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Normal impact force of Rayleigh jets
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The surface-normal impingement of a liquid jet emanating from a nozzle is of use in
numerous technological applications (e.g., surface cleaning, waterjet cutting, and needle-
free injection). Upon impact, the (Rayleigh) jet is characterized as either a steady-state
(time-invariant) jet, a wavy jet, or a droplet train. The present study experimentally
investigates the force imparted by these three distinctly different processes for identical
nozzle flow conditions (i.e., velocity and jet diameter). Force models are developed based
on Rayleigh jet theory, and they are shown to compare well with the measurements. The
force induced by the wavy jet is sinusoidal, oscillating about the steady-state force, while
the droplet train force is discrete with periods of zero induced force. Due to conservation
of momentum, the peak force experienced by the droplet train is significantly higher than
that of the steady stream. This identifies the droplet train as the dominant process to obtain
higher peak forces than the continuous stream counterparts during impact with a surface.
This can then be used as a means to increase the performance of applications such as
waterjet cutting and surface cleaning.

DOI: 10.1103/PhysRevFluids.4.113603

I. INTRODUCTION

The impact of a liquid jet is used in numerous applications, e.g., surface cleaning [1], cooling
[2,3], coating and ink-jet printing [4], surgical applications [5,6], and medicine delivery [7]. In most
of these applications, a liquid is accelerated through a circular orifice that initially forms either a
continuous, axisymmetric, cylindrical (Rayleigh) jet or is emitted as a disorganized mass of liquid
droplets by a process known as atomization [8]. Many of the applications listed above utilize the
former process, where an initially continuous stream of liquid travels a certain distance from the
orifice until colliding with a surface. The purposes of surface impingement vary depending on the
application. In coating flows or ink-jet printing, for example, it is often desirable to efficiently
deposit the liquid onto the surface while minimizing splash [9,10] (i.e., in order to enhance print
quality). In surface cleaning or waterjet cutting, it is advantageous to maximize the stress imparted
onto the surface (i.e., to remove dirt or to penetrate the surface for effective material removal). Upon
impact with the surface, however, the liquid in the emanating jet can exhibit two distinctly different
states: (i) the liquid remains intact as a continuous, axisymmetric jet, depicted in Figs. 1(a) and 1(b);
or (ii) the liquid jet fragments, downstream of the orifice, into a train of discrete droplets due to a
surface tension induced instability [11], shown in Fig. 1(c). Regardless of the intended application,
the characteristics of the impact (i.e., splash, induced force, etc.) will change depending on whether
the liquid is in a droplet state upon impact or remains as a continuous jet. Here, it is recognized that
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FIG. 1. Schematic of the normal impingement of Rayleigh jets: (a) steady-state jet, (b) wavy jet, and
(c) droplet train.

a Rayleigh jet constitutes any of the Fig. 1 depictions, as the only differences between these jets
are their perturbation amplitudes and whether these amplitudes are large enough to permit droplet
formation. The state of the liquid arriving normal to the impingement surface is then governed by
the perturbation amplitude and the nozzle to plate distance, as described in detail in Secs. II and III.

The droplet formation process from a continuous jet has received considerable attention since the
pioneering work of Lord Rayleigh [11–13]. Similarly, the impact of a single droplet onto a flat solid
surface has received a wealth of scientific interest, with particular attention paid to the underlying
splashing mechanisms [14,15]. A less prevalent research topic is the associated impact of continuous
jets, and droplet trains onto flat solid surfaces, and especially the induced normal force. This area
remains largely unexplored; however, knowledge of the force induced by Rayleigh jets is of practical
use in industrial applications and is of broad scientific interest. In fact, as a unique example, archer
fish (Toxotes jaculatrix) attack their above-surface prey with precisely aimed waterjets [16].

In this study, the similarities and differences of the normal impingement of a steady-state jet, a
wavy jet, and a droplet train onto a solid surface are investigated through force measurements and
high-speed photography. Our aim is to quantify the force imparted by these distinctly different
scenarios for identical nozzle flow conditions (i.e., velocity and jet diameter). In this way, the
momentum exiting the nozzle is identical for each condition, allowing for direct comparison. A
quantitative understanding in the applied force of Rayleigh jets allows applications to be designed
with sufficient foresight, and aids in determining whether the use of droplets is appropriate and
beneficial.

This paper begins with the regimes associated with the “breakup” of liquid jets in Sec. II,
followed by a description of the droplet formation process in Sec. III. That section also characterizes
the jet free-surface, which is used to formulate model equations for the force induced by continuous
jets in Sec. IV. Section V elucidates the force imparted by a single droplet, which is used in
series to formulate a model equation for the force induced by a droplet train. These force models
are then experimentally tested. In Sec. VI the experimental setup and data processing methods
are introduced. This is followed by results and discussion in Sec. VII, and finally we end with
conclusions in Sec. VIII.

II. CLASSIFICATION OF JET REGIMES

Liquid issuing from a circular nozzle has several outcomes. If the flow rate exiting the nozzle is
relatively small, and there exists a quasistatic balance between the liquid inertial/gravitational force
and the surface tension force, then the liquid simply drips [17] (i.e., a leaking faucet). As the flow
rate increases, the liquid takes the form of a cylindrical “Rayleigh” jet, where the jet appears smooth
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and unperturbed close to the nozzle. The onset between the dripping regime and the Rayleigh regime
occurs when the Weber number (ratio of inertial to surface tension force) exceeds a critical threshold,
described by

We = ρd0v
2
0

σ
> 8, (1)

where ρ is the liquid density, d0 is the jet diameter, v0 is the jet velocity relative to the nozzle,
and σ is the surface tension [18–20]. A formal description of the transition from dripping to
jetting can be found in Ref. [21]. Once in the Rayleigh regime, the liquid exiting the nozzle
is initially columnar; however, at a certain distance downstream, wavy disturbances about the
free surface become discernible. These disturbances grow progressively in amplitude downstream
until the wave amplitude becomes approximately equal to the jet radius. This is where droplet
formation occurs [22]. The distance between the nozzle and the point of droplet formation is
defined as the breakup length Lb [see Fig. 1(c)], and is linearly proportional to the jet velocity. More
specifically, the normalized breakup length scales with the square root of the jet’s Weber number
(i.e., Lb/d0 ∝ √

We) [13,23–27]. This relation, however, is valid only for a certain range of Weber
numbers. As the jet velocity increases, the surrounding fluid into which the jet is immersed (typically
air) begins to alter the Rayleigh regime dynamics. Aerodynamic drag causes droplet formation to
occur earlier, shortening the breakup length. The breakup length begins to decrease nonlinearly with
jet velocity, and the jet enters the first wind-induced regime [13]. This occurs when the aerodynamic
force is about 10% of the surface tension force [28]. A further increase in the jet velocity allows
the surrounding fluid to induce significant shearing stress onto the jet. This causes droplets to be
stripped off the surface rather than being pinched off in segments at the fore of the jet [22]. The jet
then enters successive wind-induced and atomization regimes.

The topic of this paper focuses solely on Rayleigh jets. A comprehensive review of the
subsequent regimes can be found in Refs. [13,19,23,29]. The upper bound separating the Rayleigh
regime from the first wind-induced regime is described by

We < 0.4
ρ

ρgas
, (2)

where ρgas is the density of the ambient gas [19,20,29]. For the experiments reported in this paper,
which are conducted in standard atmosphere, the critical upper bound for velocity is 3.8 m/s.
Note that Eq. (2) predicts that the Rayleigh regime can be extended to higher jet velocities if
the surrounding atmospheric pressure is reduced. This widening of the Rayleigh regime has been
experimentally verified by Fenn and Middleman in a subatmospheric pressure environment [30].

III. DROPLET FORMATION FROM RAYLEIGH JETS

As previously mentioned, a Rayleigh jet is characterized by an initially continuous, unbroken
stream of liquid emanating from a nozzle that with downstream evolution may break apart into
discrete droplets due to surface tension-induced instabilities. If a flat solid surface is positioned
normal to the jet, before the region where wavy disturbances become noticeable, then the liquid is
diverted radially along the surface, as depicted in Fig. 1(a). If the axial disturbances have sufficiently
large amplitudes, droplet formation will occur closer to the nozzle, and a flat solid surface positioned
past the breakup length will experience a series of droplet impacts, like that shown in Fig. 1(c).
Figure 1(a) is a highly idealized scenario as disturbances are likely to occur and grow in amplitude
almost immediately after the nozzle exit. There exists an intermediate scenario between the steady
columnar jet impact and the droplet train impact. In this scenario, the solid surface will experience a
series of continuous wave impacts, like that depicted in Fig. 1(b). If viscous effects of the impinging
jet can be neglected, and the Weber number satisfies Eqs. (1) and (2), then predicting the state in
which the liquid arrives at the surface is accomplished through Rayleigh jet theory.
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A. Plateau’s reasoning

The first attempt to characterize the droplet formation process was done by Plateau in 1873. At
this time, it was known that liquids possess a binding force at their free surface, i.e., surface tension
(N/m in S.I. units) or surface energy (J/m2). In terms of total surface energy, a given volume of
liquid can exhibit different surface areas (depending on its shape), which correspond to different
surface energies. Based on the principle of minimum potential energy, Plateau reasoned that an
axisymmetric, wavy liquid column of radius

R(z) = R0 + aeikz, (3)

where R0 is the mean column radius (i.e., R0 = d0/2), a � R0 is the wave amplitude, i = √−1,
and k is the wave number, exhibits a smaller surface area (and thus a lower potential energy) than
that of a straight cylindrical column of equal volume, if the wavelength λ = 2π/k is larger than
the column’s circumference [31]. This principle of energy minimization essentially derives from
the second law of thermodynamics, and permits the unstable wavy liquid column to discretize into
droplets whose combined surface area is less than that of the original column. Disturbances or waves
that are nonaxisymmetric (i.e., azimuthal modulations) are stable [13,32,33]. For axisymmetric jets,
only wave numbers in the range 0 < kR0 < 1 are unstable and lead to droplet formation. Although
a critical finding, this range does not identify which wave(s) are most dominant or how rapidly
different waves grow in amplitude.

