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Shear viscosity of bimodal capsule suspensions in simple shear flow
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We present a numerical analysis of the shear viscosity of bimodal suspensions in Stokes
flow. The dynamics of capsules whose membrane follows Skalak law is simulated for the
total volume fraction φ = 0.4. A suspension of two types of capsules with different sizes
and the same deformability (capillary number) has a decreased shear viscosity compared to
monomodal suspensions. Increasing the deformability of the capsules amplifies the extent
of the viscosity reduction. The viscosity reduction is mainly caused by a decrease in the
shear component of the stresslet of the large capsules, due to a decrease in their deformation
and orientation angle with respect to the flow direction. In the case of a suspension of two
types of capsules with the same size and different deformabilities, the shear viscosity is
nearly the same as the weighted average of monomodal suspensions. An increase in the
stresslet of the floppy capsules is counterbalanced by a decrease in the stresslet of the
stiff capsules. For a suspension of two types of capsules with different sizes and the same
membrane stiffness, the effects of the size difference and deformability difference coexist.
The interplay of these effects decreases the stresslet for both the large and small capsules,
resulting in a further viscosity reduction.
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I. INTRODUCTION

A particle consisting of an inner fluid surrounded by a thin elastic membrane is called a
capsule. Capsules are found in diverse applications, such as bioengineering, chemical engineering,
pharmaceutical science, and food science. Various studies have been conducted to understand the
motion and deformation of capsules and the suspension rheology [1]. A spherical capsule in shear
flow deforms into an ellipsoidal shape in response to hydrodynamic forces, and particle stress is
generated by the deformation [2]. Due to the deformability of capsules, capsule suspensions exhibit
rheological behaviors different from those of rigid-particle suspensions. Typical examples include
shear thinning behavior and a positive first normal stress difference [3–7]. When the volume fraction
of the capsules increases, hydrodynamic interactions between the capsules increase the shear
viscosity nonlinearly [8,9], similar to rigid-particle suspensions. However, the effect of high-order
terms is suppressed by the interplay between the deformation and orientation of the capsules [10].

In past rheological analyses of capsule suspensions, most studies assumed that all capsules have
the same physical properties, but in reality, each capsule may have unique physical properties.
For example, a size distribution may be present in the production process of artificial capsules
[11]. However, the rheology of such suspensions of multimodal capsules is not yet understood. For
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rigid-particle suspensions, various studies have been conducted to examine the effect of the particle
size distribution on the suspension rheology. The characteristic rheological behavior of bimodal
suspensions of rigid spheres is a reduction in shear viscosity. At a fixed total volume fraction, the
shear viscosity is lower for a bimodal suspension than a monomodal suspension; hence, the shear
viscosity is minimized at some non-zero value of the relative volume fraction of small particles
[12,13]. The extent of the viscosity reduction is amplified when the total volume fraction increases
or the size difference between two sizes of particles increases. The normal stress difference also
decreases in bimodal suspensions [14]. The viscosity reduction is often linked to the maximum
packing fraction of particles [14–16], and empirical models have been proposed to predict the
viscosity of bimodal suspensions [17].

If particles are given the ability to deform, is the extent of the viscosity reduction suppressed
or amplified? Here we show that increasing the deformablity of capsules amplifies the extent of
the viscosity reduction. A shear viscosity reduction has also been observed in bimodal emulsions
[18–20]. In the case of emulsions, the deformability of drops is given by the capillary number,
Ca = μγ̇ a/σ , where μ is the viscosity of the outer fluid, γ̇ is the shear rate, a is the radius of
drops, and σ is the surface tension. Because of the constant surface tension of drops, two types of
drops with different sizes must also have different deformabilities, as expressed by the difference
in their capillary numbers. In this study, we investigate the shear viscosity of bimodal suspensions
of capsules. The deformability of capsules is determined by Ca = μγ̇ a/G, where G represents the
membrane stiffness, called the surface shear elastic modulus. When two types of capsules have
the same surface shear elastic modulus, bimodal capsule suspensions resemble bimodal emulsions:
small and large capsules have different deformabilities. For a better understanding of bimodal
capsule suspensions, the separate effects of the size and deformability differences on the shear
viscosity should be clarified. For this purpose, we first analyze the shear viscosity of a suspension of
two types of capsules with different sizes and the same deformability. The analysis is then extended
to a suspension of capsules with the same size and different deformabilities, and finally, a suspension
of capsules with different sizes and the same membrane stiffness is discussed. The viscosity ratio
between the inner and outer fluids also affects the capsule deformability. However in this study,
we concentrate on the size ratio and the capillary number ratio and fix the viscosity ratio to be 1.
Simple cases under this assumption could be the limitation of this study but could give a fundamental
understanding of bimodal capsule suspensions.

