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Evaporation is an effective cooling mechanism widely exploited in the thermal manage-
ment of modern electronic devices, with a growing interest in the evaporation process in
thin-film-based nanoporous membrane technologies. At such scales, classical approaches
fail and one requires solutions of the Boltzmann equation; these are obtained here using the
direct simulation Monte Carlo method. In particular, the evaporation from representative
nanoporous meniscus shapes, corresponding to different operating conditions, has been
investigated. Evaporation rates for the different conditions have been characterized as a
function of a wide range of Knudsen numbers and free-stream Mach numbers. Addition-
ally, the influence of porosity and evaporation coefficient on the nanoporous evaporation
rates has been assessed. Investigations have also been carried out to consider cases where
the meniscus has sunk within the pore, and cooling efficacy compared with cases where the
meniscus is pinned to the top of the pore. This work demonstrates that the net evaporative
mass flux is ultimately determined by the interplay between various physical effects, whose
dominance is quantified by the Knudsen number, porosity, evaporation coefficient, and the
meniscus shape. This work thus provides useful information for the design of nanoporous
membrane-based cooling devices.

DOI: 10.1103/PhysRevFluids.4.113401

I. INTRODUCTION

Thermal management is becoming a prominent concern in the semiconductor industry [1–5]
due to the ever-increasing power density in modern electronic devices. For instance, advanced
electronics, such as gallium nitride high electron mobility transistors, generate heat fluxes exceeding
1000 W/cm2. Traditional cooling techniques [6–10] like pool boiling, flow boiling, and jet im-
pingement have been found to be inadequate for the thermal management of modern electronic
devices, as they are only able to handle heat fluxes of the order 100 W/cm2. Thin film evaporation
[11] enabled by nanoporous membranes is a promising technology that has, in recent years, been
proved to be capable of high heat-flux thermal management. The advantage of thin-film evaporation
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is that it minimizes the thermal resistance across the evaporating liquid and enhances the overall
thermal transport, thereby making it possible to achieve a large critical heat flux. Additionally, as it
relies on capillarity to passively supply the liquid, there is no requirement for significant pumping
power to supply the liquid to the evaporating interface. Nano- and microwicks have been utilized
[12–14] to generate capillary pressure and maintain a thin evaporating film. However, nano- and
microwicks are also associated with large viscous losses, which can limit the overall performance
of the thin-film evaporation-based device. Nanoporous membranes [15–18], on the other hand, not
only generate high capillary pressure but also minimize the viscous losses as they are very thin,
thereby reducing the flow transport length. Optimized semiconductor-based nanoporous membranes
have thicknesses of ∼1 μm and pore diameters of Lp ∼ 100 nm (e.g., see [11,19]). Additionally,
nanoporous membrane-based cooling devices are largely self-regulating in nature since they rely
mainly on capillary pressure, �p ∼ 2γ R−1, mediated by surface tension, γ , and the interface radius
of curvature, R, to drive the flow.

A critical understanding of the interfacial evaporation process at small scales is of interest
not only from a fundamental perspective but also for the design of more efficient nanoporous
membrane-based evaporative cooling devices. Additionally, evaporation from nanopores also has
relevance to other applications like sea water desalination using carbon nanotubes [20,21], industrial
separation processes [22], and natural processes like transpiration [23]. The key in all cases is
to better understand the evaporation process that takes place at the liquid-vapor interface, so that
the evaporative mass flux can be predicted accurately as a function of the operating conditions.
Evaporation has been a well-researched topic with relevance to numerous industrial applications,
and it is now widely recognized that gas kinetic aspects need to be accounted for when dealing
with evaporation at the interface level, due to molecular nonequilibrium effects that occur near the
interface, even at atmospheric pressure conditions [24].

Hertz and Knudsen are credited with pioneering work in this area, as they formulated an
expression for evaporative mass flux, which is now well known as the classical Hertz-Knudsen
formula [25,26]. However, the Hertz-Knudsen relation was derived without taking the macroscopic
vapor velocity into account. Schrage [27] significantly improved this formula by including the vapor
velocity, thereby including nonlinear convective effects. However, Schrage’s equation assumes
incorrectly that the entire fraction of molecules (having an equilibrium drifted Maxwellian dis-
tribution with a vapor velocity) adjacent to the Knudsen layer and moving towards the liquid phase
condenses at the interface. Additionally, both the Hertz-Knudsen relation and Schrage’s relation fail
to accurately relate the external macroscopic flow (vapor) variables to the physical parameters at
the interface. Subsequent works by other researchers, in particular, Labuntsov and Kryukov [28]
and Ytrehus [24], overcame these limitations by formulating gas-kinetic moment equations of the
Boltzmann equation. They conceived the interfacial evaporation process from a planar surface by
essentially dividing the region of interest into a Knudsen layer near the interface (typically of the
order of a few mean free paths thick, in which the vapor adapts to the given external equilibrium
conditions) and an adjacent external hydrodynamic region with equilibrium vapor conditions. The
coupling between the external flow variables and interface parameters was then achieved through
numerical solutions of moments of the Boltzmann equation.