B. Rayleigh’s local analysis

Using the equations of motion, Rayleigh determined the wave number associated with the most
rapid wave amplitude growth. He considered the evolution of small axisymmetric perturbations
about the free surface of a quiescent, inviscid, infinitely long liquid cylinder, with radius R0, density
ρ, and surface tension σ , in the absence of gravity. These small perturbations (i.e., waves) allow
linearization of the momentum equations, which, with the continuity equation and appropriate
boundary conditions, yield their temporal growth rates, ω. In Rayleigh’s analysis, the free surface
takes the form of a perturbed sinusoidal column about the axial direction z, as described by

R(z, t ) = R0 + aeωt+ikz, (4)

where ω and k are the previously defined growth rate and wave number, respectively. Negative
values of ω lead to wave stabilization, while positive values lead to wave steepening and imminent
droplet formation. The prominent result of Rayleigh’s analysis is a dispersion relation. This
describes the dependence of the wave growth rate on wave number, and it is given by

ρω2R3
0

σ
= kR0

I1(kR0)

I0(kR0)

(
1 − k2R2

0

)
, (5)

where Iν is the modified Bessel function of the first kind. This relation is plotted in Fig. 2. The
wave number of the fastest growing wave is kR0 = 0.697. Other waves can, however, lead to the
discretization of the column if their initial amplitudes are sufficiently large. It should be noted that
this linearized wave model accurately describes the early stages of jet segmentation. The actual
pinch-off of the droplet can only be described by nonlinear theories [34]. The infinite column is
allowed to travel in space with some arbitrary velocity, but waves do not propagate upstream or
downstream with respect to the bulk flow. In this regard, Rayleigh’s analysis can be seen as a
local theory, as every wave along the column is identical to the wave upstream or downstream
of it. Therefore, one only needs a portion of the column λ = 2π/k to completely describe its
characteristics. This is obviously not the case for finite liquid jets issuing from nozzles, as waves
progressively grow in amplitude along the axial direction.
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FIG. 2. Rayleigh’s dispersion relation identifying the dependence of wave growth rate ω on the normalized
wave number kR0. The fastest growing wave (Rayleigh mode) occurs for kR0 = 0.697, labeled with a green star.
The wave number at impact for our experiments is kR0 = 0.634, and it is represented with a purple diamond.

C. Spatial analysis

Rayleigh’s analysis can be extended to liquid jets issuing from nozzles in a commonly used
spatial theory [35–38]. In this theory, waves grow in amplitude along the z direction, rather than
in time. This fixes the breakup length for steady-state jets, and is the case for our experiments.
This spatial description of the free surface is the intuitive choice for the laboratory reference frame;
however, there are certain assumptions that must be made. Namely, the temporal characteristics
propagate downstream in the axial direction with the same velocity of the jet �v. This requires one
to define a new parameter: the spatial wave frequency, K , which connects to the temporal wave
number as K = k = 2π/(vT ), where T is the period of temporal oscillation. The period is related
to the frequency by T = 1/ f , and the wavelength is then λ = vT . The temporal wave growth rate
is related to the spatial growth rate β through β = ω/v. With these considerations, the free surface
of the jet takes the form

R(z, t ) = R0 + aeβz cos(Kz − 2π f t + φ), (6)

where φ is the phase of the wave, which is arbitrary and depends on the time in which the analysis
starts. The nozzle location is at z = 0, with positive z being the direction toward the impact surface
(see Fig. 1). Equation (6) indicates that the waves oscillate both in time and in space. When
traveling with a wave at velocity �v, an observer will simply see wave amplitude growth and then
droplet formation. If it is at a fixed z location, then the observer sees waves of equal amplitude (or
droplets) pass by at a rate given by f . If one droplet is produced per wavelength, then by mass
conservation the diameter of the droplet D is given by D = (1.5λd2)1/3. For the Rayleigh mode
λ = πd/0.697, the droplet diameter is nearly twice the jet diameter (i.e., D = 1.89d). Despite this,
most studies [20,39–41] show a range of droplet diameters within two distinct subsets, namely
primary droplets and satellite droplets, which are significantly smaller than primary drops. Rayleigh
theory does not predict satellite droplet formation, as this theory is strictly linear and only considers
small perturbations from equilibrium. The formation of satellite droplets can be anticipated from
nonlinear theories where breakup profiles are self-similar [42]. Satellite drops form in between
primary droplets at the breakup length Lb. Although the breakup length is typically considered
constant, it may vary slightly from each droplet pinch-off. It has been shown that the breakup
length is well represented by a Gaussian distribution, with Gaussian width proportional to the jet
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velocity [23,24,29]. This natural breakup length may be artificially shortened through wave-number
stimulation.

D. Stimulated droplet formation

A number of methods have been used to stimulate jets in order for droplets to form closer to
the nozzle. This may be done through elliptically shaped nozzles [25,32,33], piezoelectric vibration
[43], reservoir pressure oscillation [27], or simply by exploiting any periodic disturbance in the
vicinity of the jet, which may be an audio speaker placed next to the nozzle exit [44]. Depending
on the stimulation frequency f , these methods generate a large initial wave amplitude a that is
specific to the excited wavelength λ. This allows certain wave numbers to become the dominant
wave (instead of the Rayleigh wave) and thus the wave responsible for droplet formation. A range of
wave numbers may be stimulated, but only those in the range 0 < kR0 < 1 permit droplet formation.
Due to the increased amplitude, artificial stimulation enables droplets to form sooner and thus closer
to the nozzle. Other means may be used to shorten the breakup length, such as the choice of nozzle
geometry.

E. Effects of nozzle geometry

The velocity profile exiting the nozzle is important, especially if precise control of the breakup
length is required. Nozzles with short aspect ratios (Ln/dn < 1), where Ln is the nozzle length (see
Fig. 1) and dn is the nozzle diameter, are more stable and produce more consistent droplets than
nozzles with long aspect ratios [29]. Pipe flow turbulence associated with long nozzle aspect ratios
leads to moderate shortening of the breakup length [45]. Although the nozzle aspect ratio affects
the breakup length, it also influences the diameter of the jet itself, as the jet diameter d0 may not
necessarily equal the nozzle diameter dn. The study by Gavis and Modan shows that the contraction
ratio χ = d0/dn is dependent on the jet Reynolds number, defined as Ren = ρdnv0/μ, where μ is
the fluid viscosity. Contraction of the jet (i.e., χ < 1) occurs for Re > 16, while expansion (i.e.,
χ > 1) occurs for Re < 16 [46]. For example, Re = 100 liquid flow through a nozzle of aspect
ratio Ln/dn = 0.5 exhibits about 7% contraction. The velocity profile relaxation is completed after
liquid from the nozzle travels approximately one nozzle length O(Ln); after this, the jet diameter
remains unchanged [46]. This indicates that for short nozzle aspect ratios, the jet diameter d0 may
be assessed close to the nozzle.

F. Other analyses

Rayleigh’s analysis shows that the droplet formation process is governed purely by the growth
of capillary waves whose wavelength is a function of the liquid properties and jet diameter only.
It is worth noting that Rayleigh’s theory has been extended to other analyses conducted by Weber
[47], Yuen [48], Sterling and Schleicher [28], and Leib and Golstein [35], which take into account
the fluid viscosity, velocity, nonlinearity, and effects of ambient air. The effects of viscosity tend
to decrease the growth rate and increase the dominant wavelength [22]. For the purposes of our
analysis, the spatial form of Rayleigh’s theory is instructive as it elucidates the droplet formation
mechanisms and accurately represents the jet free-surface, which can be used to yield accurate
models for the induced force of real jets.

IV. FORCE INDUCED BY CONTINUOUS JETS

A. Steady-state jets

The steady-state normal impingement force of a continuous unperturbed jet, like that depicted in
Fig. 1(a), can be determined through control volume analysis. The volume considered is the curved
area at the base of the jet in contact with the surface revolved about the z axis. It is assumed that
the incoming flow is uniform with velocity �v, and the outward deflected radial flow travels purely in
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the r direction. The jet Reynolds number is assumed to be sufficiently high such that viscous effects
are negligible. With these considerations, the integral momentum equation may be applied to the
control volume to yield the jet impact force

F = π

4
ρv2

0d2
0 . (7)

The parameters ρ, v0, and d0 provide an inertial set of normalizing parameters, such that the
nondimensional form of Eq. (7) is F̂ = F/ρv2

0d2
0 = π/4. Equation (7) is effectively a statement of

momentum conservation, as the plate simply diverts the jet momentum from the axial to the radial
direction.

If gravitational effects are considered, then the jet velocity increases with increasing z and the
jet radius contracts as a consequence of mass conservation. The velocity in the axial direction at
the moment of impact is defined as v, while v0 is the nozzle exit velocity. If the Weber number
is sufficiently high such that surface tension can be neglected, and air-induced drag is considered
negligible, then the jet velocity at impact takes the form

v(z)

v0
=

(
1 + 1

Fr

z

R0

)1/2

, (8)

where the Froude number Fr = v2
0/(d0g) represents the ratio of fluid inertial force to gravitational

force. The radius is similarly given by

R(z)

R0
=

(
1 + 1

Fr

z

R0

)−1/4

. (9)

The derivation for velocity and radius evolution can be found in Appendix. To consider the
effects of gravity on jet impingement force, Eqs. (8) and (9) are substituted into the normalized
form of Eq. (7) to yield

F̂a(z) = π

4

(
1 + 1

Fr

z

R0

)1/2

, (10)

where the subscript a refers to the scenario depicted in Fig. 1(a), as this jet exists in a gravitational
field. If gravitational effects are weak (i.e., Fr → ∞), then Eq. (10) reduces to the normalized form
of Eq. (7). Equation (10) is perhaps a more realistic model as many industrial jets are influenced by
gravity, however this equation does not account for free-surface perturbations.