II. PROBLEM STATEMENT AND NUMERICAL METHOD

A. Problem statement

Consider two types of capsules, type A and type B, suspended in a Newtonian fluid of viscosity
μ. The particle Reynolds number is assumed to be much less than unity. Both types of capsules
are neutrally buoyant, and their inner fluids have the same viscosity as the outer fluid. We apply a
simple shear flow of shear rate γ̇ for an infinite periodic domain.

We fix the total volume fraction of the capsules to be φ = φA + φB = 0.4. The relative volume
fraction of type B capsules to the total volume fraction is denoted by Rφ = φB/φ. The capsules of
type A have a radius aA and a surface shear elastic modulus GA for the membrane, and capsules of
type B have respective values aB and GB. The capsules are characterized by their size and membrane
stiffness, with the ratio of their radii and surface shear elastic moduli defined as Ra = aB/aA

and RG = GB/GA, respectively. However, the deformability of a capsule depends not only on the
membrane stiffness but also on the size of the capsule. The capsule deformability is therefore
characterized by the capillary number, Ca = μγ̇ a/G, and the capillary number ratio is defined by
RCa = CaB/CaA. Note that the capillary number ratio can also be written as RCa = Ra/RG.

We investigate three categories of bimodal suspensions (Fig. 1): two types of capsules with
different sizes and the same deformability, Ra �= 1 and RCa = 1; two types of capsules with the same
size and different deformabilities, Ra = 1 and RCa �= 1; and two types of capsules with different
sizes and the same membrane stiffness, Ra �= 1 and RG = 1, or RCa = Ra.
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(a) (b)

(c)

FIG. 1. Three categories of bimodal capsule suspensions. (a) Ra �= 1 and RCa = 1, (b) Ra = 1 and RCa �= 1,
(c) Ra �= 1 and RCa = Ra.

The capillary number may range from O(10−2) to O(101) in experiments (for example, see
Gubspun et al. [21] and de Loubens et al. [22]). Here we examine three values of the capillary
number: CaA = 0.4, 1.0, and 2.4 with an area dilation coefficient C = 1 [see also Eq. (5)]. Note that
we do not intend to directly model a specific case of real suspensions and systematically vary the
parameter range to gain a fundamental understanding of bimodal capsule suspensions.

B. Governing equations

The velocity v at the position x is described by the boundary integral equation of Stokes flow
[23]:

v(x) = v∞(x) − 1

8πμ

M∑
m

∫
Am

JE · q(y) dA(y), (1)

where v∞ = γ̇ x2e1 is the undisturbed flow, m is the index of capsules, Am is the surface of capsule
m, and q is the traction jump across the membrane. For an infinite periodic domain, the Ewald
summation proposed by Beenakker [24] is used, where the summation is decomposed into the
summation of a real space and that of a reciprocal space. The Green’s function JE is then given
by