Other notable works on evaporation include detailed numerical solutions from nonlinear
Boltzmann and Bhatnagar-Gross-Krook (BGK) equations given by Yen [29], Sone et al. [30], and
Aoki et al. [31]. Numerical works based on the direct simulation Monte Carlo (DSMC) [32] method
can be found in Murakami and Oshima [33] and Kogan and Abramov [34]. The results from
kinetic theory for one-dimensional problems of evaporation and condensation at planar surfaces
are considered to be fairly complete, particularly for monatomic gases. A comprehensive review
on kinetic theoretical studies of the half-space problem of evaporation can be found in the work
by Sone [35] and references therein. Studies on evaporation for polyatomic gases have been done
by Cercignani [36] and Frezzotti [37,38]. Studies on evaporation from spheres [39,40] and from
cylinders [41] have also been reported in the literature.
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The thermal performance of a nanoporous membrane evaporator is dependent on several aspects,
including conduction heat transport to the liquid-vapor interface, liquid transport to the liquid-vapor
interface, the vaporization process at the liquid-vapor interface and vapor transport from the
interface. However, ultimately, the performance of a nanoporous membrane evaporator is governed
by the evaporation kinetics at the liquid-vapor interface, which is where our research is focused.
Regarding thin-film-based nanoporous membrane cooling, there have been several reported studies
analyzing evaporation in nanopores. A recent experimental investigation, carrying out a parametric
study on the effect of various geometric parameters on thin-film evaporation in nanoporous
membranes, can be found in Wilke et al. [19]. Theoretical and numerical studies on nanoporous
evaporation in the recent past [11,18] essentially consider a one-dimensional resistance network-
type model to couple the liquid phase flow with the interfacial process occurring at the liquid-vapor
interface. Accordingly, the liquid flow was modeled using simplified versions of the Navier-Stokes
equations, the interface was characterized with the augmented Young-Laplace equation [42], and
the interfacial heat/mass flux was modeled using treatments from kinetic theory. The interfacial
heat/mass flux in initial works was formulated using the Schrage equation. However, in later works
the more accurate moment method solution of the Boltzmann equation, by Labuntsov and Kryukov
[28], was used to account for nonequilibrium effects close to the liquid-vapor interface and to
analyze evaporation from nanoporous membranes. The moment-based approach of Labuntsov and
Kryukov has been shown to provide good agreement with numerical solutions of the Boltzmann
transport equation [43,44]. However, it is to be noted that this approach has only been proved to
be accurate and valid for evaporation from a planar surface, where the flow is one-dimensional.
Its validity for significantly curved menisci cases under various operating conditions, where two-
dimensional effects may be important, needs to be further assessed. Additionally, the vapor flow
within the nanopore needs to be treated accurately, particularly for the receding meniscus cases.
Receding cases occur under severe operating conditions, such as in increased heat fluxes or liquid
flow starvation, in which case the meniscus retreats down the pore.

A traditional continuum-based approach to evaluate the vapor flow within the nanopore is
inadequate, as the pore size is comparable to the vapor mean free path. In previous works, this
has been accounted for by modeling vapor flow using free molecular conditions within the pore
and adopting a radiative thermal transport analogy approach [45], with free molecular transmission
probabilities [46]. However, this approach will be inaccurate for significantly curved meniscus cases
and lower Knudsen number conditions. Notably, a very recent study by Lu et al. [47] demonstrated
both experimentally and numerically (using DSMC) that evaporation rates can be expressed as a
function of the pressure ratio across the Knudsen layer. However, this study was limited to low Mach
number cases and did not explore the crucial effect of meniscus shape or Knudsen number on the
evaporation rates. Therefore, to summarize, although there have been attempts to study nanoporous
evaporation, a detailed and fundamental understanding of this phenomenon as a function of various
parameters like meniscus shape, Knudsen number, evaporation coefficient, etc., is lacking.

