness
mixed/interface layer, which occurs by a slow diffusion process and causes a smooth density and/or
viscosity, concentration distribution instead of jump discontinuity. The above-mentioned approach
was first introduced by Ranganathan and Govindarajan (2001) [15] and subsequently by Malik and
Hooper (2005) [13], to the best of our knowledge. Behavior of such systems, hallmarked by flow of
two fluids of different viscosities and separated by a frozen miscible layer, is significantly different
from interface-dominated stratified flows. The most delicate underlying physical issue stems from
the fact that the flow exhibits significant alterations in stability properties when the critical layer
of disturbances overlaps with the miscible layer [15]. This information can be used for controlling
flow systems. The growth of the miscible layer in streamwise direction is, however, ignored because
of very slow diffusion. This is exact when the Péclet number of the flow (Pe = U0D/κ ,where U0 is
maximum velocity of the flow through a channel, D is the half channel width, and κ is appropriate
diffusivity) is very high (in the limit of zero diffusion) [15,66]. A real flow would not necessarily
have a very small Péclet number, especially for two distinct fluids and when viscosity stratification
is due to concentration/temperature gradient. However, Wall and Wilson [17] showed that for the
case of stability of stratified flows, the value of the critical Reynolds number is highly insensitive to
Pe. We have assumed that the effect of the Péclet number has negligible influence on the instability,
and the viscosity profile is independent of the concentration variation [13]. Also, we assume that
the temporal growth rate of the disturbance is much faster than the diffusion rate (which is indeed
true for the flow under investigation) of the base flow, so that the assumption of the steady base
state is valid [67]. In summary, the disturbance wavelength in spanwise direction for the considered
channel flow with the system of rotation is much shorter than the downstream length scale over
which the mixed layer thickness grows, so that it is justifiable to use a locally constant thickness
approximation [2,3]. In the present study, we consider the modal linear stability of a laminar rotating
three-dimensional pressure-driven channel flow of two Newtonian, miscible, incompressible fluids.
Study of this type of system is particularly appealing as it concerns a simple rotating shear type
flow, which offers both stable and unstable regions depending on different ranges of parameters.
Here, the two fluids are having the same density ρ but with different viscosities. A mixed layer with
continuously varying viscosity separates the fluid layers with constant viscosity. However, to ignore
the complexity of the analysis, a frozen type mixed layer is considered and such an approximation
is also used by many previous investigators [13,15,23,36,67].

We emphasize that a rotational system with spanwise disturbance, where Coriolis force is
required to drive the instability mechanism, molecular diffusion may play an important role on
the instability mechanism for a flow with finite width interfacial region. However, a parallel flow
appears to be a good assumption and avoids the complication of analyzing instability behavior for
the miscible flows in the parameter regime we are working on. The flow is not necessarily symmetric
about the centerline of the channel (see Fig. 1). A Cartesian coordinate system is chosen for the
present analysis, where x and y axes are, respectively, the mean flow and wall normal directions.
The entire system is rotating with an angular velocity � about the z axis whose direction follows
the left-hand rule. The walls of the channel are located at the positions y = ±D. Two fluids with
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FIG. 1. Schematic of the flow system considered. The entire system is rotating about the z axis, which is
taken to be perpendicular to the plane of the paper.

viscosity μ1 and μ2 occupy the regions −D � y � p and p + q � y � +D, respectively. The thin
diffusive layer (between two constant viscosity fluid layers), referred to as the mixed layer, occupies
the region p � y � p + q, where two fluids are mixed up and a local smooth viscosity stratification
is created. In this study, we have fixed the starting point of the mixed layer at p = 0.0 for all
numerical results.

A. Governing equations

The governing differential equations for the mass and momentum conservation of the above
rotating anatomy are (in dimensional form),

∇.�uτ = 0, (1)

∂ �uτ

∂t
+ (�uτ .∇ )�uτ = − 1

ρ
∇pτ + ∇.τ̄τ − 2

ρ
( �� × �uτ ), (2)

pτ = p̄τ − ρ�2(x2 + y2), (3)

where τ = u, m, l pertain to the upper, mixed, and the lower layer, respectively. The variables �uτ , pτ ,
and p̄τ are, respectively, the velocity vector, modified pressure, and pressure without rotation of the
flow system. The viscous stress of the flow system is defined as τ̄τ = μτ (y)

ρ
((∇�uτ ) + (∇�uτ )T ); μτ (y)

represents dynamic viscosity of each layer. The last term in the momentum equation originates from
the system rotation ( �� = �k̂, k̂ is the unit vector along the z axis), due to the presence of the Coriolis
force. The governing equations, as well as the flow variables, are nondimensionalized by using the
half channel width D as length scale, the maximum velocity of the flow U0 as velocity scale [13],
and the viscosity of the lower layer μ1. The dimensionless viscosity for each layer reads as

μτ (y) =
⎧⎨
⎩

1.0, −1 � y � p (for τ = l ),
μm(y), p � y � p + q (for τ = m),
r, p + q � y � 1 (for τ = u),

(4)

where r = μ2/μ1 is the viscosity ratio of the two fluids. The dimensionless viscosity μτ (y) is chosen
in such way so that the viscosity function and its first, second derivatives are continuous at the edge
points of the miscible layer (i.e., at y = p and y = p + q). This particular consideration can ensure
the continuity in the linearized disturbance equation [13,18]. We have taken the viscosity of the
miscible layer to be a fifth-order polynomial with appropriate coefficients and given by Malik and
Hooper (2005) [13],

μm(y) = s5y5 + s4y4 + s3y3 + s2y2 + s1y + s0, (5)
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where the coefficients s0, s1, s2, s3, s4, and s5 are defined as follows:

s0 = 1 − p3(r − 1)

q5
(6p2 + 15pq + 10q2); s1 = 30p2(r − 1)

q5
(p2 + 2pq + q2);

s2 = −30p(r − 1)

q5
(2p2 + 3pq + q2); s3 = 10(r − 1)

q5
(6p2 + 6pq + q2);

s4 = −15(r − 1)

q5
(2p + q); s5 = 6(r − 1)

q5
.