B. Wavy jets

To determine the effect of waves on the jet impingement force, Rayleigh’s description of the
free surface given by Eq. (6) is employed. This implies that the radius of the impinging jet is time-
periodic at any given fixed plate location, defined as z = Z . A control volume analysis is used,
similar to the steady-state jet, but now with a spatially varying control volume. The control volume
is now the area of the jet bounded by the (time-dependent) free surface and the base in contact
with the plate revolved about the z axis. The flow is assumed uniform at the top boundary of the
control volume and at the exit. Rayleigh’s theory indicates that there exist axial and radial velocities
associated with the capillary pinching of the jet. These velocities are, however, negligible compared
to the bulk velocity �v. Therefore, at the top boundary, there exists uniform flow of velocity �v, with
a time-varying cross-sectional area. It is assumed that the top boundary is very close to the plate,
permitting evaluation at the plate location, z = Z . Applying the integral momentum equation to this
control volume yields

F̂wavy(z, t ) = π

4
[1 + 2εeβz cos(ζ − 2π f t )], (11)
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where ζ = Kz + φ is a parameter to shift the phase as required, and ε = a/R0 � 1 is the normalized
initial wave amplitude. As anticipated, Eq. (11) is oscillatory in time and fluctuates about the steady-
state force given by Eq. (7). Note that the amplitude of oscillation increases exponentially in the z
direction. If the impact surface exceeds the breakup length (i.e., Z > Lb), then this model would
obviously not be applicable as droplets would impact the surface instead of a wavy jet. Due to the
linearized small perturbation theory incorporated into Eq. (11), this model is anticipated to only
work for small wave amplitudes. Although Eq. (11) exhibits z dependence, gravitational effects are
not included.

In a similar way to the steady-state jet, gravity will increase the jet velocity according to
Eq. (8), and reduce the time-invariant radius according to Eq. (9). With these considerations, the
gravitational dependent form of Eq. (11) becomes

F̂b(z, t ) = π

4
(1 + 2εeβz cos(ζ − 2π f t ))

(
1 + 1

Fr

z

R0

)1/2

, (12)

where the subscript b refers to the scenario depicted in Fig. 1(b). If gravitational effects are deemed
negligible (i.e., Fr → ∞), then Eq. (12) reduces to Eq. (11). In addition, if the jet does not exhibit
wavy oscillations about the free surface (i.e., εeβz → 0), then Eq. (12) reduces to Eq. (10). It
must be noted that, due to gravity, waves are stretched along the axial direction. Therefore, the
wave number decreases with z, and thus waves take on a range of growth rates before impact. A
comprehensive report on the consequences of jet elongation was presented by Frankel and Weihs
[49]. The normalized wave number incorporating gravitational dependence is given by

k(z) = 2π f

v0

(
1 + 1

Fr

z

R0

)−1/2

. (13)

Although the waves change wave number, the wave frequency remains constant, as required by
mass conservation. Equation (12) indicates that the jet impingement force is oscillatory in time with
frequency f , and it increases in the z direction. If the impact surface is positioned past the breakup
length, then a series of droplet impacts will occur.

V. FORCE INDUCED BY DROPLETS

The impact force of a single droplet has been experimentally investigated and modeled in several
studies [50–54]. These studies reveal that the impact force-time history is characterized by a rapid
increase to a maximum followed by a progressively longer decay to zero. For droplet impacts where
viscous effects are negligible (ReD = ρvD/μ � 200), the peak force occurs at a nondimensional
time of t̃ = tv/D = 0.15, where t̃ = 0 corresponds to the moment of impact, and it reaches a peak
magnitude of approximately F̃ = Fdrop/ρv2D2 = 0.85 [53]. Note that a tilde denotes quantities
normalized using the droplet diameter D, and a caret denotes quantities normalized using the initial
jet diameter d0. The droplet impact time duration (total time of loading) occurs for approximately
t̃ ≈ 2. In this regard, peak force is attained rapidly, and thus the force profile is highly asymmetric
in time.

In terms of modeling the time-dependent impact force, studies have predicted the early-time
(before peak) force to scale as

√
t [54]. This early-time behavior has been confirmed in recent

experimental studies [52,53]. Unfortunately, to date, an exact theoretically derived model does not
exist for the entire time-dependent droplet impact force. Recent work [53], however, shows that the
post-peak behavior is well-described as a lumped system and thus accurately approximated with an
exponential decay model. In Ref. [53], a semiempirical model that incorporates the early-time

√
t

dependence and the observed exponential post-peak decay is constructed. The model equation for
the entire time-dependent loading of droplet impacts with negligible viscous effects is expressed as

F̃drop(t̃ ) =
√

1000π t̃

243
e

−10t̃
3 , (14)
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and it is applicable over the range of droplet Reynolds numbers (280 � ReD � 30 000) and
Weber numbers (37 � WeD = ρDv2/σ � 6400). As indicated by experiments, this model equation
satisfactorily predicts the force induced by a wide range of droplet impacts [53]. Equation (14) is
restricted to droplets that are spherical upon impact. Droplets that are oblate or prolate upon impact
exhibit different profiles from spherical droplets. With respect to a spherical droplet impact, oblate
impacts have shorter time durations and higher peak forces, while prolate impacts exhibit longer
time durations and lower peak forces. Within this context, the areas under the profiles of spherical,
oblate, and prolate impacts are approximately the same.

Another important aspect of characterizing a droplet impact is its impulse. The impulse is the area
under a force-time profile, and physically indicates the amount of momentum exchanged during a
collision. The area under the curve [Eq. (14)] is, by design, equal to the droplet momentum just
before impact. This implies that the inertially dominated droplet impact is modeled by a perfectly
inelastic collision. In this case, the impulse is expressed as

Ĩdrop =
∫ ∞

0
F̃dt̃ = π

6
. (15)

As specified, the value π/6 is equal to the momentum of the drop mv (where m is the droplet
mass) normalized by ρD3v. Note that if the droplet rebounds from the surface with the same velocity
but in the opposite direction, then the impulse will be twice that given by Eq. (15). In this context,
the droplet impact is perfectly elastic. Superhydrophobic surfaces allow droplets to rebound [55],
and consequently, the force induced by this type of impact differs fundamentally from that given
by Eq. (14). It is important to note that Eqs. (14) and (15) model droplets impinging and adhering
onto solid dry surfaces. One may wonder if these expressions, which characterize a single droplet
impact, may be extended to a continuous train of droplet impacts emanating from a liquid jet, like
that depicted in Fig. 1(c).

One important feature of droplet trains is the presence of a liquid film atop the impact surface.
It is likely that after the first droplet impact, a film of liquid will pool about the impact location.
Droplets impacting a deep pool (Lp 	 D, where Lp is the pool depth) [see Fig. 1(c)] that have
sufficient speed will create a Worthington jet [56]. In contrast, droplets impacting a shallow pool,
Lp < D, typically splash with an upward-propagating crown [10,14,57], which often fragments into
smaller droplets. The force induced by water droplets impacting various depths of water has been
measured by Yu and Hopkins using an acoustic-based wavelet deconvolution method [51]. Their
results show that the force associated with capillary waves and the ascending crown tend to be
negligible compared to the force induced by the initial droplet impact. Qualitatively, the presence
of a shallow pool increases the peak force and time to reach peak force, making the force profile
more symmetric. In addition, the presence of a pool increases the observed impulse. This increased
impulse indicates that the impact tends toward conditions in which the drop momentum is redirected
upward. This is indeed the case for Worthington jets as liquid is sent upward after the drop coalesces
with the deep pool. In general, however, for Lp → 0, the shallow pool force profile approaches the
dry-surface force profile.

If the pool depth is very shallow and has negligible effects on the droplet force profile, then
the force induced by a train of droplets can be modeled by a series of single droplet impacts via
Eq. (14). If equal-sized droplets of diameter D are formed at the breakup length Lb, at a rate f , and
one droplet is produced per wavelength, then the force induced by a series of droplet impacts is
given by

F̂c(t̂ ) =
N∑

n=1

F̂n(t̂ ), (16)

where the subscript c refers to the scenario depicted in Fig. 1(c), n corresponds to the droplet
number, N is the total number of droplets, and F̂n = Fdrop/ρv2

0d2
0 , but shifted in time by the amount

t̂n = v0(n − 1)/(d0 f ). Explicitly, F̂n is the droplet impact force normalized by the jet parameters
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FIG. 3. Force induced by a droplet train according to the Rayleigh mode (solid blue), and force induced by
a steady-state jet (dashed green), shown for three cycles. The area under each profile (impulse) is approximately
equal (i.e., both scenarios exchange the same cycle-averaged momentum with the surface). Due to its discrete
nature, the droplet train experiences a greater peak force than the steady-state jet.

and is written as

F̂n(t̂ ) =
(

v

v0

)5/2( D

d0

)3/2
√

1000π t̂

243
e

−10vd0 t̂
3v0D , (17)

where D = (3πd2/k)1/3 is the droplet diameter, with v, d , and k given by Eqs. (8), (9), and (13),
respectively. This form ensures that mass conservation is satisfied assuming that one droplet is
produced per wavelength. If indeed the impact is perfectly inelastic, then Eq. (16) also satisfies
momentum conservation as the axial momentum of a section of the jet (which has the volume
of the drop) becomes the droplet momentum that is then transferred to the surface upon impact.
Accordingly, the impulse of one droplet in the series is equal to the impulse of the continuous (or
wavy) jet of equal volume. This is perhaps not surprising since in all three scenarios in Fig. 1 the
same momentum exits the nozzle, and thus by momentum conservation the same momentum must
be exchanged with the surface. Figure 3 shows three cycles of the droplet train force profile given
by Eq. (16), based on the Rayleigh mode, along with the steady-state force profile given by Eq. (7).
Note that the impulse given by Eq. (15) is evaluated from t = 0 to t → ∞, and thus in order for the
droplet train impulse Eq. (16) to be exactly equal to the steady-state (or wavy jet) impulse, one must
allow t → ∞. This indicates that over one cycle, from tn to tn+1, the areas under each curve are only
approximately equal. To highlight this, the impulses of each profile determined for the first cycle in
Fig. 3, from t̂ = 0 to t̂ = v0/(d0 f ), differ by 0.12%. Therefore, the impulses experienced by the two
scenarios over one cycle are approximately equal. In light of this subtlety, momentum conservation
requires the droplet train force profile and the steady-state force profile to exhibit the same impulse
(as t → ∞). Due to the droplet train’s discrete nature, there exists periods of approximately zero
induced force. Therefore, in order to satisfy momentum conservation, there must be a greater peak
force induced by the droplet train than the steady stream. This is apparent in Fig. 3, where the peak
force is greater by a factor of 3.85. Note that for decreasing wave number (i.e., longer wavelengths),
droplets become larger and are spaced farther apart, resulting in higher peak forces. This may be
appealing for industrial use. However, in practice longer wavelengths are difficult to achieve due to
secondary swellings [44]. It is worth noting that a previous study has reported that the peak force
induced by a droplet is 3.5–4 times greater than that of the continuous stream counterpart [58]. In
this study, the force induced by free-falling, dripping droplets was measured and compared to the
theoretical impact force of a continuous jet, Eq. (7). The experiment conducted in [58] differs from
the experiments presented in this paper as direct force measurements of Rayleigh jets are conducted
for each of the possible outcomes (i.e., a steady jet, a wavy jet, and a droplet train), and they are
compared with novel force models [i.e., Eqs. (12), (16), and (17)].