JE
i j =

∑
γ

JEI
i j (rγ ) + 8π

V

∑
λ �=0

JEII
i j (kλ), JEI

i j = δi j

r
E1 + rir j

r3
E2,

JEII
i j =

(
δi j

k2
− kik j

k4

)(
1 + k2

4ξ 2
+ k4

8ξ 4

)
exp

(
− k2

4ξ 2

)
cos(k · r),
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and

E1 = erfc(ξr) + exp(−ξ 2r2)√
π

(4ξ 3r3 − 6ξr),

E2 = erfc(ξr) + exp(−ξ 2r2)√
π

(2ξr − 4ξ 3r3),

where V = lxlylz is the volume of the periodic box. The distance vector is given by rγ = r0 + �γ ,
where r0 = x − y and �γ = lxnxγ ex + lynyγ ey + lznzγ ez (nxγ , nyγ , nzγ are integer values). The
reciprocal lattice vector is given by kλ = 2πnxλex/lx + 2πnyλey/ly + 2πnzλez/lz (nxλ, nyλ, nzλ

are integer values). ξ = π
1
2 V − 1

3 , k = |k|, and r = |r|. For more details, see Beenakker [24] and
Loewenberg and Hinch [25].

The membrane of the capsules is modeled as a two-dimensional isotropic hyperelastic material
with negligible bending resistance. The surface deformation gradient tensor Fs is given by

dx = Fs · dX , (2)

where dX and dx are the infinitesimal vectors in the reference and deformed states, respectively.
The Cauchy stress tensor T is

T = 1

Js
Fs · ∂ws

∂e
· FT

s , (3)

where Js = λ1λ2 represents the area dilation ratio, λ1 and λ2 are the principal extension ratios, ws is
the strain energy function, e is the Green-Lagrange strain tensor,

e = 1
2

(
FT

s · Fs − Is
)
, (4)

and Is is the tangential projection operator. To reduce the effect of membrane buckling on the
macroscopic viscosity, the constitutive law proposed by Skalak et al. [26] is used:

ws = Gs

2

(
I2
1 + 2I1 − 2I2 + CI2

2

)
, (5)

where C is the area dilation constant, I1 = λ2
1 + λ2

2 − 2, and I2 = J2
s − 1. Lac et al. [27] reported

that a capsule with a Skalak membrane did not have membrane buckling for a relatively wide range
of the capillary number, 0.4 � Ca � 2.4, even without bending resistances.

The equilibrium condition between the traction q and the Cauchy stress T is given in the weak
form as ∫

A
û · q dA =

∫
A
ε̂ : T dA, (6)

where û is the virtual displacement, ε̂ is the virtual strain, and the kinematic condition is

dx
dt

= v(x). (7)

We calculate the specific viscosity μsp that indicates the increased viscosity due to the presence
of capsules:

μsp = 

(p)
12

μγ̇
. (8)

� is the particle stress tensor defined by

�(p) = nA〈SA〉 + nB〈SB〉, (9)

S =
∫

A

1

2
(x ⊗ q + q ⊗ x) dA, (10)
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where n is the number density of capsules, S is the stresslet tensor, and angle brackets 〈〉 indicate
the ensemble average [28].

C. Numerical simulation

The finite element method for membrane mechanics is coupled with the boundary element
method for fluid mechanics [29]. Equation (6) is solved by the finite element method. The direct
integral of Eq. (1) for the whole capsules requires heavy computational load. We employ multipole
expansion [23,30]. Consider the membrane of a capsule that is composed of P patches of element
groups [10,31]. The disturbed velocity generated by capsule m in the far field is then written as

δvm
i (x) = − 1

8πμ

P∑
p

{
JE

i j F
mp
j + RE

i jL
mp
j + KE

i jkSmp
jk + O(r−3)

}
, (11)

F mp
i =

∫
Amp

qi(y) dA(y), (12)

Lmp
i =

∫
Amp

εi jk r̂ jqk dA(y), (13)

Smp
i j = 1

2

∫
Amp

{
r̂iq j (y) + r̂ jqi(y) − 2

3
δi j r̂kqk (y)

}
dA(y), (14)

where Fmp is the force, Lmp is the torque, Smp is the stresslet, and Amp is the surface area of the pth
patch of the capsule, and r̂ is the vector from the center of patch p to the observation point x. The
two propagators are given by

RE
i j = 1

4εk jl
(∇kJE

i j − ∇kJE
i j

)
, (15)

KE
i jk = 1

2

(∇kJE
i j + ∇ jJ

E
ik

)
. (16)