Equations (4) and (5) are reminiscent of one kind of approximate viscosity profile which confirms
the continuity of the profile as well as certain order of derivatives. One can also use other continuous
differentiable functions like error function or hyperbolic function. Since we have followed the work
of Malik and Hooper (2005) [13] and Govindarajan [18] as the main references for the current work,
we have adhered to their formulation.

The unidirectional steady and fully developed basic flow is derived from the following dimen-
sionless equation:

Re

(
dP

dx

)
= d

dy

(
μτ (y)

dU

dy

)
. (6)

using the no-slip and continuity conditions at the walls and the interfaces, respectively, and the base
flow does not get affected by the Coriolis force [47,51,52,68,69]. The derivation is very similar
to the derivation of plane Poiseuille flow with a minor difference being viscosity is changing as a
function of wall normal direction. The dimensionless typical base velocity profile is derived as [13]

U (y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
U0

(−y2 + (δ − 2)y + (δ − 1)), −1 � y � p

1
U0

∫ y
p

[−2ȳ+(δ−2)
μ(ȳ)

]
dȳ + U (p), p � y � p + q

1
U0

(
1
r

[−y2 + (δ − 2)y + bq
])

, p + q � y � +1

, (7)

where the constant bq = rU (p + q) + (p + q)[(p + q) − (δ − 2)]. Remember that U (y) satisfies
zero-velocity at y = −1 and U , dU

dy are continuous at the points y = p and y = p + q. The value of
δ is appropriately estimated by satisfying the no-slip condition at the wall y = 1.

B. Generalized Orr-Sommerfeld Squire equations

We focus on the linear stability analysis of the basic/mean flow with respect to three-dimensional
small-amplitude disturbances in the form of ε(y) exp[i(αx + βz − ω t )]. Parameters α, β are the
wave numbers of the disturbance in the stream and spanwise directions; ε(y) and ω = ωr + i ωi

are the amplitude and complex frequency, respectively. The complex phase speed c of the
perturbation wave satisfies ω = α c and ωi is the temporal growth or decay rate. We have used
the normal mode formulation of normal velocity (ṽ) and vorticity (η̃) perturbation given by
{ṽ, η̃} = {v, η} exp[i(αx + βz − ωt )] [70], where

{
v

η

}
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{vl

ηl

}
, −1 � y � p

{vm

ηm

}
, p � y � p + q

{vu

ηu

}
, p + q � y � +1

(8)

defines the amplitudes of the velocity and vorticity disturbances at each layer. Perturbation
quantities {ṽ, η̃} satisfy the generalized Orr-Sommerfeld Squire equation for the variable viscosity
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(justification of doing the Squire transformation for the case of rotating channel flow is given in
Appendix C) [13,18]. The final equations of disturbances in terms of wall-normal velocity and
vorticity yield

−iω(v′′ − k2v) + iαU (v′′ − k2v) − U ′′v

= μτ

Re
(v′′′′ − 2k2v′′ + k4v) + 2μ′

τ

Re
(v′′′ − k2v′) + 2μ′′

τ

Re
(v′′ + k2v) − iβRoη (9)

−iωη + iαUη + iβUv = μτ

Re
(η′′ − k2η) + 1

Re
η′μ′

τ + iβRov, (10)

where, Re ≡ ρDU0

μavg
and Ro ≡ 2D�

U0
are the Reynolds (μavg is defined as viscosity averaged in the

wall-normal direction [17]) and rotation numbers, respectively, and prime (′) denotes differentiation
with respect to y (wall-normal direction). In the above equations, μτ is the base state viscosity.
Moreover, v and η satisfy the no-slip and no-penetration boundary conditions at the channel walls
and interface conditions at the edges of the mixed layer,

v(−1) = η(−1) = v′(−1) = 0, (11)

v(+1) = η(+1) = v′(+1) = 0, (12)

vu(p + q) = vm(p + q), (13)

v′
u(p + q) = v′

m(p + q), (14)

v′′
u (p + q) = v′′

m(p + q), (15)

v′′′
u (p + q) = v′′′

m (p + q), (16)

vl (p) = vm(p), (17)

vl
′(p) = v′

m(p), (18)

vl
′′(p) = v′′

m(p), (19)

vl
′′′(p) = v′′′

m (p), (20)

ηu(p + q) = ηm(p + q), (21)

η′
u(p + q) = η′

m(p + q), (22)

η′
u(p + q) = η′

m(p + q), (23)

ηl (p) = ηm(p), (24)

η′
l (p) = η′

m(p). (25)

It is worth mentioning that one can define the Reynolds and rotation number based on flow rate
and thereby calculate the average velocity. However, such a definition of Reynolds and rotation
numbers does not change the results qualitatively, as shown in Appendix A. The above equations,
together with all boundary conditions, are solved numerically using a spectral collocation scheme
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described in Schmid and Henningson [71]. The scheme and resulting numerical solutions are
described in the next section.

III. NUMERICAL RESULTS AND DISCUSSIONS

The generalized Orr-Sommerfeld Squire equation along with the boundary conditions can be
deduced to the following eigenvalue problem after numerical discretization:

A = −iωB, (26)

where A and B are 9 × 9 block matrices and  = (uml )T is the eigenfunction corresponding
to the eigenvalue ω. A hybrid Chebyshev spectral collocation method is used to solve the above
eigenvalue problem. We have considered nu + 1, nm + 1 and nl + 1 numbers of weighting functions
in the upper, miscible, and lower layer, respectively, to approximate the eigenfunctions as follows:

u =
nu∑

n=0

anTn(y), m =
nm∑

n=0

bnTn(y), l =
nl∑

n=0

cnTn(y), (27)

where Tn(y) represents the Chebyshev polynomial of first kind and an, bn, and cn are unknown
constants. Correspondingly, the Orr-Sommerfeld Squire equation is implemented in each layer at
the collocation points [72]:

y j = cos

(
π j

M

)
, j = 0, 1, 2, . . . . . . M. (28)

We take M = N − 2 with N equal to nu, nm, and nl in the upper, middle, and lower layers,
respectively, giving 2(nu + nm + nl ) − 12 equations. The rest comes from the boundary conditions
and thus closing the system. We have used a developed MATLAB code to solve the above-
generalized eigenvalue problem. Each sets of parameters described above are varied such that
the imaginary part of the eigen value |ωi| � 10−6. More details of our numerical analysis and
convergence are given in Appendix B.