The jet and droplet acceleration due to gravity, via Eq. (8), is incorporated into Eqs. (10), (12),
(16), and (17). This indicates that the velocities of the steady-state jet, the wavy jet, and the droplet
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FIG. 4. Schematic of the experimental setup. A Rayleigh jet is formed and impacts normal to a piezoelectric
force sensor. A speaker stimulates the free surface to form a wavy jet/droplet train.

train are equal upon impact, given that the nozzle to plate distance and nozzle exit conditions are
equivalent. Similarly, Eqs. (10), (12), and (16) are all normalized with respect to the jet inertial
parameters enabling direct comparison. The expressions characterizing the induced force of steady-
state jets, wavy jets, and droplet trains demonstrate the roles of impulse, peak force, and momentum
conservation. Many industrial applications (and natural phenomena) exhibit these types of Rayleigh
jet impacts, and thus the accuracy of the above models is of interest. Experimental comparisons with
the given models are now provided.

VI. EXPERIMENTAL SETUP AND PROCEDURES

A precisely reamed aluminum nozzle with a diameter dn = 1.65 mm and length Ln = 0.38 mm
is used to form our Rayleigh jet. A 260-mm-diam reservoir supplies water to the nozzle through
a 13-mm-diam hose; see Fig. 4 for a schematic of the experimental setup. Once formed, the jet
travels in the direction �g and impacts a piezoelectric force sensor (PCB model 209C11), located a
distance Z = 106 mm from the nozzle exit. The bottom of the force sensor is threaded to a large
steel plate. On top of the sensor rests a 17.9-mm-diam polyoxymethylene plastic impact plate and it
is the target for the impinging jet. Note that a 12.3-mm-diam aluminum impact plate is used for the
wavy jet experiments. The excitation voltage necessary for the force sensor is supplied by a PCB
model 482 signal conditioner. A Lecroy Wavesurfer 64MXs-B oscilloscope sampling at 100 kHz
is used to acquire the force sensor response. A Photron SA4 Fastcam is used to take high-speed
photographs of the impinging jets at a frame rate of 13 500 fps and an exposure time of 74 μs. The
camera is positioned next to the force sensor revealing the last 15 mm of the jet before impact. Time
is synchronized between the camera and force sensor through the oscilloscope. A 0.2 W speaker
is placed perpendicular to the stream at the nozzle exit to provide wave-number stimulation (only
used for the wavy jet and droplet train experiments). The orientation of the speaker perpendicular
to the jet assures negligible momentum is added to the jet by the sound wave. A function generator
provides the speaker with a sinusoidal stimulation frequency of 340 Hz and imposes a peak-to-peak
voltage of 1.5 and 20 V for the wavy jet and droplet train experiments, respectively. The imposed
frequency corresponds to a wave number of kR = 0.634 at impact. This is close to the wave number
of the Rayleigh mode (i.e., kR = 0.697); see Fig. 2. The camera field of view is small relative to
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the length of the jet. This allows one to assume a constant wave number at the impingement zone of
the wavy jet. With this field of view, approximately two wave crests are observed at any given time.
By tracking the free surface, the wave growth rate β may be determined as well as the equivalent
initial wave amplitude a. Once obtained, these parameters permit use of Eq. (12) to compare with
experimental results. If one droplet is produced per wavelength, then the droplet diameter would be
2.7 mm. However, satellite droplets form in between primary drops, and thus the primary droplet
diameter is smaller than this value. In general, it is difficult to precisely measure the droplet diameter
as the droplet oscillates between an irregular prolate and oblate shape after pinch-off. The droplet
impact velocity is approximately equal to the impact velocity of the steady state and wavy jet as
indicated by high-speed images and position-tracking software.

Nozzle exit velocity is controlled by the hydrostatic water level in the tank. Flow-rate mea-
surements determine the nozzle exit velocity to be v0 = 1.84 m/s. The velocity change due to
reservoir drainage is negligible: after 60 s of continuous flow, the velocity decreases by about 1%,
corresponding to a 2% decrease in induced force (i.e., force scales as v2 in the inertial limit). The
duration of one droplet impact or one wave impact occurs on a millisecond time scale. Therefore,
the change in velocity during the experiment is much smaller than 1%, permitting a constant flow
velocity assumption. According to images taken at the nozzle exit, the diameter of the jet contracts
to d0 = 1.56 mm, corresponding to a contraction ratio of χ = 95%. This decrease in jet diameter
is consistent with the study of Gavis and Modan [46]. The density and viscosity of the water are
ρ = 998 kg/m3 and μ = 1.0 cP, respectively. The Reynolds and Weber numbers of the jet are
Re = ρd0v0/μ = 2860 and We = ρd0v

2
0/σ = 73, respectively. These ratios identify the inertial

force as dominant compared to viscous and surface tension forces. With the ambient gas being
stagnant air, this Weber number satisfies Eqs. (1) and (2), and therefore the jet is considered to be
within the Rayleigh regime.

To mitigate transient effects associated with mechanically opening the nozzle supply valve, a
sheet metal plate is positioned in front of the stream close to the force sensor while opening the
valve. This diverts the stream from the sensor and allows the jet to reach steady state. After about
2 s, the shielding plate is quickly removed, allowing the jet to freely impinge the force sensor. In
this process, a liquid globule at the fore of the jet always develops (see the Supplemental Material
[59]). Although undesirable, the duration of the transient effect associated with the globule is much
shorter than that of opening the valve.

VII. RESULTS AND DISCUSSION

Images of the steady-state jet, the wavy jet, and the droplet train are shown in Fig. 5, while the
force induced by these impacts is shown in Fig. 6 for a duration of 60 ms. The flow conditions
exiting the nozzle in all three scenarios are identical, as is the nozzle to plate distance. The state
of the jet upon impact is governed by the artificial stimulation induced by the audio speaker. The
series of images displayed in Fig. 5 reveal the jet evolution in 12 increments of 370 μs for the
steady state and wavy jet, and eight increments of 593 μ s for the droplet train. These durations
correspond to slightly more than one time period. Notice that the steady-state jet [Fig. 5(a)] appears
to be time-invariant as expected, while the wavy jet [Fig. 5(b)] exhibits a series of wave impacts.
The droplet train [Fig. 5(c)] displays a series of droplet impacts. To correlate the time in which the
impacts in Fig. 5 occur with their corresponding force, green-shaded regions are outlined in Fig. 6.
These regions allow the force to be directly compared with Fig. 5. Supplemental movie files show
how the force evolution compares with the images of the jets’ impact [59].

A. Steady-state jet

Figure 6(a) shows the force induced by the steady-state jet. Here, the transient effect associated
with the globule at the fore of the jet is apparent from 0 ms (initial impact) to about 3 ms. Here
a large increase in force is observed due to the sudden redirection of momentum from the axial to
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FIG. 5. High-speed images of the normal impingement of Rayleigh jets: (a) steady-state jet, (b) wavy jet,
and (c) droplet train. The progression of images is from left to right in increments of 370 μs (a), (b) and 593 μs
(c). The time in which these impacts occur corresponds to the shaded green regions in Fig. 6.

radial direction of the jet. Once the transient effect subsides, the force induced by the steady-state jet
remains close to the inviscid prediction (dashed green line), while slight deviations exist presumably
due to random oscillations of excess liquid on the plate. The steady-state force given by Eq. (10)
is 8.2 mN and compares well with the experimental results immediately following the transient.
As time increases, however, the force increases slightly due to mass accumulation on the force
sensor. High-speed images reveal that the excess liquid adheres to the plate and does not flow off
the edge. Therefore, to account for the additional weight on the force sensor, a mass accumulation
term is included in Fig. 6(a), represented by a dotted orange line. The additional weight is simply
the accumulated liquid given by ρV̇ gt , where V̇ is the jet flow rate. This modification to Eq. (10)
follows the data trend.

B. Wavy jet

The force induced by the wavy jet is shown in Fig. 6(b). As is apparent, the force oscillates in
accordance with the sinusoidal free-surface radius at the fixed plate location. Physically, as the jet’s
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FIG. 6. Force induced by Rayleigh jets: (a) steady-state jet, (b) wavy jet, and (c) droplet train. Arrows
indicate model predictions (orange/green), e.g., Fa, Fb, and Fc from Eqs. (10), (12), and (16), respectively. The
(dashed black) lines indicate integration bounds.

cross-sectional area expands, the plate diverts more momentum, thus corresponding to a greater
force. Equivalently, when the area contracts, less momentum is diverted by the plate driving the
force toward its lower bound. The force amplitude is approximately 3.7 mN and fluctuates about
the steady-state jet force. The average oscillation frequency of the peak-to-peak force is 340 Hz,
corresponding to the stimulation frequency. In contrast to the steady-state jet, the excess liquid in
the wavy jet flows off of the impact plate due to the smaller diameter plate used. Therefore, the
linearly dependent mass accumulation term used in Fig. 6(a) is not required. To use Eq. (12) to
compare with the experiments, the wave growth rate β and the equivalent initial wave amplitude a
must be determined.