In the present study, a detailed numerical investigation of the evaporation process from the
liquid-vapor interface of a representative nanopore is considered using the DSMC method. The
gas dynamics and evaporation rates (mass flux) associated with different nanoporous evaporation
conditions are the main focus here. Aspects like liquid-vapor interface structure, phase transition,
effects of supersaturated vapor, etc. have not been covered in this study as these come under
the realm of molecular dynamics simulations. Furthermore, liquid and sensible heat transport
to the interface, or a coupling of the liquid with the vapor phase, have not been considered
within the scope of this work. Instead, stationary fixed cases of menisci of different shapes and
locations in the pore that are representative of different operating conditions in a nanoporous
membrane evaporator are considered and their efficacies compared. In particular, we assess the
evaporation rates as a function of a wide range of Knudsen numbers and free-stream Mach numbers
and study the density ratio and temperature jump across the Knudsen layer. The impact of porosity
on the evaporation rates is also assessed. The computed results are benchmarked against one-
dimensional analytical results from Labuntsov and Kryukov [28], wherever possible. Evaporation
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FIG. 1. Schematic of the computational geometry (not to scale).

rates have been found to be very sensitive to the choice of the evaporation coefficient specified.
Therefore, we also investigate the dependence of the evaporation coefficient on the performance of
nanoporous membranes in this work.

II. PROBLEM FORMULATION AND SIMULATION DETAILS

A schematic of the two-dimensional DSMC computational domain employed for carrying out the
nanoporous evaporation simulations in this work is shown in Fig. 1. We consider a unit nanoporous
membrane configuration, periodic in the x direction, that is representative of the entire system
of pores. The nanopore porosity is defined as φ = Lp/(2W + Lp), where Lp is the width of the
pore and W represents the width of the pore walls on either side of the meniscus. A porosity
of unity represents the case with no walls, i.e., W = 0. Variation in φ is achieved by fixing Lp,
the characteristic length scale in our problem, and changing W. As illustrated in the figure, three
meniscus shapes are considered: S1 corresponds to a flat meniscus (R = ∞), S2 corresponds to a
curved meniscus (R = 0.4 Lp), and S3 corresponds to a semicircle meniscus case (R = 0.5 Lp). The
meniscus represents the liquid-vapor interface where evaporation takes place. The curved meniscus
cases have a larger interfacial surface compared to the flat meniscus case, which we expect to
influence the dynamics.

At the interface, a constant pressure, Ps, and temperature, Ts, are imposed. This is a reasonable
assumption when the Biot number Bi(= Lphe/2kl ) � 1, where he is the evaporation heat transfer
coefficient and kl is the liquid thermal conductivity. The Knudsen number is defined as Kn = λ/Lp,
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where λ is the mean free path based on the interface operating conditions. The variation in Kn
is achieved by changing the operating pressure at the interface. The particle wall interactions are
considered to be fully diffuse at a constant wall temperature, Ts.

At the interface (meniscus) boundary, a half-range Maxwellian is employed to specify the
distribution function of evaporating molecules [48]:

fe(c) = σ
ns(

2πRTs
)3/2

exp

(
− c2

2RTs

)
, c · n > 0. (1)

Here ns is the saturated vapor number density and temperature at the interface; R is the specific
gas constant and σ the evaporation coefficient. The normal unit vector of the interface, pointing
into the vapor, is denoted by n. The Maxwell gas-surface scattering kernel, J (c′, c), is used to
describe the molecular reemission from the interface, i.e., vapor molecules with initial velocity c
is instantaneously changed to c′ upon interacting with the condensed phase at the interface:

J
(
c′, c

) = (1 − σ )

[
α(c′ · n)

1

2π
(
RTs

)2 exp

(
− c′2

2RTs

)
+ (1 − α)δ[c′ − c + 2(c · n)n]

]
. (2)

The evaporation coefficient, σ , specifies the fraction of vapor molecules interacting with the
interface and absorbed. Hence, (1 − σ ) represents the total fraction of impinging molecules that
are instantaneously reemitted, α is the probability of diffuse reemission, and (1 − α) the probability
of specular reflection. For all cases considered in this work, fully diffuse molecular reemissions are
considered at the interface (i.e., α = 1).