In this study, the membrane of each capsule consists of 1280 triangular elements (NE = 1280). The
Gaussian quadrature method is used for the integral of Eq. (1) for r/a < 3, where polar coordinates
are introduced for singular elements [4]. For Eq. (11), the number of patches is set to P = 80 for
3 � r/a < 10 and P = 20 for r/a � 10, where each patch has 1280/80 = 18 elements and 64
elements for P = 80 and P = 20, respectively. While semi-implicit methods have been also used for
the time integration (for example, see Rahimian et al. [32]), the second-order explicit Runge-Kutta
method is used in this study, and all the procedures are fully implemented in graphics processing
unit computing. For more detail, please see Matsunaga et al. [33] and Matsunaga et al. [10].

The numerical method has been successfully applied to investigate the rheology of a monomodal
capsule suspension in simple shear flow [10]. In this previous study, we checked the effects of the
mesh size, the initial positions of the capsules, and the number of capsules per unit domain on the
shear viscosity of the capsule suspension. Similar tests are also examined for a bimodal suspension.
Because our interest is the shear viscosity at quasisteady states, the initial positions of the capsules
are randomly given. Three cases with different initial capsule positions are simulated for NE = 1280
and NE = 5120. The temporal values of the specific viscosity are shown in Fig. 2(a) for Rφ = 0.5,
Ra = 0.5, RCa = 1, and CaA = 0.4, where we take only the spatial average to have the temporal
values. The transient phase is finished within γ̇ t < 10. Hereafter, we set the starting time to be
γ̇ ts = 10 to exclude the transient phase. Figure 2(b) shows the ensemble average of the specific
viscosity as a function of the total length of the simulation te, where the time averaging is performed
for ts � t � te. There is only a small difference in the values among the cases, particularly for
γ̇ te > 40. We also examine the effect of the number of capsules in Fig. 2(c). The specific viscosity
nearly converges for M � 100. In this study, we set NE = 1280, te = 100, M � 100, and three cases
are simulated for each case with different initial positions.
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FIG. 2. (a) The temporal value of the specific viscosity, where we take only the spatial average. Three
cases with different initial positions, represented by different line colors, are simulated for each mesh size. The
transient phase is finished within γ̇ t < 10. (b) Effects of the mesh size (the number of elements per capsule NE )
and the ending time te on the ensemble average of the specific viscosity. Different line colors show different
initial capsule positions. (c) Effect of the number of capsules on the specific viscosity, where the error bars
show the standard deviations of the three cases. Parameters are Rφ = 0.5, Ra = 0.5, RCa = 1, and CaA = 0.4.

III. RESULTS

A. Suspension of capsules with different sizes

First, we analyze a bimodal suspension of two types of capsules with different sizes and the
same deformability. The radius and capillary number ratios are set to Ra = 0.5 and RCa = 1, with the
capsules of type A referring to large capsules and type B to small capsules. To investigate the effects
of the deformability of the capsules on the shear viscosity, three values of the capillary number are
examined. The specific viscosity is presented in Fig. 3(a) for various values of the volume ratio
Rφ . Because the small capsules have the same capillary number as the large capsules, CaB = CaA,
monomodal suspensions have a constant viscosity between Rφ = 0 and Rφ = 1. Shear-thinning
behavior in the shear viscosity [3] is also found in bimodal capsule suspensions. In addition,
the specific viscosity of a bimodal suspension is lower than that of corresponding monomodal
suspension for 0 < Rφ < 1.

To evaluate the extent of the viscosity reduction, we simply compare the viscosity of a bimodal
suspension, μsp, with that of the corresponding monomodal suspensions,

μ∗
sp = μsp|Rφ=0 = μsp|Rφ=1. (17)
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FIG. 3. (a) Specific viscosity μsp and (b) its ratio to that of monomodal suspensions μ∗
sp for Ra = 0.5 and

RCa = 1.

In Fig. 3(b) we find that the shear viscosity of the bimodal capsule suspensions exhibits a viscosity
reduction, with a larger reduction for a higher capillary number. This result clearly suggests that the
extent of the viscosity reduction is amplified by the deformability of particles.