High-speed images and edge detection software were used to record the free surface of the wavy
jet. The free surface of the jet is measured at fixed z locations, from t = 10 to 30 ms, representing
about six cycles. The axial locations range from z = 91 to 105 mm in 26 increments of about
0.55 mm. Recall that in the laboratory reference frame the wavy jet oscillation amplitude increases
with axial distance. A linear regression performed on the observed amplitudes was used to estimate

113603-14



NORMAL IMPACT FORCE OF RAYLEIGH JETS

(a) (b)

(c)

FIG. 7. Wavy jet free-surface profile. (a) The free-surface along the axial direction z, at t = 10 ms (red
line), with an envelope representing the time-averaged amplitude (dashed blue line). (b) The time-averaged
amplitude of z locations near the plate (blue dot), with the line of best fit (green line). (c) The free surface with
respect to time at locations z = 104 mm (purple line) and z = 91 mm (red line).

their growth rate and equivalent initial wave amplitude. Figure 7(a) shows the free surface at t =
10 ms, with an orange line, where two waves are observed. It is clearly noticeable that the amplitude
of oscillation increases with the z direction. The time-averaged amplitude is recorded and plotted in
Fig. 7(b) with blue dots. The line of best fit, using linear least squares, is presented with a green line.
This yields β = 58.7 m−1 and a = 3.52 × 10−7 m for the model βz + ln(a). With these parameters,
the time-averaged envelope is plotted in Fig. 7(a) with a dashed blue line. Figure 7(c) shows the
free-surface radius with respect to time for axial locations of z = 91 and 104 mm, respectively.
Notice that the z = 104 mm location oscillates with a greater amplitude (by a factor of 2.01). This
is due to the exponentially increasing free-surface radius along the z direction, as predicted by
Rayleigh jet theory. The mean free-surface radius is 0.71 mm, which is also the radius obtained for
the steady-state jet. These values fall within 3% of the predicted radius via Eq. (A11). The edge
detection software also allows us to measure the jet wavelength, which is λ = 6.61 mm. This value
is within 4% of that expected through Eq. (13). In addition, the wave frequency may be measured
by the frequency of the peak-to-peak free-surface amplitude at a fixed z distance. This method is in
agreement with the artificially induced frequency. Note that the droplet impact frequency may also
be measured in a similar manner.

The predicted oscillatory force, through Eq. (12), is plotted with an orange line in Fig. 6(b).
Equation (12) compares well with the measured force, containing the same frequency and approxi-
mately the same amplitude. Note that the phase in Eq. (12) is arbitrary, depending only on the time
in which the analysis starts, thus the phase is chosen to coincide with the measurements, and it is set
to ζ = 1.39π . The wave amplitude at impingement is roughly 30% of the jet radius, which is rather
large. Despite the small wave-amplitude assumption considered in deriving Eq. (12), there is good
agreement with the theoretical prediction and the measurements. At t = 0 ms, the transient effect is
apparent and occurs along a similar time duration to that for the steady-state jet. The droplet train
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FIG. 8. Force induced by the droplet train (blue-raw), and (cyan-filtered) for primary droplet impact
numbers 2–6 (a) and 10–14 (b). The force predicted by Eq. (16) is shown in orange. For successive impacts (b),
the presence of a liquid pool increases the peak force and alters the force profile toward symmetric conditions
about the peak force.

does not exhibit the same transient effect as the continuous jets, rather two droplets at the fore of
the train impact at similar times.

C. Droplet train

High-speed footage of the droplet train reveals that an irregularly shaped large droplet first
impacts the plate away from the center (at roughly r = 4 mm; see the Supplemental Material [59]).
Therefore, the first primary droplet and all subsequent droplets impact the force plate center. The
first irregular droplet is the remnant of the transient effect associated with rapidly removing the
shielding plate as previously described. In Fig. 6(c), the primary droplet force profiles are labeled in
sequence (i.e., 1, 2, 3, etc).

Coincident with the irregular drop and the first primary drop, the force sensor shows a long period
of induced force, from t = 0 to 3 ms, with two distinct peaks, the first being from the irregular drop
and the second caused by the first primary drop. The ensuing four droplet impacts exhibit similar
force characteristics to one another. These are labeled as 2–5 in Fig. 6(c) and also in Fig. 8, which
is a magnified version of Fig. 6(c). For each of these impacts, the force-time profiles exhibit a rapid
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increase in force, reaching a maximum of about 30 mN. This is followed by a longer fall-time
to zero force. The total loading time for each droplet is about 3 ms. Comparatively, peak force
is attained rapidly, just 200 μs from initial impact. The characteristics of these four initial force
profiles are similar to the profiles of individual droplet impacts onto dry surfaces [53]. The profiles
of these impacts are clearly shown in Fig. 8(a), as well as the profiles of successive drops, shown
in Fig. 8(b). After the initial impacts (2–5), the successive force profiles (labeled as 6+) exhibit
greater peak forces while becoming more symmetric about the time of peak force. This effect is
attributed to the presence of a growing pool of excess liquid [51]. High-speed images show that
most of the liquid from the droplet train remains on the plate, creating a pool about the impact
location. The pool depth varies chaotically as droplets impinge, but in general the pool depth at the
plate circumference is larger than at its center. Qualitatively, the presence of a pool increases the
peak force and causes the force profile to become more symmetric about the time of peak force.
These observations coincide with the study of Yu and Hopkins [51], where the authors measure the
force of single droplets impinging a pool of water. It is therefore asserted that the force induced by
droplet trains is influenced by shallow pools.

The physical rationale for the increased peak force and the altered force profile (toward
conditions of symmetry) due to the presence of a pool is that the water layer fundamentally changes
the transmission of momentum from the droplet to the surface. In the case of a dry surface, all
of the momentum mv is transmitted to the surface; see Eq. (15). Due to the compliant nature of
the water layer, a portion of the axial momentum is redirected upward. In this context, the impact
behaves toward conditions of a perfectly elastic impact where all of the momentum is reflected.
For such an idealized impact, the total impulse experienced by the surface would be 2mv and the
force profile would be symmetric about the peak force. Due to the increased impulse (i.e., the area
under force-time curve), the peak force increases correspondingly as long as the time durations are
approximately equal. It is evident from Fig. 8 that with successive impacts, the individual force
profiles deviate from the dry-surface profile, given by Eq. (14). Therefore, the effects associated
with the growing pool of liquid begin to invalidate the perfectly inelastic collision assumption
incorporated in Eq. (16). Accordingly, as the pool depth grows, the force predicted by a series
of individual droplet impacts, via Eq. (16), becomes less accurate.

The force predicted by Eq. (16) is plotted in Figs. 6(c) and 8 with an orange line. Due to the first
irregular transitory drop, Eq. (16) is shifted in time by 0.7 ms to coincide with the measurements. It is
apparent that Eq. (16) satisfactorily predicts the cyclic response of 340 Hz. However, the peak force
of successive impacts (6+) is underestimated. Again, this is attributed to the pool, as the profiles
of primary drops 2–5 compare reasonably well with Eq. (16), exhibiting a fast rise to maximum
force followed by a progressively slower transition to zero. In all of the individual profiles, however,
high-frequency oscillations exist.

Superimposed oscillations hamper the underlying response of the droplet train. This effect has
been found in other droplet impact force studies [50–53]. The oscillations are attributed to the
resonant vibration of the force sensor system [60]. The undesired ringing can be mitigated by
reducing the droplet impact velocity, or by spectrally filtering the response. In addition, for these
experiments plates of low mass are used, which reduce the influence of superimposed oscillations
[60]. The measured forces in Figs. 6(a)–6(c) are not filtered, revealing the sensor’s direct response.
The droplet train data presented in Fig. 8 are filtered with a low-pass filter attenuating frequencies
above 2000 Hz (cyan line). The steady state and wavy jet exhibit oscillations as well, due to
the suddenly applied load, but they diminish at about t = 3 ms; see Figs. 6(a) and 6(b). Unlike
the continuous jets, however, each droplet impact in Figs. 6(c) and 8 appears to induce its own
oscillations, therefore facilitating continuous ringing. Despite the ever-present oscillations, their
amplitudes are small, roughly 15% of the peak force magnitude. Note that the pool of water
randomly fluctuates and thus also introduces an additional, irregular force.

In contrast to the steady-state jet results, which show a linearly increasing force attributed to the
accumulated liquid, the droplet train response does not appear to exhibit such a feature. One possible
explanation for this is that the weight of the accumulating mass is insignificant compared to the
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large force induced by the droplets and their associated ringing. In addition to these abnormalities
(compared to a single droplet impact onto a dry surface), the force dips below 0 mN, indicating that
an upward force on the sensor is applied. According to high-speed images, after a droplet impinges,
its liquid travels radially from the center colliding with the annular globule at the perimeter. It is
suspected that capillary forces prevent the liquid from flowing off the plate edge, thus allowing
liquid to accumulate and preventing further radial flow. Due to this restriction, a component of
radial momentum is then directed upward only to yet again be bound by surface tension. Despite
the greater peak forces experienced by successive droplet impacts, the negative force experienced by
the ascending liquid renders a net momentum change of zero. Therefore, the impulse experienced
by successive droplet impacts may be regarded as equivalent to primary drops.

In Fig. 5(c) and in the Supplemental Material [59], the impingement of satellite droplets
in-between primary droplets is clearly observed. The satellite drops are equally spaced in between
primary drops and have a diameter of roughly 0.65 mm. With this diameter and equal impact
velocity as primary drops (i.e., v = 2.34 m/s), the peak force of satellite drops, via Eq. (14), is
1.96 mN. This small level of force is hardly noticeable in Figs. 6(c) and 8, especially among the
ringing. Due to this, the force of satellite drops can be regarded as negligible compared to primary
drops.

One additional artifact of the droplet train is that the droplets are not spherical upon impact.
Indeed, the drops oscillate between an irregular prolate and oblate shape. Upon impact, the drops
are slightly prolate. This indicates that the duration of momentum transmission from the drop to the
surface is longer compared to a perfectly spherical drop. The consequences of this are a decrease in
peak force and an increase in time duration. Although Eq. (16) suitably predicts the force induced
by the initial droplets impacts, Fig. 8(a) shows that the peak force falls slightly lower than that
predicted by Eq. (16). Despite this and the inconvenient ringing, Eq. (16) compares reasonably well
with the measurements.