The boundary conditions at the far-field (free-stream) boundary needs to be considered carefully,
as the relations between the various free-stream parameters like density, velocity, and temperature
are not known a priori. The equilibrium state attained by the vapor at the far field [48] can be
described by the drifted Maxwellian distribution, f∞(c):

f∞(c) = n∞(
2πRT∞

)3/2
exp

(
− (c − U∞ŷ)2

2RT∞

)
. (3)

Here, n∞, T∞, and U∞ are the number density, temperature and velocity, respectively, at free-stream
conditions and ŷ is the unit vector in the y direction. For the evaporation problem, only one parameter
can be freely specified; the other parameters need to be extracted as outcomes of this single driving
parameter [24]. In this work, we fix the free-stream velocity as the single parameter that is imposed
at the far-field boundary. For each case, we have ensured that the domain height H is large enough
for the vapor to reach free-stream equilibrium conditions. The free-stream velocity, U∞, has been
imposed at the far field by forcing the velocity distribution function at the far-field boundary to be
symmetric with respect to U∞ [37]. This is done by resetting the velocity of a particle crossing the
far-field boundary as

c′ = 2U∞ŷ − c, (4)

such that

F∞(c′) = F∞(2U∞ŷ − c) = F∞(c), (5)

where c and c′ are the particle velocity before and after interacting with the free-stream boundary.
When a particle with velocity cy interacts with the far-field boundary, it is reassigned a velocity c′

y
with a probability |c′

y|/cy, if c′
y < 0.

All simulations in this work have been carried out using SPARTA [49], which is a recently
developed, highly scalable parallel open-source DSMC code [50,51]. To enable the nanoporous
evaporation simulations, we have implemented the interface evaporation [Eqs. (1) and (2)] and
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FIG. 2. Profiles of normalized density, velocity, Mach number, and mass flux at Ma∞ = 0.956. Symbols
denote data from literature [37] and lines denote the current DSMC results.

far-field free-stream velocity [Eqs. (3) and (4)] boundary conditions in SPARTA. The gas was assumed
to be argon and the variable hard sphere (VHS) model was employed. Additionally, we have
followed the well-known guidelines with respect to the cell size, time step, and particle numbers
that are needed for accurate DSMC calculations [32,52]. The time step for the DSMC simulations
is taken to be about five times smaller than �xmin/(Vmp + U∞), where �xmin is the smallest cell
dimension and Vmp is the most probable molecular velocity, given by Vmp =

√
2RTs. To minimize

statistical noise, an average of at least one hundred particles per cell has been considered and the
sampling phase has been carried out over a period of at least a million time steps.

III. RESULTS AND DISCUSSION

In this section, validation of the code for the evaporation problem will be considered first
(Sec. III A). This will be followed by nanoporous membrane simulations considering different
porosities, interface Knudsen numbers, and free-stream Mach numbers (Sec. III B). In particular,
the ideal case of φ = 1 will be considered, followed by nonunity porosities. The evaporation rates,
the density ratios, and the temperature jumps will be investigated as a function of different operating
conditions. To gain an understanding of the physical mechanisms at work, the flow physics will be
further explored in Sec. III C by investigating the flow fields and evaporation rates of selected cases
in detail. Section III D will consider the impact of the evaporation coefficient on the evaporation
rates, while Sec. III E deals with the efficacy of the receding meniscus for selected cases.

A. Validation

Validation of the code has been performed against benchmark results from the literature for two
selected cases. Both cases are particularly relevant to the current study: they consider evaporation
from a planar surface in the one-dimensional limit. The first case considers evaporation from a planar
surface at a selected free-stream Mach number, Ma∞ = 0.956, which is defined as U∞/

√
κRT∞,

where κ is the specific heat ratio. The comparison of the computed normalized profiles for density,
velocity, and Mach number against corresponding results in the literature (Frezzotti [37]) is shown
in Fig. 2. The figure shows the variation of the flow parameters across the Knudsen layer and into
the far-field region. One can clearly see the density drop and velocity rise (corresponding to a flow
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FIG. 3. Validation of the evaporative mass flux against analytical results from Labuntsov and Kryukov [28].

expansion) in the Knudsen layer before the flow attains the imposed equilibrium free-stream velocity
conditions further away from the interface. Excellent agreement with results from [37] can be noted
for all computed quantities.