The viscosity reduction must result from a reduction in the shear component of the stresslet of
the capsules, S12, but it is unclear whether the values of S12 are reduced for both the large and small
capsules, or whether they exhibit different behaviors. Therefore, we analyze the stresslet separately
for large and small capsules. In Fig. 4 we see that the ensemble average of the stresslet for large
capsules behaves differently from that for small capsules. The stresslet of the large capsules is
smaller in a bimodal suspension than the monomodal suspension and decreases with increasing Rφ .
A stronger reduction is also found at a higher capillary number. For the small capsules, however,
the stresslet for a bimodal suspension shows a value slightly larger than that for the monomodal
suspension.
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FIG. 4. Shear component of the stresslet S12 for Ra = 0.5 and RCa = 1. Ensemble average for (a) large
capsules (type A) and (b) small capsules (type B). The values are normalized by those for monomodal
suspensions, denoted by the superscript “mono.”
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FIG. 5. Principal stresslet difference S1 − S2 for Ra = 0.5 and RCa = 1. Ensemble average for (a) large
capsules (type A) and (b) small capsules (type B).

The microstructure of suspensions is often discussed in the study of the rheology of rigid-particle
suspensions, and the deformation and orientation of capsules greatly affect the microstructure of
capsule suspensions [8]. We thus consider the effects of the deformation and orientation of the
capsules on the stresslet behaviors [10]. For the ensemble average, the following approximation
may be applicable:

〈S12〉 ≈ 1
2 〈S1 − S2〉 sin 2〈θS〉, (18)

where S1 and S2 are the principal values of the stresslet (eigenvalues) in the shear plane, and θS

is the orientation angle of the stresslet with respect to the flow direction. The principal stresslet
difference S1 − S2 represents the strength of the stresslet due to the deformation of the capsule,
and sin 2θS is due to the orientation of the capsule. Note that the stresslet angle θS is not a direct
measure of the orientation of the capsules. In a previous study [10], we investigated the relationship
between the stresslet angle and the orientation angle, and we confirmed that these angles had nearly
one-to-one correspondence. Figure 5 shows the principal stresslet difference for the large and small
capsules. For the large capsules, the principal stresslet difference decreases with increasing Rφ ,
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FIG. 6. The value of sin 2θS for Ra = 0.5 and RCa = 1. Ensemble average for (a) large capsules (type A)
and (b) small capsules (type B).
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FIG. 7. Effect of the size ratio Ra on the specific viscosity, where Rφ = 0.5, RCa = 1, and CaA = 0.4.

in particular, for Ca = 1 and Ca = 2.4. In contrast, the principal stresslet difference for the small
capsules is comparable to that for the monomodal suspension. The value of sin 2〈θS〉 is presented in
Fig. 6. The value for the large capsules also decreases when Rφ increases, while that for the small
capsules slightly increases with 1 − Rφ . It should be also noted that the effect of the orientation
of the capsules on the stresslet is larger than that of the deformation. These results suggest that the
orientation angle of the large capsules with respect to the flow direction, as well as their deformation,
is decreased by interacting with the small capsules. These effects decrease the shear component of
the stresslet for the large capsules and consequently cause the viscosity reduction of the bimodal
capsule suspensions.

We also examine the effects of the size ratio on the shear viscosity. Figure 7 shows the specific
viscosity for various values of Ra, where Rφ = 0.5, and CaA = 0.4. For convenience, the viscosity
values are plotted not only for Ra � 1 but also for Ra > 1. As shown in this figure, the extent of the
viscosity reduction increases with the size difference.
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FIG. 8. (a) Specific viscosity μsp and (b) its ratio to the weighted average for monomodal suspensions μ∗
sp

for Ra = 1 and RCa = 0.5.
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FIG. 9. Shear component of the stresslet S12 for Ra = 1 and RCa = 0.5. Ensemble average for (a) floppy
capsules (type A) and (b) stiff capsules (type B).