A. Parametric results

We have elaborated different aspects of instability behavior depending on various parameters
with respect to small disturbances for the considered flow system. A wide range of new stability
features of three-layer viscosity stratified miscible flow in a channel with a spanwise system of
rotation has been discussed. Those include the structure of eigen spectra, neutral stability boundary,
eigenfunction behavior, and the role of rotational speed and direction on the flow system. We
also have deliberated on the effect of viscosity ratio and layer thickness as well. Eigenvalues
are calculated numerically and limiting results are compared with the available results for the
nonrotating single-fluid flow [71,73] alongside the rotating single fluid system investigated as by
Alfredsson and Persson [52].

Validation of our numerical code is first addressed in Fig. 2(a) by comparing the neutral
stability boundary for the single fluid Poiseuille flow in the absence of viscosity contrast (r = 1.0)
[70,71,73]. The critical Reynolds number, Recr = 5772.2 for the onset instability is recovered by
our numerical result. We also computed the eigen spectrum (not shown) for the single fluid flow
when Re = 10 000, α = 1.0, and r = 1.0. The associated most unstable shear mode corresponds to
the temporal frequency value ω = 0.237526 + 0.0037396i. Further, we have captured the marginal
stability boundary for the rotating single fluid flow from our generalized eigenvalue problem with
ω = ω(α, β, Re, Ro, r, p, q). Temporal instability is determined by the condition, the imaginary
part of the eigenvalue ωi > 0 and neutral stability is achieved by satisfying, ωi = 0. Note that the
case of r = 1.0 corresponds to a single fluid system with constant viscosity. We have compared our
rotating-flow limiting results with Alfredsson and Persson (1989) [52] in Fig. 2(b) and found a very
good agreement.
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FIG. 2. Neutral stability boundary for plane channel flow, applying single-fluid limit from the two-fluid
miscible viscosity stratified Poiseuille type flow: (a) nonrotating single-fluid limit (r = 1.0, Ro = 0) for
streamwise disturbances and (b) rotating single-fluid limit with nonzero rotation number (r = 1.0, Ro = 0.5)
for spanwise disturbances. Solid line presents our computation result and circles are from Alfredsson and
Persson [52] result.

In Fig. 3, we have demonstrated the stability boundaries for two-dimensional disturbances (α =
0.0) in β − Re plane for two different viscosity ratios for both anticlockwise and clockwise rotation.
In Figs. 3(b) and 3(d), the direction of rotation is clockwise and it is anticlockwise for Figs. 3(a)
and 3(c). Notably, clockwise (CW) and anticlockwise (ACW) rotations, respectively, implicate
negative and positive rotational number (signs are omitted here). Neutral stability diagrams show
distinguishable effects of CW, ACW rotations and in the case of ACW, the system is more unstable
(lower the value of critical Reynolds number) for viscosity ratio r > 1.0. In the case of rotating
single fluid, Lezius and Johnston reported that the critical disturbance mode occurs at the critical
Reynolds number Recr = 88.53 and the rotation number Ro = 0.5 [51]. Furthermore, an increase
in the rotation number stabilizes the system via increasing the Recr value. In congruence with
Lezius and Johnston [51], we have found a similar phenomenon for the viscosity stratified rotating
channel flow. Both the critical Reynolds number (Recr ) and the critical rotation number (Rocr )
vary with respect to the viscosity contrast. Further increase in rotation speed beyond the critical
rotation number increases the critical Reynolds number, thereby making the system more stable
[74]. However, the scaling of their study is different from the current study. Consequently, the
value of Recr and Rocr alter as we change the direction of the rotation (CW or ACW). For a
small viscosity variation with r = 1.2, our computed critical value of the rotation number (Rocr ),
Reynolds number (Recr ), and the spanwise wave number (βcr ) for anticlockwise rotation are
Rocr = 0.35, Recr = 75.38, and βcr = 2.56, respectively.

The relevant parameters are Rocr = 0.3, Recr = 80.023, and βcr = 2.3 for clockwise rotation.
Further, increasing the viscosity ratio to r = 2.0, a similar trend is observed in the variation of criti-
cal values (we found Recr increases to 112.31 but Rocr reduces to 0.28, for anticlockwise rotation).
The inclusion of the viscosity variation causes an asymmetry in the base flow which, coupled with
the rotational effect, renders the system more susceptible to rotation-induced instability. It is to be
noted that for a symmetrical parabolic profile, reversing the direction of rotation does not affect
the neutral stability boundary. For the case of the symmetric base velocity profile, the direction of
rotation does not affect the neutral stability boundary, because of the fact that the absolute value
of wall normal pressure gradient from the central line is same for both the ACW and CW rotation.
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FIG. 3. Neutral stability boundaries for two different viscosity ratios (r): in (a) and (b) panels r = 1.2 and
in (c) and (d) panels r = 2.0. Right and left columns of the figure are for clockwise and anticlockwise rotation,
respectively. Critical rotation number (Rocr ) for each configuration are 0.35, 0.30, 0.28, and 0.20 (red lines),
respectively.

However, with the viscosity contrast, if a fluid element is considered at the same distance above and
below the central line, the absolute value of the wall normal pressure gradient no longer remains
to be the same as the case of single-phase flow. Henceforth, Rocr adopts a lower value for higher
viscosity contrast.