Validation has also been done for the evaporative mass flux from a planar surface against
analytical solutions given by Labuntsov and Kryukov [28]. The one-dimensional analytical mass
flux, M1D is given by

M1D = 0.6Cs

(
ρ∞
ρ0

)1/2

(ρ0 − ρ∞), (6)

where the interface density is expressed as

ρ0 =
(

1 − 2
√

π
M1D

ρsCs

1 − σ

σ

)
ρs. (7)

Here, σ is the evaporation coefficient and Cs =
√

2RTs. The terms ρs and ρ∞ are the saturation and
free-stream densities, respectively. The validation is shown in Fig. 3 for σ = 1, where the mass flux
values have been normalized with respect to the analytical expression for total emitted (evaporative)
mass flux from a given surface, Me, given by

Me = ρs

√
RTs

2π
. (8)

The mass flux is assessed near the far field and has been calculated as M = ρ∞U∞. Comparison
of the normalized mass flux values has been made for a range of free-stream Mach numbers and
the results are shown in Fig. 3. It can be noted that our simulations are in good agreement with
the analytical results, with minor deviations only near the sonic flow limit. The analytical moment
solution predicts a critical mass flux of 0.818, whereas the DSMC solutions predict a critical mass
flux of 0.835. The discrepancy is due to the slight inaccuracy of the moment solution near the sonic
flow limit, which is an issue previously reported in the literature [24]. No such issues occur for
the more accurate mass flux solutions obtained using the DSMC method [33,34] and numerical
solutions of the BGK model equation by Sone et al. [30], so that, as expected, our critical mass flux
value of 0.835 is in excellent agreement with previous DSMC and BGK model solutions [30,33,34].

113401-7



BENZI JOHN et al.

FIG. 4. Computed mass flux versus the free-stream Mach number for the flat meniscus case, S1 at φ = 1.

B. Nanoporous membrane simulations

Consider, initially, evaporation from different meniscus cases for porosity φ = 1. Porosity of
unity represents the ideal case, as it has the maximum available evaporative area, and thus favors
large heat flux dissipation rates. However, note that in reality, the maximum porosity that can be
attained is subject to membrane manufacturing, mechanical integrity, and conduction heat-transport
considerations. Nevertheless, the case φ = 1 is of particular interest to study as the limiting case
where supporting walls are extremely thin (W → 0). The evaporation rate from the flat meniscus, S1,
is investigated first for a wide range of free-stream Mach numbers and Knudsen numbers. Figure 4
shows the variation in the computed mass flux with Mach number for this case. Four Knudsen num-
bers are considered. The mass flux values, assessed at the far-field boundary, have been normalized
with respect to the evaporative mass flux from a planar surface, M1D, given by Eq. (6), which should
be exact in this case. For all cases of Kn considered, the mass flux increases with Mach number
before reaching a critical value near sonic free-stream conditions (i.e., Ma∞ = 1). The flat meniscus
case corresponds to the classic case of evaporation from a planar surface, for which the flow features
are essentially one-dimensional. Therefore, as expected, the predicted normalized evaporation rates
for all flat meniscus cases are unity and are independent of the Knudsen number considered.

The evaporation rates for the curved meniscus cases, S2 and S3, relative to the flat meniscus
case are examined next for φ = 1. Figure 5 shows the variation in the computed mass flux for the
curved meniscus cases for different Mach numbers and Knudsen numbers. The mass flux values
here have been normalized with respect to the evaporative mass flux from a planar surface, M1D,
given by Eq. (6). It can be noted that the predicted evaporation rates are clearly dependent on the
curvature shape and also on the Knudsen number. The curved menisci have a higher surface area
in comparison to the flat case; however, a larger surface area also implies a greater probability
for molecular losses through the interface, so that the result of these two competing effects is
nontrivial. The net evaporative mass flux is determined by the balance between molecular emission
and condensation-reemission phenomenon at the liquid-vapor interface, which in turn is dependent
on the operating conditions considered.

Low free-stream Mach numbers are characterized by low evaporation rates, as expected. More
interestingly, at very low evaporation rates, all meniscus shapes behave identically, as noted from
their evaporation rates. The variation of the normalized mass flux values with change in the free-
stream Mach number shows interesting trends. At low values of Kn (i.e., Kn = 0.05), the relative
mass flux increases with flow speed for both curved menisci. A critical mass flux is attained near
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FIG. 5. Normalized mass flux versus the free-stream Mach number for the curved meniscus cases at φ = 1.
Dashed lines represent the semicircle meniscus, S3; dotted lines represent the curved meniscus, S2.

sonic flow conditions, similar to that noted for evaporation from a planar surface. The maximum
increase in mass flux (relative to the flat meniscus case) is observed for the semicircle meniscus, as
it has a relatively larger surface area compared to the curved meniscus case, S2.