B. Suspension of capsules with different deformabilities

Next, we consider a bimodal suspension of two types of capsules with the same size and different
deformabilities, Ra = 1 and RCa = 0.5. The capsules of type A are floppy capsules, and those of
type B are stiff capsules. The specific viscosity is shown in Fig. 8(a) for three values of the capillary
number for the floppy capsules. Because the capillary number of the stiff capsules is lower than that
of the floppy capsules, the specific viscosity at Rφ = 0 is lower than that at Rφ = 1 due to the shear-
thinning effect. To compare the shear viscosity of a bimodal suspension with the corresponding
monomodal suspensions, we simply use a weighted average between the values at Rφ = 0 and
Rφ = 1:

μ∗
sp = (1 − Rφ )μsp|Rφ=0 + Rφμsp|Rφ=1. (19)

As shown in Fig. 8(b), the specific viscosity of the bimodal suspensions is nearly the same value as
the weighted average of the monomodal suspensions. Note that because there is a relatively large
deviation, we examined six cases and also added the data at Rφ = 0.15 and 0.3 for Ca = 2.4.

To examine whether the shear component of the stresslet also takes the same value as that in
the monomodal suspensions, we analyze the stresslet behaviors separately for the floppy and stiff
capsules. In Fig. 9 we see that S12 for each type of capsule in a bimodal suspension takes a different
value from the monomodal suspension. The stresslet for the floppy capsules increases with Rφ ,
whereas that for the stiff capsules decreases when 1 − Rφ increases, though the extent of the change
is not large, and the dependency on the capillary number is not observed.

To consider the effects of the deformation and orientation of each type of capsule on the behavior
of their stresslets, the principal stresslet difference and the orientation angle of the stresslet relative
to the flow direction are shown in Figs. 10 and 11, respectively. We find that the changes in the shear
component of the stresslet are mainly caused by changes in the principal stresslet difference, while
the orientation angle remains nearly constant. In the case of a bimodal suspension of two types of
capsules with the same size and different deformabilities, the deformation of the floppy capsules
increases and that of the stiff capsules decreases. An increase in the stresslet of the floppy capsules
is counterbalanced by a decrease in the stresslet of the stiff capsules, and the resultant shear viscosity
is nearly the same as the weighted average of their monomodal suspensions.

Figure 12 shows the effect of the capillary number ratio on the specific viscosity. The dependency
on the capillary number ratio is small. Although there is a small viscosity reduction for RCa 
 1, the
specific viscosity still takes a value similar to the weighted average of the monomodal suspensions
in the examined range of RCa.
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FIG. 10. Principal stresslet difference S1 − S2 for Ra = 1 and RCa = 0.5. Ensemble average for (a) floppy
capsules (type A) and (b) stiff capsules (type B).

C. Suspension of capsules with different sizes and the same membrane stiffness

Finally, we discuss a suspension of two types of capsules with different sizes and the same
membrane stiffness, Ra = 0.5 and RG = 1. This type of bimodal suspension could be found in the
production of artificial capsules, for example, if the membranes of large and small capsules are
composed of the same material with the same thickness. As shown in Sec. III A, the size difference
of the two types of capsules induces a decrease in the deformation of large capsules as well as a
decrease in the orientation angle relative to the flow direction. This causes a reduction in the shear
component of the stresslet of the large capsules and is a direct cause of the viscosity reduction. Here
the capsules of two sizes have the same membrane stiffness, and therefore the large capsules must
be floppier than the small capsules, RCa = Ra = 0.5. In a suspension of two types of capsules with
different deformabilities, however, the stresslet of the floppy capsules instead increases relative
to the weighted average of the monomodal suspensions. The same effect of the deformability
difference is also expected for a suspension of capsules with different sizes and the same membrane
stiffness and may suppress the extent of the viscosity reduction.
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FIG. 11. The value of sin 2θS for Ra = 1 and RCa = 0.5. Ensemble average for (a) floppy capsules (type A)
and (b) stiff capsules (type B).
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FIG. 12. Effect of the capillary number ratio RCa on the specific viscosity, where Rφ = 0.5, Ra = 1, and
CaA = 0.4.