D. Impulse and momentum conservation

The jet momentum is assessed by integrating the force with respect to time (i.e., impulse). It is
important that the domain of integration covers an integer number of cycles for the wavy jet and
droplet train. In this way, the quadrature is representative of the total number of waves or drops
that impact the surface. The force is integrated over 18 cycles for the wavy jet and droplet train.
The dashed black lines in Fig. 6, which represent the lower and upper bounds of integration, are
at t = 3.5 and 56.4 ms, respectively. The momentum of the steady-state jet is also assessed on the
same domain. The measured impulse of the steady-state jet, the wavy jet, and the droplet train is
Ia = 5.00 × 10−4 N s, Ib = 4.70 × 10−4 N s, and Ic = 4.99 × 10−4 N s, respectively. It appears that
the impulse exerted by the steady-state jet and the droplet train are similar due to the accumulated
mass on the sensor. In contrast, the wavy jet has a slightly smaller impulse. If the contribution from
the mass accumulation term is subtracted from the steady-state jet impulse Ia, then the steady-state
jet impulse is 4.46 × 10−4 N s. This value is close to the impulse of the wavy jet, differing by about
5%. In light of the subtleties surrounding the accumulated mass, it may be regarded that in all three
scenarios the plate diverts the same n-cycle momentum. This should not be surprising as the same
momentum exits the nozzle. Only the planar area of the liquid arriving at the plate differs between
the scenarios. In this regard, the only inertial difference is the duration of momentum transmission
from the liquid to the surface. This statement essentially outlines a tradeoff between a constant
steady momentum flux (a) and discrete packets of momentum arriving in short bursts (c), with the
momentum imparted by the wavy jet (b) being an intermediate scenario.

E. Steady-state jet versus droplet train

The normalized force induced by the steady-state jet (green line) and the droplet train (blue line)
is shown in Fig. 9. Here, the remarkable difference is with respect to the force signature. Despite
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FIG. 9. Normalized force of the steady-state jet (green) and droplet train (blue). Both jets have identical
nozzle flow conditions, yet peak force induced by the droplet train is over three times greater. Both profiles
exhibit approximately the same impulse, as required by momentum conservation.

the identical nozzle flow conditions and equal nozzle to plate distance, the peak force induced by
the droplet train is significantly greater than the steady-state jet. Nevertheless, there exist periods of
approximately zero induced force for the droplet train. For the first several primary droplets, before
the pool affects the force profile, the peak force is about three times greater. For the successive
primary drops, the peak force is about five times greater than the steady-state jet. For industrial
applications such as waterjet cutting or surface cleaning, it may be advantageous to use a droplet
train in lieu of a steady-state jet due to the greater peak forces experienced by the impingement
surface. Although there is a considerable difference in force between these two scenarios, their
n-cycle momentum is approximately the same, as required by momentum conservation.

VIII. CONCLUSION

The normal force induced by Rayleigh jets is measured with a high-sensitivity piezoelectric
sensor. A high-speed camera records the jets’ impingement and their free-surface profile. The force
of these jets is measured for identical nozzle flow conditions and for equal nozzle to plate distance.
Upon impingement with the surface, the state of the jet is categorized as either a steady-state jet,
a wavy jet, or a droplet train. The wavy jet and droplet train are created by artificially stimulating
the jet with an audio speaker placed next to the nozzle exit. The prescribed frequency excites wave
numbers associated with fast wave growth rates allowing wave amplitudes to be larger than if left
to occur naturally.

An accurate force model for wavy jets, Eq. (12), is presented using the spatial form of Rayleigh
jet theory. The level of agreement between the model and experimental results is excellent,
validating the model’s accuracy. In addition, a series of single droplet impact force profiles are
combined to provide a model for the force of droplet trains. This model, which is based on
momentum conservation, accurately captures the force induced by the initial primary droplets;
however, as a liquid pool develops about the surface, the force changes fundamentally. The pool
increases the peak force and delays the rise time, making the profile more symmetric.

Compared to the steady-state jet, the droplet train exerts a significantly greater peak force.
However, due to its discrete nature, the droplet train also exhibits periods of approximately zero
induced force. While its force varies periodically, its n-cycle momentum may be regarded as
equivalent to the steady-state jet case, i.e., conservation of momentum. It may be more beneficial for
industrial applications to use a train of droplets instead of continuous jets, due to the greater forces
experienced by the impingement surface. The normal impingement of Rayleigh jets demonstrates
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the roles of inertia, impulse, and momentum conservation, while providing a fundamental platform
for the examination of impact force.
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APPENDIX: JET VELOCITY AND RADIUS INFLUENCED BY GRAVITY

In this Appendix, we show how gravity accelerates the falling jet velocity v = v(z) and
consequently contracts its radius R = R(z). It is assumed that the jet is in a steady state and travels
along the axial direction z. Similarly, gravity acts in this direction with magnitude g. The jet has a
nozzle exit velocity of v0, and it exhibits uniform flow [i.e., v = v(z)]. It is also assumed that the jet
Reynolds number is sufficiently high, such that viscous effects are negligible. The steady Bernoulli
equation may be applied along a streamline of the jet, which we take to be the z axis. Points z1 and
z2 are two points on the z axis, where z1 = 0 is the nozzle location and z2 = z is an arbitrary axial
location where the jet velocity and radius are to be determined. Applying Bernoulli’s equation to
these points, we have

p1 + 1
2ρv2

0 = p2 + 1
2ρv(z)2 − ρgz, (A1)

where v(z) = v2. The pressures may be determined through the Young-Laplace equation:

p = p0 + σ∇ · �n, (A2)

where p0 is the ambient pressure and �n is the free-surface normal vector (see Fig. 1). The ∇ · �n term
is the free-surface curvature and may be expressed in terms of the two principal radii of curvature,
R1 and R2, as

∇ · �n =
(

1

R1
+ 1

R2

)
. (A3)

It is assumed that the azimuthal curvature 1/R1 = 1/R(z) is much greater than the axial curvature
1/R2, permitting

∇ · �n ≈ 1

R(z)
. (A4)

The Bernoulli equation now becomes

σ

R0
+ 1

2
ρv2

0 + ρgz = σ

R(z)
+ 1

2
ρv(z)2. (A5)

Solving for the normalized velocity v(z)/v0, we obtain

v(z)

v0
=

[
1 + 1

Fr

z

R0
+ 4

We

(
1 − R0

R(z)

)]1/2

, (A6)

where We and Fr are the previously defined Weber number and Froude number, respectively. By
mass conservation, the flow rate at the nozzle z = z1 is equal to the flow rate at the location z = z2:

πR2
0v0 = πR2v. (A7)

Rearranging for the normalized radius, we have

R(z)

R0
=

(
v(z)

v0

)−1/2

, (A8)
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which corresponds to

R(z)

R0
=

[
1 + 1

Fr

z

R0
+ 4

We

(
1 − R0

R(z)

)]−1/4

. (A9)

If capillary effects can be neglected (i.e., We → ∞), then Eqs. (A6) and (A9) reduce to

v(z)

v0
=

[
1 + 1

Fr

z

R0

]1/2

(A10)

and

R(z)

R0
=

[
1 + 1

Fr

z

R0

]−1/4

. (A11)

Notice that the jet velocity increases with the square root of the axial distance z, and correspond-
ingly the radius decreases along the z direction with power −1/4. Furthermore, if gravitational
effects are assumed negligible (i.e., Fr → ∞), then the jet velocity and radius remain unchanged.

[1] H. Glover, T. Brass, R. Bhagat, J. Davidson, L. Pratt, and D. Wilson, Cleaning of complex soil layers on
vertical walls by fixed and moving impinging liquid jets, J. Food Eng. 178, 95 (2016).

[2] B. Webb and C.-F. Ma, Single-phase liquid jet impingement heat transfer, Advances in Heat Transfer
(Elsevier, Amsterdam, 1995), Vol. 26, pp. 105–217.

[3] H. Fujimoto, W. Obana, M. Ashida, T. Hama, and H. Takuda, Hydrodynamics and heat transfer
characteristics of oil-in-water emulsion droplets impinging on hot stainless steel foil, Exp. Therm. Fluid
Sci. 85, 201 (2017).

[4] M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, Inkjet printing process and its applications,
Adv. Mater. 22, 673 (2010).

[5] D. N. Papachristou and R. Barters, Resection of the liver with a water jet, Br. J. Surg. 69, 93 (1982).
[6] T. Ohki, A. Nakagawa, T. Hirano, T. Hashimoto, V. Menezes, H. Jokura, H. Uenohara, Y. Sato, T. Saito,

R. Shirane et al., Experimental application of pulsed Ho:YAG laser-induced liquid jet as a novel rigid
neuroendoscopic dissection device, Lasers Surg. Med. 34, 227 (2004).

[7] Y. Tagawa, N. Oudalov, A. El Ghalbzouri, C. Sun, and D. Lohse, Needle-free injection into skin and soft
matter with highly focused microjets, Lab on a Chip 13, 1357 (2013).

[8] R. Reitz and F. Bracco, Mechanism of atomization of a liquid jet, Phys. Fluids 25, 1730 (1982).
[9] H.-Y. Kim, Z. Feng, and J.-H. Chun, Instability of a liquid jet emerging from a droplet upon collision with

a solid surface, Phys. Fluids 12, 531 (2000).
[10] A. L. Yarin, Drop impact dynamics: Splashing, spreading, receding, bouncing, Annu. Rev. Fluid Mech.