As Kn increases, the variations in the normalized mass flux with increase in free-stream flow
velocity become relatively minimal. As the flow enters the free molecular regime (i.e., Kn = 10),
the predicted relative mass flux shows no variation with Ma∞; i.e., the computed mass fluxes for
the curved meniscus cases are identical to those predicted for the flat meniscus case. This is because
at relatively high Knudsen numbers there is a greater probability of molecular condensation at the
interface due to the fact that the collision frequency decreases.

The variations in the corresponding density (ρ∞/ρs) and temperature (T∞/Ts) drops for the
different meniscus cases considered are illustrated in Fig. 6. Three selected Knudsen numbers
are considered, i.e., Kn = 0.05, 1, and 10. It is worth noting that only a single parameter, i.e.,
the free-stream velocity, is imposed, and therefore for a constant U∞ the Mach number varies
in accordance with the computed free-stream temperature. It can be noted that, for all degrees of
flow rarefaction considered, the drop in temperature ratio (temperature jump) varies almost linearly
as Ma∞ increases. The density, on the other hand, drops more rapidly and varies in a nonlinear
fashion with the Mach number. In general, the highest density ratio and temperature jumps have
been obtained for the semicircle meniscus, S3, followed by the curved meniscus, S2. However, these
differences are discernible only near the slip and continuum regimes (i.e., at relatively low values of
Kn). In the upper transition and free molecular regimes (i.e., Kn � 1), the deviations are minimal.
This is consistent with the trend in the variation of mass flux (noted in Fig. 5), where the semicircle
meniscus case attains the maximum mass flux, particularly at low values of Kn.

We now examine the evaporation rates when porosity is less than unity (φ < 1) for a range of
Knudsen numbers and free-stream Mach numbers. Figure 7 shows the variation in computed mass
flux as a function of Mach number for three selected Knudsen numbers (i.e. Kn = 0.05, 1, and
10). Two values of porosity are considered, i.e., φ = 0.75 and 0.5. The mass flux values here have
again been benchmarked against the ideal case of evaporative mass flux from a planar surface,
M1D, given in Eq. (6), for a consistent comparison. It can be noted that, for very low evaporation
rates (corresponding to low free-stream Mach numbers), changes to porosity do not significantly
affect the mass flux values. However, as Ma∞ increases, reductions in the value of porosity can
lead to substantial reductions in mass flux. This can be attributed mainly to the relative decrease
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FIG. 6. Computed density ratios and temperature jumps as a function of the free-stream Mach number at
φ = 1. Dashed lines represent semicircle meniscus, S3; dotted lines represent the curved meniscus, S2; and
solid lines represent the flat meniscus, S1.

in the available evaporative surface as porosity decreases. However, this is not the only factor, as
the proportion of reduction in mass flux depends significantly on the free-stream conditions under
consideration. At low Ma∞, the reduction in mass flux is significantly lower when compared to that
at a higher free-stream Mach number. This is mainly due to the increased role of gas expansion near
the interface as Ma∞ increases. The role of gas expansion with changing operating conditions will
be dealt with in more detail in Sec. III C.

It can be also noted from Fig. 7 that the variation in the predicted evaporation rates for the
different menisci considered depends on the Knudsen number. In the upper transition and free
molecular regimes (i.e., Kn � 1), the differences in the predicted evaporation rates between
the different meniscus shapes considered are minimal for all values of free-stream velocities
considered. However, at low degrees of flow rarefaction, significant differences in mass flux can be
noted between the meniscus cases, particularly so at the higher free-stream velocities considered.
For instance, at Kn = 0.05, the semicircle meniscus, S3, attains the largest relative increase in
evaporation rates followed by the curved meniscus case, S2. It can also be noted that a critical mass
flux is attained near sonic free-stream flow conditions (as Ma∞ → 1) for both cases of porosity
considered. In particular, the critical mass flux value (M/M1D) attained for the flat meniscus case
can be noted to be very similar for all Knudsen numbers; for φ = 0.75 the corresponding critical
mass flux is about 0.784 and for φ = 0.5 it is about 0.548.