The parameter p represents the location around which the miscible layer starts and q denotes the
mixed layer thickness. Both the parameters p and q are very important for this particular type of flow,
as they determine the relative mass fluxes of the fluid layers and the skewness of the base velocity
profile (the other two critical parameters are the direction of rotation and viscosity ratio). Thus, we
aim to examine the influence of mixed layer thickness on the flow instability for both ACW and
CW rotation. The neutral stability boundaries for two different viscosity ratios r = 1.2 and 2.0 are
shown in Fig. 4 for both CW and ACW rotations with variant mixed layer thicknesses. For instance,
two different values of the mixed layer thickness are chosen to understand the effect of viscosity
stratification and rotational direction on the stability boundaries for a thinner (q = 0.1) and a thicker
(q = 0.3) mixed layer. Earlier investigations on miscible nonrotating flows [3,13,18] indicate that
the flow becomes more unstable with respect to two-dimensional streamwise disturbances for a
thinner miscible layer. In the inset of Fig. 4(a), for a two-dimensional nonrotating flow with viscosity
ratio r = 1.2, we have shown that our result to be consistent with the earlier reported results and
that the thinner mixed layer is more unstable for streamwise disturbances. It is significant and
interesting to note that results for the viscosity-stratified flow with a spanwise system of rotation
unveil contrasting physics as compared to what is known earlier in the absence of any kind of
rotation. Notably, the present flow system with rotation is more stable for the case of the thinner
mixed layer, which is the most significant finding of the current investigation. This observation was
not noted in any previous studies, to the best of our knowledge.

In Fig. 4(a), even on varying the thickness of the miscible layer (q), the effect of rotational
direction (critical Reynolds number does not change much for ACW or CW rotation) has no
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FIG. 4. Neutral stability boundaries for both clockwise (dashed lines) and anticlockwise (solid lines)
rotation in conjunction with more viscous fluid is near the upper wall: (a) for r = 1.2 and (b) for r = 2.0.
Black lines are for miscible layer thickness q = 0.3 and blue curves are for q = 0.1. [In the inset I results
for general class of viscosity stratified flow with streamwise disturbance and without any rotation are given
(dashed line for mixed layer thickness q = 0.1 and solid line for q = 0.3)].

significant effect on the neutral stability boundary in the β − Re plane (for r = 1.2). However,
for thinner mixed layer (q = 0.1), the influence of rotational direction is much significant and the
flow tends to become more stable at β − Re plane as the viscous force is higher (although Rocr

is lesser in the case of CW rotation). The critical Reynolds number remains almost invariant with
the variation of layer thickness for ACW rotation when viscosity ratio r = 1.2. The reason behind
this phenomenon is that the velocity profile does not get affected much by low viscosity contrast.
Enhancing the viscosity ratio to r = 2.0 [Fig. 4(b)], we see a higher order change in the value of Recr

if we switch the mixed layer thickness. This supports the fact that the maximum of base velocity
for mixed layer thickness q = 0.3 is higher than that of the corresponding q = 0.1 (to be noted, we
have defined our Reynolds number based on the maximum velocity of the channel). Nevertheless,
for clockwise rotation, decreasing the miscible layer thickness makes the flow more stable (for
r > 1.0). Quite interestingly, the critical value of Reynolds number is achieved at a higher value
with an increase of viscosity ratio and it turns out to be a more stable configuration. In Table I, we
have enlisted the critical value of rotation number, Reynolds number and spanwise wave number for
three different viscosity ratios r = 0.8, 1.2, and 2.0, for both clockwise rotation and anticlockwise
rotation. It is worth mentioning that, r = 1.2, 2.0 suggest the configuration where a fluid with higher

TABLE I. Critical values of the spanwise wave number (βcr ), rotation number (Rocr ), and the Reynolds
number (Recr ). A clockwise rotation signifies negative rotation number but the sign is omitted here. The
miscible layer stars at p = 0.0 and thickness of the mixed layer considered here is q = 0.3.

r βcr Rocr Recr

0.8 2.41 0.33(ACW) 56.90
0.8 2.76 0.40(CW) 53.44
1.2 2.56 0.35(ACW) 76.38
1.2 2.3 0.30(CW) 81.02
2.0 2.82 0.28(ACW) 112.31
2.0 2.034 0.20(CW) 136.44
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FIG. 5. Typical eigenfunctions for different rotational directions and for two different viscosity ratios
r = 0.8 [in (a)(ACW rotation), (b) (CW rotation)] and r = 1.2 [in (c) (ACW rotation), (d) (CW rotation)].
Left pan and right pan of the sub-figures represent normal velocity and vorticity, respectively. Solid black line
for real part and blue line for an absolute value of eigenfunction; dashed line is used for the imaginary part.
Critical values of other parameters are used in this figure are given in Table I.

viscosity flows over a low viscous fluid and r = 0.8 yields an opposite flow configuration. From the
table, it is clear that disturbances are unstable at lower βcr, Rocr for anticlockwise rotation when
r < 1 and the same is true for clockwise rotation when r > 1.

To give additional physical insight about the evolution of flow instability, the wave amplitude
pattern of the wall normal velocity and vorticity (which are nothing but the eigenfunctions)
need to be comprehensively assessed. The real, imaginary and the absolute value of the typical
eigenfunctions for most excited eigenmode are assembled in Fig. 5 with both CW and ACW
rotations. All the eigenfunctions are normalized using supreme norm to make the comparison
effective. Disturbances of the spanwise and streamwise velocity components are proportional to
the normal vorticity and derivative of normal velocity components, respectively. Figures 5(a), 5(b)
and 5(c), 5(d) are drawn for the case r = 0.8 and r = 1.2, respectively. The critical perturbation
of the wall normal velocity attends a maximum value in the bulk of fluid (high viscosity r = 1.2;
less viscosity r = 0.8) adjacent to the lower wall for anticlockwise rotation and in the fluid region
near to the upper wall (high viscosity r = 1.2; less viscosity r = 0.8) for clockwise rotation. At
the same time, the wall normal vorticity of perturbation also attains a global maximum in the same
side of that of the wall normal velocity, but it has a local maximum at the opposite side of the
mixed layer. The absolute value of amplitude function for wall normal vorticity of perturbations
attends a zero value inside the flow domain which suggests the existence of more than one vorticity
with different strength within the flow field. The local maximum value in the normal vorticity is
appearing near to the miscible layer for anticlockwise rotation, and it is on the other side and
away from the mixed layer for clockwise rotation. However, for clockwise rotation, the wall normal
velocity and vorticity perturbations attain a positive maximum value around the miscible layer,
which supplies extra energy to the disturbances and thus the flow is more unstable in this case.
The maximum value attained by the eigenfunctions alters depending on the direction of rotation.
Furthermore, the anticlockwise rotation reduces the vorticity-strength of the upper layer (more
viscous for r = 1.2; less viscous for r = 0.8) and enhances the vorticity-strength of the lower layer.
The above discussion, thus far, provides that paternity of the unstable disturbances depends on the
viscosity contrast as well as rotational direction.
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FIG. 6. Contours of maximum growth rate for (a) anticlockwise and (b) clockwise rotation with three
different rotation numbers Ro = 0.1, 0.2, 0.3. Other parameters are α = 0.0, Re = 995, p = 0, q = 0.3.