Figure 13 shows the specific viscosity of several bimodal suspensions, along with the weighted
average of the corresponding monomodal suspensions. The viscosity reduction is confirmed for
various values of CaA, and the extent of the viscosity reduction further increases compared with
the suspension of capsules with different sizes and the same deformability (Fig. 3). The shear
component of the stresslet for the large and small capsules is also shown in Fig. 14. The stresslet of
the large capsules shows the same tendency as observed for a suspension of capsules with different
sizes (Fig. 4), but the stresslet for the small capsules instead decreases from the weighted average
of monomodal suspensions.

To understand the interplay of the size and deformability differences on the stresslet behaviors,
we examine how the deformation and orientation angle of the capsules change in the bimodal
suspensions. As shown in Fig. 15, the principal stresslet difference of the large capsules increases,
and that of the small capsules decreases. The principal stresslet difference does not show the same
tendency as a suspension of capsules with different sizes (Fig. 5), but instead resembles a suspension
of capsules with different deformabilities (Fig. 10). In contrast, as shown in Fig. 16, the trend of
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FIG. 13. (a) Specific viscosity μsp and (b) its ratio to the weighted average of monomodal suspensions μ∗
sp

for Ra = 0.5 and RG = 1 (RCa = 0.5).
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FIG. 14. Shear component of the stresslet S12 for Ra = 0.5 and RG = 1 (RCa = 1). Ensemble average for
(a) large capsules (type A) and (b) small capsules (type B).

sin 2θS is qualitatively similar to a suspension of capsules with different sizes (Fig. 6), in which the
orientation angle of the large capsules decreases and that of the small capsules increases.

These results suggest that the size difference mainly affects the orientation angle of the capsules,
and that the deformability difference affects the deformation of the capsules. For a suspension of
two types of capsules with different sizes and the same membrane stiffness, these effects coexist.
The interplay between the size and deformability differences decreases the stresslet for both the
large and small capsules, resulting in a further viscosity reduction.

This is also confirmed in Fig. 17, where the specific viscosity is plotted as a function of Ra (RCa)
for Rφ = 0.5, and CaA = 0.4. As observed for a bimodal suspension with a size difference (Fig. 7),
a viscosity reduction appears, and a stronger reduction is expected for a larger difference in the
capsule sizes.
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FIG. 15. Principal stresslet difference S1 − S2 for Ra = 0.5 and RG = 1 (RCa = 0.5). Ensemble average for
(a) large capsules (type A) and (b) small capsules (type B).

113601-13



ITO, MATSUNAGA, AND IMAI

0.7

0.8

0.9

1.0

1.1

0.0 0.2 0.4 0.6 0.8 1.0

Rφ

si
n

2
θA S

/
si

n
2

θA S
m

on
o

(a)

CaA = 0.4

CaA = 1.0

CaA = 2.4
0.7

0.8

0.9

1.0

1.1

0.0 0.2 0.4 0.6 0.8 1.0

Rφ

si
n

2
θB S

/
si

n
2

θB S
m

on
o

(b)

CaA = 0.4

CaA = 1.0

CaA = 2.4

FIG. 16. The value of sin 2θS for Ra = 0.5 and RG = 1 (RCa = 0.5). Ensemble average for (a) large capsules
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IV. DISCUSSION

The characteristic rheological behavior of bimodal suspensions of rigid particles is a reduction
in shear viscosity. The shear viscosity is lower for a suspension of two sizes of rigid particles than
a monomodal suspension of small/large particles [12,13]. Most previous studies concentrated on
bimodal suspensions of rigid particles. Although a few studies investigated the viscosity reduction in
bimodal emulsions [18–20], the effect of the particle deformability on this phenomenon has not been
fully understood. The primary objective of this study was thus to clarify whether the deformability
of particles amplifies the extent of viscosity reduction or suppresses it. For this objective, we have
performed a numerical analysis of the shear viscosity of bimodal capsule suspensions in simple
shear flow under the Stokes flow regime. First, we have analysed the shear viscosity of a suspension
of two types of capsules with different sizes and the same deformability. As expected, the bimodal
capsule suspension has a decreased shear viscosity compared to monomodal capsule suspensions.
In addition, a finding of this study is that the extent of the viscosity reduction is amplified by the
deformability of capsules. A larger viscosity reduction appears at a higher capillary number. We