38, 159 (2006).
[11] L. Rayleigh, On the capillary phenomena of jets, Proc. R. Soc. London 29, 71 (1879).
[12] E. Goedde and M. Yuen, Experiments on liquid jet instability, J. Fluid Mech. 40, 495 (1970).
[13] J. Eggers and E. Villermaux, Physics of liquid jets, Rep. Prog. Phys. 71, 036601 (2008).
[14] M. Rein, Phenomena of liquid drop impact on solid and liquid surfaces, Fluid Dyn. Res. 12, 61 (1993).
[15] C. Josserand and S. T. Thoroddsen, Drop impact on a solid surface, Annu. Rev. Fluid Mech. 48, 365

(2016).
[16] A. Vailati, L. Zinnato, and R. Cerbino, How archer fish achieve a powerful impact: Hydrodynamic

instability of a pulsed jet in toxotes jaculatrix, PLoS One 7, e47867 (2012).
[17] P. Coullet, L. Mahadevan, and C. Riera, Hydrodynamical models for the chaotic dripping faucet, J. Fluid

Mech. 526, 1 (2005).
[18] W. E. Ranz, On Sprays and Spraying: A Survey of Spray Technology for Research and Development

Engineers (The Pennsylvania State University, Pennsylvania, 1956), Vol. 65.
[19] S. Lin and R. Reitz, Drop and spray formation from a liquid jet, Annu. Rev. Fluid Mech. 30, 85 (1998).

113603-21

https://doi.org/10.1016/j.jfoodeng.2015.12.021
https://doi.org/10.1016/j.jfoodeng.2015.12.021
https://doi.org/10.1016/j.jfoodeng.2015.12.021
https://doi.org/10.1016/j.jfoodeng.2015.12.021
https://doi.org/10.1016/j.expthermflusci.2017.02.024
https://doi.org/10.1016/j.expthermflusci.2017.02.024
https://doi.org/10.1016/j.expthermflusci.2017.02.024
https://doi.org/10.1016/j.expthermflusci.2017.02.024
https://doi.org/10.1002/adma.200901141
https://doi.org/10.1002/adma.200901141
https://doi.org/10.1002/adma.200901141
https://doi.org/10.1002/adma.200901141
https://doi.org/10.1002/bjs.1800690212
https://doi.org/10.1002/bjs.1800690212
https://doi.org/10.1002/bjs.1800690212
https://doi.org/10.1002/bjs.1800690212
https://doi.org/10.1002/lsm.20021
https://doi.org/10.1002/lsm.20021
https://doi.org/10.1002/lsm.20021
https://doi.org/10.1002/lsm.20021
https://doi.org/10.1039/c2lc41204g
https://doi.org/10.1039/c2lc41204g
https://doi.org/10.1039/c2lc41204g
https://doi.org/10.1039/c2lc41204g
https://doi.org/10.1063/1.863650
https://doi.org/10.1063/1.863650
https://doi.org/10.1063/1.863650
https://doi.org/10.1063/1.863650
https://doi.org/10.1063/1.870259
https://doi.org/10.1063/1.870259
https://doi.org/10.1063/1.870259
https://doi.org/10.1063/1.870259
https://doi.org/10.1146/annurev.fluid.38.050304.092144
https://doi.org/10.1146/annurev.fluid.38.050304.092144
https://doi.org/10.1146/annurev.fluid.38.050304.092144
https://doi.org/10.1146/annurev.fluid.38.050304.092144
https://doi.org/10.1098/rspl.1879.0015
https://doi.org/10.1098/rspl.1879.0015
https://doi.org/10.1098/rspl.1879.0015
https://doi.org/10.1098/rspl.1879.0015
https://doi.org/10.1017/S0022112070000289
https://doi.org/10.1017/S0022112070000289
https://doi.org/10.1017/S0022112070000289
https://doi.org/10.1017/S0022112070000289
https://doi.org/10.1088/0034-4885/71/3/036601
https://doi.org/10.1088/0034-4885/71/3/036601
https://doi.org/10.1088/0034-4885/71/3/036601
https://doi.org/10.1088/0034-4885/71/3/036601
https://doi.org/10.1016/0169-5983(93)90106-K
https://doi.org/10.1016/0169-5983(93)90106-K
https://doi.org/10.1016/0169-5983(93)90106-K
https://doi.org/10.1016/0169-5983(93)90106-K
https://doi.org/10.1146/annurev-fluid-122414-034401
https://doi.org/10.1146/annurev-fluid-122414-034401
https://doi.org/10.1146/annurev-fluid-122414-034401
https://doi.org/10.1146/annurev-fluid-122414-034401
https://doi.org/10.1371/journal.pone.0047867
https://doi.org/10.1371/journal.pone.0047867
https://doi.org/10.1371/journal.pone.0047867
https://doi.org/10.1371/journal.pone.0047867
https://doi.org/10.1017/S0022112004002307
https://doi.org/10.1017/S0022112004002307
https://doi.org/10.1017/S0022112004002307
https://doi.org/10.1017/S0022112004002307
https://doi.org/10.1146/annurev.fluid.30.1.85
https://doi.org/10.1146/annurev.fluid.30.1.85
https://doi.org/10.1146/annurev.fluid.30.1.85
https://doi.org/10.1146/annurev.fluid.30.1.85


MITCHELL, KLEWICKI, KORKOLIS, AND KINSEY

[20] W. van Hoeve, S. Gekle, J. H. Snoeijer, M. Versluis, M. P. Brenner, and D. Lohse, Breakup of diminutive
rayleigh jets, Phys. Fluids 22, 122003 (2010).

[21] C. Clanet and J. C. Lasheras, Transition from dripping to jetting, J. Fluid Mech. 383, 307 (1999).
[22] S.-P. Lin, Breakup of Liquid Sheets and Jets (Cambridge University Press, Cambridge, 2003).
[23] S. Leroux, C. Dumouchel, and M. Ledoux, The stability curve of newtonian liquid jets, Atom. Sprays 6,

623 (1996).
[24] S. Leroux, C. Dumouchel, and M. Ledoux, The break-up length of laminar cylindrical liquid jets:

Modification of weber’s theory, Int. J. Fluid Mech. Res. 24, 428 (1997).
[25] T. Kasyap, D. Sivakumar, and B. Raghunandan, Flow and breakup characteristics of elliptical liquid jets,

Int. J. Multiphase Flow 35, 8 (2009).
[26] A. Umemura, S. Kawanabe, S. Suzuki, and J. Osaka, Two-valued breakup length of a water jet issuing

from a finite-length nozzle under normal gravity, Phys. Rev. E 84, 036309 (2011).
[27] F. García, H. González, J. Castrejón-Pita, and A. Castrejón-Pita, The breakup length of harmonically

stimulated capillary jets, Appl. Phys. Lett. 105, 094104 (2014).
[28] A. M. Sterling and C. Sleicher, The instability of capillary jets, J. Fluid Mech. 68, 477 (1975).
[29] C. Dumouchel, On the experimental investigation on primary atomization of liquid streams, Exp. Fluids

45, 371 (2008).
[30] R. W. Fenn III and S. Middleman, Newtonian jet stability: the role of air resistance, AIChE J. 15, 379

(1969).
[31] J. A. F. Plateau, Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires

(Gauthier-Villars, Paris, 1873), Vol. 2.
[32] G. Amini and A. Dolatabadi, Capillary instability of elliptic liquid jets, Phys. Fluids 23, 084109 (2011).
[33] G. Amini, Y. Lv, A. Dolatabadi, and M. Ihme, Instability of elliptic liquid jets: Temporal linear stability

theory and experimental analysis, Phys. Fluids 26, 114105 (2014).
[34] J. Eggers, Nonlinear dynamics and breakup of free-surface flows, Rev. Mod. Phys. 69, 865 (1997).
[35] S. Leib and M. Goldstein, Convective and absolute instability of a viscous liquid jet, Phys. Fluids 29, 952

(1986).
[36] J. B. Keller, S. Rubinow, and Y. Tu, Spatial instability of a jet, Phys. Fluids 16, 2052 (1973).
[37] H. González and F. García, The measurement of growth rates in capillary jets, J. Fluid Mech. 619, 179

(2009).
[38] H. González, P. A. Vazquez, F. J. García, and J. Guerrero, Minimal formulation of the linear spatial

analysis of capillary jets: Validity of the two-mode approach, Phys. Rev. Fluids 3, 044802 (2018).
[39] A. Ardekani, V. Sharma, and G. McKinley, Dynamics of bead formation, filament thinning and breakup

in weakly viscoelastic jets, J. Fluid Mech. 665, 46 (2010).
[40] J. Shinjo and A. Umemura, Simulation of liquid jet primary breakup: Dynamics of ligament and droplet

formation, Int. J. Multiphase Flow 36, 513 (2010).
[41] G. D. Martin, S. D. Hoath, and I. M. Hutchings, Inkjet printing-the physics of manipulating liquid jets

and drops, J. Phys.: Conf. Ser. 105, 012001 (2008).
[42] Y.-J. Chen and P. Steen, Dynamics of inviscid capillary breakup: collapse and pinchoff of a film bridge,

J. Fluid Mech. 341, 245 (1997).
[43] W. D. Wu, S. X. Lin, and X. D. Chen, Monodisperse droplet formation through a continuous jet break-up

using glass nozzles operated with piezoelectric pulsation, AIChE J. 57, 1386 (2011).
[44] D. Rutland and G. Jameson, A non-linear effect in the capillary instability of liquid jets, J. Fluid Mech.

46, 267 (1971).
[45] P.-K. Wu, R. Miranda, and G. Faeth, Effects of initial flow conditions on primary breakup of nonturbulent

and turbulent round liquid jets, Atom. Sprays 5, 175 (1995).
[46] J. Gavis and M. Modan, Expansion and contraction of jets of newtonian liquids in air: Effect of tube

length, Phys. Fluids 10, 487 (1967).
[47] C. Weber, Zum zerfall eines flüssigkeitsstrahles, ZAMM-J. Appl. Math. Mech./Z. Angewand. Math.

Mech. 11, 136 (1931).
[48] M.-C. Yuen, Non-linear capillary instability of a liquid jet, J. Fluid Mech. 33, 151 (1968).