In Fig. 6, we have focused on the contours of maximum growth rate ωi,max by considering all
the existing modes across a range of spanwise wave number and viscosity contrast to summarize
the instability fashion for a fixed Reynolds number (Re = 995). The rotation number is varied to
understand the efficiency of the mixing process in the microfluidic system. Rotation number is
varied from 0.1 to 0.3, to provide a practical microfluidic perspective. The growth rate for ACW
rotation is high as compared to CW rotation and it increases significantly as the rotation number
increases from 0.1 to 0.2. However, a further increase in rotation number does not allow the growth
rate to increase appreciably. We also noted that the growth rate is much higher for viscosity ratio
r < 1 and it decreases with the increase in viscosity contrast. In case of longer spanwise wave num-
ber (or shorter wavelength), the system tends to be stable for both CW and ACW rotation number.

B. Three-dimensional instability

Our discussion thus far provides two-dimensional (2D) (streamwise wave number is zero)
instability behaviors and does not help in dealing with three-dimensional (3D) perturbations. In
Fig. 7, the sets of eigenmodes for 3D perturbations are plotted in the complex frequency plane
for two different viscosity ratios in conjunction with different rotational directions. The existence
of more than one unstable eigenmode is found for the considered set of parameters. Meanwhile,
a fundamental query evolves: either the unstable modes are of a similar kind and originate from
the same fluid layer, or their properties and origins are different. We have collected the different
modes of each layer corresponding to respective Orr-Sommerfeld-Squire operator to identify the
origin of unstable eigenmodes. Figures 7(a) and 7(b) confirm that some unstable modes occur due
to the presence of the mixed layers (denoted by * symbol). The most unstable mode with maximum
growth rate originates from the lower or upper layer, depending on the rotational direction. This
mode is achieved with higher temporal growth for viscosity ratio r = 0.8, as compared to that for
r = 1.2. The rotation number and spanwise wave number also play a crucial role in determining the
behavior of the spectrum corresponding to three-dimensional disturbances.

Properties of marginal stability boundaries with respect to three-dimensional disturbances are
being discussed and compared with the two-dimensional case in Fig. 8 for two different viscosity
contrasts, considering both CW and ACW rotation (for rotation number Ro = 0.2). The Coriolis
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FIG. 7. Eigenspectrum for Re = 995.0, α = 0.15, β = 1.0, Ro = 0.20, with mixed layer thickness q =
0.3 and p = 0.0: in (a) r = 0.8 and in (b) r = 1.2. Different symbols are used to distinguish different modes
based on their layer of sourcing. Modes, which are coming due to the presence of mixed layer are denoted by
∗ symbol and modes from upper/lower layers are denoted by the symbol o/�. Black and red colours suggest
anticlockwise and clockwise rotation, respectively.

acceleration gives rise to an opposite directional force, which is normal to the walls in a rotating
channel since the basic flow is supposed to be unidirectional and parallel to the walls. This force
will be directed toward the leading side of the channel, depending on the direction of rotation. The
base flow will have the nearly parabolic type profile (see Fig. 12 for r = 1.2), with the largest force
being slightly shifted from the center of the channel (thus the profile is not symmetric and center
line velocity is not maximum) due to the effect of viscosity stratification. This is coupled with an
unstable ‘stratification’ of the Coriolis force on the leading side, and a stable one on the trailing side.
For a fixed viscosity ratio, the direction of the rotation plays a key role. In this kind of system, the

FIG. 8. Marginal stability boundaries for two different viscosity ratios (a) r = 1.2 and (b) r = 2.0 for two
different wave numbers of streamwise disturbances (α = 0.0, 1.0). Solid lines are for ACW and dashed lines
are for CW rotations. Here, α = 0.0 (black lines) corresponds to the two-dimensional disturbance. The other
parameters are Ro = 0.20, q = 0.3, and p = 0.0.
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FIG. 9. Iso-contours of velocity field for three-dimensional disturbances with viscosity ratio (a) r = 1.2
and (b) r = 0.8 (ACWcase : Ro = 0.2, Re = 995, α = 0.15, β = 1.0).The thickness of the miscible layer
q = 0.3 and miscible layer starts at p = 0.0.

leading side is destabilizing and the trailing side is a stabilizing one. For the case of anticlockwise
rotation, higher viscous regime falls on the trailing side and the less viscous regime of the flow field
is on the leading side, and the reverse is true for the clockwise rotation. As seen in Fig. 3, with
anticlockwise rotation the flow becomes more unstable due to the less viscous leading side, which
effectively plays an important role in destabilizing the flow. In the clockwise rotation, the flow tends
to be more stable due to the effect of higher viscosity in the leading side. The viscosity stratification
of the system is effectively suppressing the growth rate of the system as compared to the single fluid
rotating system, which is useful in practical applications.

The 3D patterns of critical disturbances (corresponding to the three-dimensional perturbation) are
plotted in Figs. 9 and 10 to acquire additional information about the location of the stable or unstable
vortices inside the flow field, where the instability may have evolved. Contours of the perturbed
velocity field are displayed for viscosity ratio r = 0.8 and r = 1.2, with both ACW (Fig. 9) and
CW (Fig. 10) rotations at a particular time. We note that for r < 1, the cases corresponding to CW
rotation are more unstable than ACW cases (ωi,CW > ωi,ACW) and the reverse is true if r > 1.