0.85

0.90

0.95

1.00

1.05

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Ra (or RCa)

μ
sp

/μ
∗ sp

FIG. 17. Effect of the size ratio (the capillary number ratio) on the specific viscosity, where Rφ = 0.5,
RG = 1, and CaA = 0.4.
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fixed the total volume fraction of capsules to be φ = 0.4. In previous studies of bimodal suspensions
of rigid particles, the viscosity reduction was not significant for such a moderate volume fraction
[12]. When CaA → 0, the specific viscosity of a bimodal capsule suspension is expected to converge
to that of a rigid particle suspension. However, when the capillary number increases to CaA = 2.4,
the viscosity reduction reaches more than 5% even for Ra = 0.5. The reduction rate is still not
large, but the results clearly show a qualitative trend of the enhanced viscosity reduction due to
the deformabiliry. This would be of practical importance if the volume fraction becomes larger.
It was reported that the extent of the viscosity reduction increased with the total volume fraction
of the rigid particles. The extent of the viscosity reduction also increased with the size difference
of the rigid particles. Consequently, at φ = 0.6 and Ra = 0.138, for example, the viscosity of a
bimodal rigid-sphere suspension was one order of magnitude smaller than that of a monomodal
suspension [13,14]. Although we were not able to examine such a high volume fraction due to
numerical limitations, a further viscosity reduction is expected for bimodal capsule suspensions.
We also showed that the size difference mainly affects the orientation angle of the capsules. The
orientation angle with respect to the flow direction decreases for the large capsules, and the viscosity
reduction is mainly caused by a decrease in the stresslet for the large capsules.

In practical applications, two sizes of capsules may have the same membrane stiffness. This
category of bimodal capsule suspensions resembles bimodal emulsions. The viscosity reduction
was also reported in previous studies on bimodal emulsions [18–20]. However, a larger droplet must
have a higher capillary number, and the separate effects of the size and deformability differences
on the shear viscosity remain unclear. To clarify the separate effects of the size and deformability
differences and their interplay, next, we have analyzed a suspension of capsules with the same
size and different deformabilities. In this case, the specific viscosity of a bimodal suspension is
nearly the same as the weighted average of monomodal suspensions. The deformability difference
mainly affects the deformation of the capsules. However, a decrease in the stresslet for the stiff
capsules is counterbalanced by an increase in the stresslet for the floppy capsules, and a substantial
viscosity reduction is not observed. Finally, we have analysed a suspension of capsules with different
sizes and the same membrane stiffness. As expected, the effects of both the size and deformability
differences are observed. The interplay of these effects decreases the stresslet for both the large and
small capsules, resulting in a further viscosity reduction. The same mechanism is also expected for
bimodal emulsions.

There are many parameters in bimodal capsule suspensions, and we have concentrated on the
size ratio and capillary number ratio in this study. For example, a recent experiment [21] showed
that the surface shear elastic modulus G increased nonlinearly with the capsule size. This experiment
suggests that we must consider both the size ratio and the capillary number ratio for general bimodal
suspensions. Other parameters, including the viscosity ratio between the outer and inner liquids and
the bending stiffness of the membrane affect the shear viscosity. These parameters also change
the capsule deformability, and they are expected to exhibit a similar effect to the capillary number
ratio. It is also interesting to study the effect of the capsule resting shape and the inertial effect on
the viscosity reduction. For example, a previous study [34] showed that the inertia increases the
capsule deformation and inclination in planar Poiseuille flow, resulting in a complex behavior of
apparent viscosity even for monomodal suspensions. The limitation of this study is that the problem
is simplified to gain a fundamental understanding of bimodal capsule suspensions. However, real
suspensions are more complex, and further studies are required for a comprehensive understanding
of the rheology of bimodal capsule suspensions, in particular for highly concentrated suspensions.
We hope that our findings are helpful for future studies.
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