113603-22

https://doi.org/10.1063/1.3524533
https://doi.org/10.1063/1.3524533
https://doi.org/10.1063/1.3524533
https://doi.org/10.1063/1.3524533
https://doi.org/10.1017/S0022112098004066
https://doi.org/10.1017/S0022112098004066
https://doi.org/10.1017/S0022112098004066
https://doi.org/10.1017/S0022112098004066
https://doi.org/10.1615/AtomizSpr.v6.i6.10
https://doi.org/10.1615/AtomizSpr.v6.i6.10
https://doi.org/10.1615/AtomizSpr.v6.i6.10
https://doi.org/10.1615/AtomizSpr.v6.i6.10
https://doi.org/10.1615/InterJFluidMechRes.v24.i1-3.430
https://doi.org/10.1615/InterJFluidMechRes.v24.i1-3.430
https://doi.org/10.1615/InterJFluidMechRes.v24.i1-3.430
https://doi.org/10.1615/InterJFluidMechRes.v24.i1-3.430
https://doi.org/10.1016/j.ijmultiphaseflow.2008.09.002
https://doi.org/10.1016/j.ijmultiphaseflow.2008.09.002
https://doi.org/10.1016/j.ijmultiphaseflow.2008.09.002
https://doi.org/10.1016/j.ijmultiphaseflow.2008.09.002
https://doi.org/10.1103/PhysRevE.84.036309
https://doi.org/10.1103/PhysRevE.84.036309
https://doi.org/10.1103/PhysRevE.84.036309
https://doi.org/10.1103/PhysRevE.84.036309
https://doi.org/10.1063/1.4894576
https://doi.org/10.1063/1.4894576
https://doi.org/10.1063/1.4894576
https://doi.org/10.1063/1.4894576
https://doi.org/10.1017/S0022112075001772
https://doi.org/10.1017/S0022112075001772
https://doi.org/10.1017/S0022112075001772
https://doi.org/10.1017/S0022112075001772
https://doi.org/10.1007/s00348-008-0526-0
https://doi.org/10.1007/s00348-008-0526-0
https://doi.org/10.1007/s00348-008-0526-0
https://doi.org/10.1007/s00348-008-0526-0
https://doi.org/10.1002/aic.690150315
https://doi.org/10.1002/aic.690150315
https://doi.org/10.1002/aic.690150315
https://doi.org/10.1002/aic.690150315
https://doi.org/10.1063/1.3626550
https://doi.org/10.1063/1.3626550
https://doi.org/10.1063/1.3626550
https://doi.org/10.1063/1.3626550
https://doi.org/10.1063/1.4901246
https://doi.org/10.1063/1.4901246
https://doi.org/10.1063/1.4901246
https://doi.org/10.1063/1.4901246
https://doi.org/10.1103/RevModPhys.69.865
https://doi.org/10.1103/RevModPhys.69.865
https://doi.org/10.1103/RevModPhys.69.865
https://doi.org/10.1103/RevModPhys.69.865
https://doi.org/10.1063/1.866000
https://doi.org/10.1063/1.866000
https://doi.org/10.1063/1.866000
https://doi.org/10.1063/1.866000
https://doi.org/10.1063/1.1694264
https://doi.org/10.1063/1.1694264
https://doi.org/10.1063/1.1694264
https://doi.org/10.1063/1.1694264
https://doi.org/10.1017/S0022112008004576
https://doi.org/10.1017/S0022112008004576
https://doi.org/10.1017/S0022112008004576
https://doi.org/10.1017/S0022112008004576
https://doi.org/10.1103/PhysRevFluids.3.044802
https://doi.org/10.1103/PhysRevFluids.3.044802
https://doi.org/10.1103/PhysRevFluids.3.044802
https://doi.org/10.1103/PhysRevFluids.3.044802
https://doi.org/10.1017/S0022112010004738
https://doi.org/10.1017/S0022112010004738
https://doi.org/10.1017/S0022112010004738
https://doi.org/10.1017/S0022112010004738
https://doi.org/10.1016/j.ijmultiphaseflow.2010.03.008
https://doi.org/10.1016/j.ijmultiphaseflow.2010.03.008
https://doi.org/10.1016/j.ijmultiphaseflow.2010.03.008
https://doi.org/10.1016/j.ijmultiphaseflow.2010.03.008
https://doi.org/10.1088/1742-6596/105/1/012001
https://doi.org/10.1088/1742-6596/105/1/012001
https://doi.org/10.1088/1742-6596/105/1/012001
https://doi.org/10.1088/1742-6596/105/1/012001
https://doi.org/10.1017/S002211209700548X
https://doi.org/10.1017/S002211209700548X
https://doi.org/10.1017/S002211209700548X
https://doi.org/10.1017/S002211209700548X
https://doi.org/10.1002/aic.12364
https://doi.org/10.1002/aic.12364
https://doi.org/10.1002/aic.12364
https://doi.org/10.1002/aic.12364
https://doi.org/10.1017/S0022112071000521
https://doi.org/10.1017/S0022112071000521
https://doi.org/10.1017/S0022112071000521
https://doi.org/10.1017/S0022112071000521
https://doi.org/10.1615/AtomizSpr.v5.i2.40
https://doi.org/10.1615/AtomizSpr.v5.i2.40
https://doi.org/10.1615/AtomizSpr.v5.i2.40
https://doi.org/10.1615/AtomizSpr.v5.i2.40
https://doi.org/10.1063/1.1762142
https://doi.org/10.1063/1.1762142
https://doi.org/10.1063/1.1762142
https://doi.org/10.1063/1.1762142
https://doi.org/10.1002/zamm.19310110207
https://doi.org/10.1002/zamm.19310110207
https://doi.org/10.1002/zamm.19310110207
https://doi.org/10.1002/zamm.19310110207
https://doi.org/10.1017/S0022112068002429
https://doi.org/10.1017/S0022112068002429
https://doi.org/10.1017/S0022112068002429
https://doi.org/10.1017/S0022112068002429


NORMAL IMPACT FORCE OF RAYLEIGH JETS

[49] I. Frankel and D. Weihs, Stability of a capillary jet with linearly increasing axial velocity (with application
to shaped charges), J. Fluid Mech. 155, 289 (1985).

[50] B. Zhang, J. Li, P. Guo, and Q. Lv, Experimental studies on the effect of reynolds and weber numbers on
the impact forces of low-speed droplets colliding with a solid surface, Exp. Fluids 58, 125 (2017).

[51] Y. Yu and C. Hopkins, Experimental determination of forces applied by liquid water drops at high drop
velocities impacting a glass plate with and without a shallow water layer using wavelet deconvolution,
Exp. Fluids 59, 1 (2018).

[52] L. Gordillo, T.-P. Sun, and X. Cheng, Dynamics of drop impact on solid surfaces: Evolution of impact
force and self-similar spreading, J. Fluid Mech. 840, 190 (2018).

[53] B. R. Mitchell, J. C. Klewicki, Y. P. Korkolis, and B. L. Kinsey, The transient force profile of low-speed
droplet impact: measurements and model, J. Fluid Mech. 867, 300 (2019).

[54] J. Philippi, P.-Y. Lagrée, and A. Antkowiak, Drop impact on a solid surface: short-time self-similarity,
J. Fluid Mech. 795, 96 (2016).

[55] D. Richard and D. Quéré, Bouncing water drops, Europhys. Lett. 50, 769 (2000).
[56] A. M. Worthington, A Study of Splashes (Longmans, Green, and Co., England, 1908).
[57] D. A. Weiss and A. L. Yarin, Single drop impact onto liquid films: Neck distortion, jetting, tiny bubble

entrainment, and crown formation, J. Fluid Mech. 385, 229 (1999).
[58] N. Anantharamaiah, H. V. Tafreshi, and B. Pourdeyhimi, A study on hydroentangling waterjets and their

impact forces, Exp. Fluids 41, 103 (2006).
[59] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.4.113603 for

video of the normal impingement of Rayleigh jets (e.g., a steady-state jet, a wavy jet, and a droplet train).
[60] J. Li, B. Zhang, P. Guo, and Q. Lv, Impact force of a low speed water droplet colliding on a solid surface,

J. Appl. Phys. 116, 214903 (2014).

113603-23

https://doi.org/10.1017/S0022112085001811
https://doi.org/10.1017/S0022112085001811
https://doi.org/10.1017/S0022112085001811
https://doi.org/10.1017/S0022112085001811
https://doi.org/10.1007/s00348-017-2413-z
https://doi.org/10.1007/s00348-017-2413-z
https://doi.org/10.1007/s00348-017-2413-z
https://doi.org/10.1007/s00348-017-2413-z
https://doi.org/10.1007/s00348-018-2537-9
https://doi.org/10.1007/s00348-018-2537-9
https://doi.org/10.1007/s00348-018-2537-9
https://doi.org/10.1007/s00348-018-2537-9
https://doi.org/10.1017/jfm.2017.901
https://doi.org/10.1017/jfm.2017.901
https://doi.org/10.1017/jfm.2017.901
https://doi.org/10.1017/jfm.2017.901
https://doi.org/10.1017/jfm.2019.141
https://doi.org/10.1017/jfm.2019.141
https://doi.org/10.1017/jfm.2019.141
https://doi.org/10.1017/jfm.2019.141
https://doi.org/10.1017/jfm.2016.142
https://doi.org/10.1017/jfm.2016.142
https://doi.org/10.1017/jfm.2016.142
https://doi.org/10.1017/jfm.2016.142
https://doi.org/10.1209/epl/i2000-00547-6
https://doi.org/10.1209/epl/i2000-00547-6
https://doi.org/10.1209/epl/i2000-00547-6
https://doi.org/10.1209/epl/i2000-00547-6
https://doi.org/10.1017/S002211209800411X
https://doi.org/10.1017/S002211209800411X
https://doi.org/10.1017/S002211209800411X
https://doi.org/10.1017/S002211209800411X
https://doi.org/10.1007/s00348-006-0162-5
https://doi.org/10.1007/s00348-006-0162-5
https://doi.org/10.1007/s00348-006-0162-5
https://doi.org/10.1007/s00348-006-0162-5
http://link.aps.org/supplemental/10.1103/PhysRevFluids.4.113603
https://doi.org/10.1063/1.4903316
https://doi.org/10.1063/1.4903316
https://doi.org/10.1063/1.4903316
https://doi.org/10.1063/1.4903316