In Figs. 9 and 10, the right panel shows the 2D view of the perturbation velocity contours. In
the left panel of the figures, we have represented three slices of the flow field at the location z = 0,
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FIG. 10. Isocontours of velocity field for three-dimensional disturbances with viscosity ratio (a) r = 1.2
and (b) r = 0.8 (CWcase : Ro = 0.2, Re = 995, α = 0.15, β = 1.0). The thickness of the miscible layer
q = 0.3 and miscible layer starts at p = 0.0.

y = 0, and y = 0.3 (near the mixed layer). For ACW rotation, primary vortices (with more strength)
are formed in the lower layer. For r = 0.8, vortices are slightly stronger than that for r = 1.2 and
the flow system with less viscous fluid adjacent to the upper wall is more unstable. Besides, for
both kinds of viscosity contrasts, comparatively weaker secondary vortices are built up in the upper
fluid layer of the channel. For viscosity ratio r = 1.2, weaker vortices are concentrated toward
the midplane of the channel, dragging the disturbances inside mixed layer toward upper half (i.e.,
toward higher viscous liquid) from the centerline of the channel. For r = 0.8, similar vortices are
concentrated much closer to the upper wall of the channel and hence the penetration is less in the
mixed layer.

Reversing the direction of rotation (i.e., for CW case), the location of primary vortices is shifted
to the upper fluid layer (which is the more viscous fluid for r = 1.2 and less viscous fluid for
r = 0.8). However, secondary vortices are present in the lower layer as well. Figure 10(a) confirms
that the mixed layer is more involved in the instability mechanism for r = 1.2. For both the viscosity
ratios considered above, the secondary vortices form near y = −0.5, but the strength of the vortices
is comparatively lower for r = 0.8. We also note that for the ACW rotation, the axis of the vortex
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FIG. 11. Contours of maximum growth rate for (a) ACW and (b) CW rotation for three different rotation
numbers Ro = 0.1, 0.2, 0.3. Other parameters are Re = 995.0, p = 0.0, and q = 0.3.

formed due to the rotation makes an acute angle with the mean flow direction, and for CW case the
same makes an obtuse angle with the mean flow direction. This phenomenon might have played an
eminent role in the instability mechanism.

Next, we focus our attention on the contours of the maximum growth rate (ωi,max) corresponding
to the 3D disturbances by considering the most unstable mode over all possible unstable streamwise
and spanwise wave number. The rotation number and viscosity stratification have distinguishable
effect on the critical Reynolds number. Earlier work of Alfredsson and Persson showed that for
single phase flow with a spanwise system of rotation can destabilize at very low Reynolds number,
and the subsequent work of Sengupta confirms the same using temporal stability theory [47,52].
Indeed, viscosity stratification influences the critical rotation number differently, which also depends
on the direction of rotation. This dependence on the rotational direction comes because of the fact
that the base flow becomes asymmetric due to viscosity stratification, unlike the classical plane
Poiseuille flow profile which is symmetric about the central line. In Fig. 11,we tried to compare the
variation of maximum growth rate for 3D disturbance on small viscosity stratified flow (r = 1.2)
at various rotation numbers, for both ACW and CW rotation. The growth rate for ACW rotation
is much higher as compared to CW rotation. Also, by increasing the rotation number, the range of
streamwise and spanwise wave number for which the flow tends to become more unstable increases.
The flow under 3D disturbances becomes comparatively more unstable for shorter streamwise wave
numbers (longer wavelength). As we know, the order of magnitude of growth rate is always small.
Thus, quantitative changes in maximum growth do not appear to be very prominent. Figure 11 is
drawn at a fixed Reynolds number (Re = 995.0), since we are interested to capture the influence
of rotation number on ωi,max for both ACW and CW rotation. The rotation number is varied
to understand the effectiveness of the mixing process. We observe that for different rotational
directions (i.e., ACW and CW rotation), the ranges of unstable streamwise and spanwise wave
numbers do not vary much, but the growth rate for ACW rotation is much higher as compared to
CW rotation. Also, by increasing the rotation number, the range of streamwise and spanwise wave
number for which the flow tends to become more unstable increases. The flow under 3D disturbances
becomes comparatively more unstable for shorter streamwise wave numbers (longer wavelength).
This information is useful for designing a compact rotating device.

The earlier studies on the classical single fluid Poiseuille flow with a spanwise system of rotation
showed that the base flow profile was symmetric about the central line. For standard parabolic type
profile, the largest velocity is perceptible near the central line of the channel. As a result of this, the
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FIG. 12. (a) Base velocity profile and (b) gradient of the base flow profile for viscosity ratio r = 1.2, 2.0,
and mixed layer starting position p = 0.0 with thickness q = 0.1 and 0.3.

Coriolis force is highly influential near the central line, leading to an unstable flow configuration
and causing instability. However, altering the direction of rotation, the instability behavior does not
change as the mean velocity profile is balanced about the central line. On the contrary, for the case
of viscosity stratified flow, the mean velocity profile is not symmetric about the central line of the
channel and the skewness of the velocity profile is completely dependent on the viscosity ratio of
the fluids. The asymmetric base flow about the central line contributes to a change in instability
mechanism for viscosity stratified flow system if the direction of rotation is altered. Moreover, due
to the presence of the Coriolis force, the base velocity gradient plays a substantial role in modifying
instability behavior.