The drops in the corresponding density ratios and temperature jumps with increase in free-stream
Mach number for φ = 0.75 and 0.5 are illustrated in Fig. 8. It can be noted that the trends in
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FIG. 7. Normalized mass flux as a function of the free-stream Mach number for three selected Knudsen
numbers when φ < 1. Dashed lines represent the semicircle meniscus, S3; dotted lines represent the curved
meniscus, S2; and solid lines represent the flat meniscus, S1.

the variations are similar to that observed for φ = 1, and also are consistent with the mass flux
predictions. The variations between different meniscus cases are again minimal for high Knudsen
numbers. Interestingly, unlike density ratios, the temperature jumps are not affected notably with
reduction in porosity, especially at higher degrees of flow rarefaction.

Before concluding this section, we also provide empirical expressions for the evaporative mass
flux, density ratio, and pressure ratio for selected conditions by curve fitting the available data. In
particular, the free molecular regime (Kn = 10) has been chosen for this purpose, as optimized
nanoporous configurations typically work best in the high Knudsen number regime. Density and
pressure ratios are first expressed as a function of the free-stream Mach number [Eqs. (9)–(14)].
Mass flux values, M/M1D, are then expressed as a function of ρ∞/ρs and P∞/Ps [Eqs. (15)–(18)],
as density and pressure ratios are usually the most relevant input parameters of interest. The
corresponding empirical expressions for Kn = 10 at different porosities for the flat meniscus
case are given below; note that, for a porosity of 1, M/M1D approaches unity and therefore the
corresponding expression has not been provided:

ρ∞
ρs

∣∣∣∣
φ=1

= 0.115Ma4
∞ − 0.602Ma3

∞ + 1.286Ma2
∞ − 1.476Ma∞ + 1.0, (9)

ρ∞
ρs

∣∣∣∣
φ=0.75

= 1.084Ma4
∞ − 3.156Ma3

∞ + 3.7Ma2
∞ − 2.373Ma∞ + 1.0, (10)
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FIG. 8. Computed density ratios and temperature jumps as a function of the free-stream Mach number for
three selected Knudsen numbers when φ < 1. Dashed lines represent the semicircle meniscus, S3; dotted lines
represent the curved meniscus, S2; and solid lines represent the flat meniscus, S1.

ρ∞
ρs

∣∣∣∣
φ=0.5

= 3.313Ma4
∞ − 8.450Ma3

∞ + 8.041Ma2
∞ − 3.71Ma∞ + 1.0, (11)

P∞
Ps

∣∣∣∣
φ=1

= 0.361Ma4
∞ − 1.27Ma3

∞ + 2.013Ma2
∞ − 1.895Ma∞ + 1.0, (12)

P∞
Ps

∣∣∣∣
φ=0.75

= 1.626Ma4
∞ − 4.477Ma3

∞ + 4.865Ma2
∞ − 2.846Ma∞ + 1.0, (13)

P∞
Ps

∣∣∣∣
φ=0.5

= 3.883Ma4
∞ − 9.795Ma3

∞ + 9.161Ma2
∞ − 4.112Ma∞ + 1.0, (14)

M

M1D

∣∣∣∣
φ=0.75

= −0.391

(
ρ∞
ρs

)4

+ 0.502

(
ρ∞
ρs

)3

+ 0.222

(
ρ∞
ρs

)2

− 0.147

(
ρ∞
ρs

)
+ 0.8, (15)

M

M1D

∣∣∣∣
φ=0.5

= 0.705

(
ρ∞
ρs

)4

− 2.19

(
ρ∞
ρs

)3

+ 2.5

(
ρ∞
ρs

)2

− 0.619

(
ρ∞
ρs

)
+ 0.6, (16)
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M

M1D

∣∣∣∣
φ=0.75

= −0.2

(
P∞
Ps

)4

+ 0.087

(
P∞
Ps

)3

+ 0.415

(
P∞
Ps

)2

− 0.1

(
P∞
Ps

)
+ 0.79, (17)

M

M1D

∣∣∣∣
φ=0.5

= 0.516

(
P∞
Ps

)4

− 1.615

(
P∞
Ps

)3

+ 1.796

(
P∞
Ps

)2

− 0.263

(
P∞
Ps

)
+ 0.56. (18)