In Fig. 12, we have plotted typical base velocity and its gradient for a viscosity stratified miscible
flow with viscosity ratio r = 2.0. Altering the thickness of the miscible layer changes the maximum
velocity, which in turn changes the range of the critical parameters (Reynolds number and Rotation
number) for instability of the system due to the variation of shear rate near the mixed layer as well
as centerline. It is also evident in Fig. 12(b) that the velocity gradient of the base flow may be the
other possible reason due to which the flow system with the thicker miscible layer is more unstable.
Furthermore, this idea is a direct consequence of Bradshaw’s instability criterion [75] developed for
a rotating flow system. The inclusion of the viscosity variation causes an asymmetry in the base flow
which, coupled with the rotational effect, renders the system more susceptible to rotation-induced
instability. It is to be noted that for a symmetrical parabolic profile, reversing the direction of rotation
does not affect the neutral stability boundary. For the case of the symmetric base velocity profile,
the direction of rotation does not affect the neutral stability boundary, because of the fact that the
absolute value of wall normal pressure gradient from the central line is same for both ACW and CW
rotations. However, with the viscosity contrast, if a fluid element is considered at the same distance
above and below the central line, the absolute value of the wall normal pressure gradient no longer
remains to be the same as the case of single-phase flow.

For the case of viscosity stratified miscible flow, the reported literature [3,13,18] indicates that the
thinner mixed layer is more unstable for streamwise disturbances. However, our numerical findings
show that viscosity stratified flow with a spanwise rotation can be more unstable for the thicker
mixed layer as well. Due to the presence of spanwise rotation, the problem under investigation
and associated instability mechanism are in contrast to earlier investigations dealing with viscosity
stratified miscible channel flow. Here, we are investigating the instability mechanism that deals
with spanwise disturbances in a rotating platform, which is different from the earlier works with
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FIG. 13. Variation of the energy transfer term for viscosity ratio (a) r = 1.2 and for (b) 2.0. The other
parameters are the critical values as mentioned in Table I. The Reynolds number and rotation number
considered for the flow is Re = 995.0 and Ro = 0.2, respectively.

streamwise disturbances for the viscosity stratified flows. We have observed (see Fig. 4) that the
system with thick mixed layer is more unstable, which is mainly because of the critical role of
spanwise perorations as well as Coriolis effects. To understand the underlying principle behind this
contradiction, we have tried to show the energy variation of the perturbed system represented by
the Reynolds stress term (U ′uv)(u, v are the perturbation velocity components and U ′ is gradient
of the base flow profile), drawn from base flow to transfer disturbed flow. The same is plotted as
a function of y for two different miscible layer thicknesses (q = 0.1 and 0.3) with both ACW and
CW rotation, as shown in Fig. 13. We consider the case r > 1 with two different viscosity ratios:
r = 1.2 in Fig. 13(a) and 2.0 in Fig. 13(b). For both the cases, we see the thick miscible layer draws
energy more efficiently from the mean flow as compared to thin miscible layer, which can cause
the flow to be more unstable for a spanwise system of rotation. Altering the rotational direction,
the qualitative behavior did not change. Moreover, to get the precise physical mechanism, a further
critical investigation using full kinetic energy budget calculation is required.

IV. CONCLUSIONS

We have discussed the effects of instability mechanism due to Coriolis force on rotating
laminar miscible viscosity-stratified two-fluid channel flows. The linear instability analysis has been
conducted to explore the possible mechanisms of the system under investigation (in the context of
two- and three-dimensional perturbations). The influence of viscosity ratio and thin diffusive layer
(called a mixed layer) between the two fluids is taken into consideration. We have discussed the
significance of frozen mixed layer thickness (q) and asymmetric base flow profile. Modal stability
analysis of the flow ascertains the variation of instability mechanism for the rotating viscosity
stratified flow, depending on the rotational direction. Numerical results pinpoint the following
critical parameters, namely, rotation number, Reynolds number, the direction of rotation, viscosity
ratio, and thickness of the miscible layer.

In contrast to the general nonrotating class of viscosity stratified flows, our analysis indicates
that in the presence of spanwise disturbances, the rotating stratified flow with the thicker miscible
layer is more unstable than that of the flow with thinner mixed layer. This is the most important and
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novel finding of the current work. Assessment of maximum growth rate over a range of spanwise
wave numbers has been conducted for different rotation numbers (for both ACW and CW rotation),
to understand the efficiency of the mixing process. It has been found that the growth rate for ACW
rotation is more prominent compared to CW rotation and it increases significantly on increasing the
rotation number (for viscosity ratio greater than unity). We have also tried to elucidate the three-
dimensional perturbed flow field qualitatively and explained how both clockwise and anticlockwise
rotation can affect the flow vortices, to control the mixing process. An eigen spectrum analysis
reveals that for three-dimensional disturbances, unstable modes sourcing from different layers can
play a monumental role in the temporal instability, depending on the viscosity ratio (r) of the fluids.
Our results demonstrate the existence of several unstable modes, some of which originate from
the mixed layer. The appearance of the unstable modes from different layers relies on rotational
direction and spanwise disturbances. The origin of the most unstable mode depends on the viscosity
ratio, direction of rotation, and mixed layer thickness. The instability mechanisms are the outcomes
of the change in maximum velocity as well as the shear rate, by virtue of the viscosity stratification.
The dispersion of energy transport, as a function of wall normal direction, suggests that the flow with
a thick miscible layer draws energy more efficiently from the mean flow, which may be implicitly
causing the flow to be more unstable than that of the flow with thin mixed layer, in the presence of
spanwise system rotation.
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APPENDIX A: NONDIMENSIONALIZATION WITH AVERAGE VELOCITY AND VISCOSITY

We define the Reynolds and rotation numbers using average velocity and average viscosity. We
calculate the flow rate across the channel and thereby obtain the average velocity (tabulated below),
to make the comparison between two different scalings. In Fig. 14 below, we show the critical
rotation number for both, clockwise (CW) and anticlockwise (ACW) rotation for two different
viscosity ratios r = 1.2 [Figs. 14(a) and 14(b)] and 2.0 [Figs. 14(c) and 14(d)] for layer thickness,
q = 0.3. Comparing the results obtained in the case of using maximum velocity with that of the
average velocity, one can clearly see that, with average velocity the critical rotation number increases
substantially while the critical value of Reynolds number decreases. Average velocity for viscosity
stratified flow is considerably less than maximum velocity (see Table II), and hence an increase in
critical rotation number is evident and similarly, the critical value of Reynolds number is found to
decrease. However, the qualitative results are unaltered for the scaling alteration. The critical value
of rotation numbers obtained after nondimensionalizing with average velocity for viscosity ratio 1.2
are 0.53, 0.45 and viscosity ratio 2.0 are 0.43 and 0.31 for ACW and CW rotation, respectively. The
critical value of Reynolds number thus can be calculated as 50.8511 (ACW) and 53.72 (CW) for
viscosity ratio of 1.2 and 72.26 (ACW) and 88.23 (CW) for viscosity ratio of 2.0.

The comparison holds up against the redefinition of Reynolds number and rotation number while
using the average velocity for the purpose of nondimensionalization (see Fig. 15). We find that the
thicker mixed layer is less stable than the thinner layer similar to the case of scaling with maximum
velocity. The used rotation number is Ro = 0.20, which is arbitrary. However, altering the rotation
number does not make any difference in the main finding under the scrutiny. Moreover, the active
reason of instability due to system of rotation comes from the celebrated Bradshaw-Richardson
criterion and subsequently by Pedley, which shows that the gradient Richardson number, B∗ =
Ro(Ro − U ′) < 0, determines the stability for inviscid flows in a rotating platform [75,76]. It is
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FIG. 14. Neutral stability boundaries for two different viscosity ratios (r): in (a) and (b) panels r = 1.2 and
in (c) and (d) panels r = 2.0. Right and left columns of the figure are for clockwise and anticlockwise rotation,
respectively. Black line represents the results using average velocity and red line represents with maximum
velocity.

noticed that this criterion is also holds good for viscous flows and used by previous researchers to
justify mechanism behind the rotating instability [47,51,52]. For low contrast in viscosity (r = 1.2),
the effect of mixing layer thickness does not have much influence in the gradient of the flow field and
hence the effect seems to be less on stability boundary, as it can clearly be seen from the Fig. 15(a).
However, for higher viscosity contrast r = 2.0, the effect is more prominent and dependent on
direction of rotation [see Fig. 15(b)].

To compare our results with the unstratified flow, in Fig. 16 we have shown the neutral stability
boundaries for both unstratified flow and stratified flow using average velocity as the velocity scale,
half channel width and averaged viscosity as length and viscosity scales, respectively. Our results

TABLE II. The flow rate, average velocity, and maximum velocity for two different viscosity ratio r = 1.2
and 2.0 for two different layer thickness q = 0.1 and 0.3.

Viscosity
ratio (r)

Layer
thickness (q)

Flow rate
(Q = ∫ 1

−1 Udy)
Average velocity
(Uavg = Q/Area)

Maximum velocity
(U0 )

1.2 0.1 1.214561261317564 0.607280630658782 0.911758430789031
1.2 0.3 1.215441161666708 0.607720580833354 0.914320133640885
2.0 0.1 0.918078102497246 0.459039051248623 0.698888613552727
2.0 0.3 0.924123447303222 0.462061723651611 0.711049559571532
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FIG. 15. The effect of layer thickness on neutral stability boundary for viscosity ratio (a) 1.2 and (b) 2.0.
The other parameters are Ro = 0.20 (ACW), q = 0.3, and p = 0.0. Here, Re and Ro are defined using average
velocity over the channel.

show that for unstratified case, the critical Reynolds number for the flow for both streamwise wave
number α = 0.0, 1.0 is more critical than for the viscosity stratified flow, which suggests that the
viscosity stratification indeed delays the transition.

APPENDIX B: CONVERGENCE OF NUMERICAL TECHNIQUE

The numerical technique we have implemented to develop the code and thereby to solve the
present problem is based on the code made available publicly by Schmid and Henningson [71] for
plane Poiseuille flow. The codes described in their book have been easily available and modified

FIG. 16. Comparison with unstratified flow for viscosity ratio (r) (a) 1.2 and (b) 2.0. The blue and green
line denotes unstratified flow for streamwise wave number α = 0.0, 1.0. Dashed line represents CW rotation
and solid line represents ACW rotation. Black and red line corresponds to viscosity stratified flow with
streamwise wave number α = 0.0, 1.0.
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TABLE III. Convergence of nemurical value for different grid resolution, where nu, nm, and nl denote
number of grid points in upper, miscible, and lower layer, respectively, and the comparison made with the
plane Poiseuille flow results of Schmid and Henningson.

nu nm nl Our computation for the considered flow
Schmid and Henningson
[71] (for Poiseuille flow)

40 20 40 0.312100195738000 − 0.019798759449700i
40 30 40 0.312100475312100 − 0.019798693988600i
50 20 50 0.312100426726000 − 0.019798719348000i
50 30 50 0.312100706095000 − 0.019798950346000i

0.31210030 − 0.01979866i
60 20 60 0.312100129003000 − 0.019799408226000i
60 30 60 0.312098328219000 − 0.019799465495000i

for the past 10–20 years and applied widely. We have also adhered to the same, with appropriate
benchmarking.

(a) We have shown the eigen structure for viscosity ratio r = 0.8 and 1.2 (see Fig. 5) for
both ACW and CW rotation, which has been done carefully by implimenting appropiate boundary
conditions [Eqs. (13)–(25)] originating from the fact that continuity of velocity, tangential, and
normal stress is maintained across interfaces of each layers.

(b) The validations are done based on three layer grid structure. A tabulated form is given herein
(Table III), for the case where the grid resolution has been changed with the benchmarked data
available on the the book of Schmid and Henningson for classical plane Poiseuille flow for Reynolds
number Re = 2000, α = 1.0, β = 0.0.

APPENDIX C: USE OF SQUIRE TRANSFORMATION

The main reason of doing Squire transformation is that, failing to do so, it is impossible to
incorporate the Coriolis effect in the platform of OS system. This technique of using Squire
transformation for the case of rotating channel flow system has been validated by many previous
research groups including ours for single phase flow [47,52,68,69]. Incorporating viscosity as a
function of concentration will give rise to an additional equation [2,10,11,30], but to investigate the
role played by Coriolis force on stability of such flows, a Squire transformation is always required
and it has no connection with the concentration equation.
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