C. Physical mechanisms at work

To gain further insight into the physical mechanisms at work, we now study the flow fields
and the evaporation rates for selected cases as a function of the Knudsen number. First, we show
representative flow fields to demonstrate the Mach number, density ratio, and temperature jump
variation next to the interface. The flow fields are for selected cases, i.e., the flat meniscus (Fig. 9)
and semicircle meniscus (Fig. 10) for fixed porosity φ = 0.5 and free-stream velocity U∞ = 30 m/s
but different degrees of flow rarefaction, Kn = 0.05, 0.1, and 10. The flow fields suggest a flow
expansion phenomenon in the Knudsen layer next to the interface. The flow expansion specifically
implies a gas density drop in the Knudsen layer before it attains the downstream equilibrium density
conditions and a corresponding temperature drop and velocity rise in accordance with this density
drop. The basic flow expansion features near the interface for all degrees of flow rarefaction can
be noted to be largely similar. A density drop, velocity rise, and temperature drop corresponding
to the gas expansion can be clearly noted near the interface for all cases. Further away from the
interface, downstream equilibrium conditions are attained, and there are minimal variations of the
flow properties in the spanwise (x) direction. To illustrate the variation in density ratio, Mach
number, and temperature drop along the extent of the physical domain (in the y direction) more
clearly, additional plots are shown in Fig. 11 for the semicircle meniscus case. It can be noted that,
although the nature of flow expansion is qualitatively the same for all degrees of flow rarefaction,
the downstream equilibrium conditions (particularly, the density ratios) for lower Knudsen numbers
are attained at a relatively shorter distance from the interface when compared to those at higher Kn
values. Therefore, the higher Kn cases need a relatively larger domain height H. Furthermore, it
can be noted from Fig. 11 that higher Knudsen numbers are characterized by a larger density ratio,
a smaller Mach number increase and a lower free-stream temperature, relative to those at lower
Knudsen numbers for the same conditions considered.

The computed mass flux is examined next as a function of Knudsen number (0.025 < Kn < 10)
and porosity (0.5 < φ < 1). Whereas the previous section considered evaporation rates as a function
of free-stream Mach number at fixed values of Knudsen number, here we fix the free-stream velocity
and vary the Knudsen number to gain additional insights. Three selected free-stream velocities are
considered here, i.e., U∞ = 30, 60, and 180 m/s, and the corresponding results are shown in Fig. 12.
It can be clearly noted again that a reduction in porosity can lead to substantial losses and reduction
in the evaporation rates. Moreover, it can be observed that the proportion by which the evaporation
rates reduce with decreasing porosity increases significantly as the free-stream velocity increases.
For instance, in the free molecular regime, the relative reductions in the evaporation rate when
φ = 0.5 are about 20%, 30%, and 44% for U∞ = 30, 60, and 180 m/s, respectively. The reduction in
the evaporation rates as porosity decreases and free-stream Mach number increases can be attributed
to the fact that there is a relatively larger flow expansion and, correspondingly, a larger pressure drop
at higher free-stream velocities. To illustrate the flow expansion near the interface with increase
in Ma∞ more explicitly, the density ratio ρ∞/ρs is plotted along the extent of the computational
domain for a selected Knudsen number, Kn = 10, at different free-stream velocities U∞ = 30, 60,
and 180 m/s in Fig. 13 for the flat meniscus case. The sudden drop in density near the interface,
before it reaches the density value corresponding to the downstream equilibrium conditions, can
be noted. Clearly, higher Ma∞ leads to larger density drops. The temperature drop and velocity
rise corresponding to the density drop before it reaches the downstream equilibrium conditions can
also be clearly noted from Fig. 13. Additionally, as Ma∞ increases, the downstream equilibrium
conditions are attained farther away from the interface. We also analyze the dependence of porosity
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FIG. 9. Contour plots showing variation of ρ/ρs, Ma, and T /Ts (respectively from left to right) for the flat
meniscus, S1. The flow fields shown are for a fixed porosity φ = 0.5 and free-stream velocity U∞ = 30 m/s, but
different degrees of flow rarefaction: (a) Kn = 0.05, (b) Kn = 0.1, and (c) Kn = 10. Only a selected portion
of the computational domain is shown for each case.

on the flow expansion behavior near the interface by plotting the relevant flow parameters for a
selected fixed Knudsen number, Kn = 10, for the flat meniscus case. The variations in the flow
quantities for the different porosities considered are shown in Fig. 14. It can be noted that a reduction
in porosity is characterized by substantial density drops. The corresponding changes to the velocity
rise and temperature drop are minimal.

A further observation from the evaporation rates versus Kn plot in Fig. 12 is that in the upper
transition and free molecular regimes (Kn � 1), the differences in the predicted evaporation
rates between the different meniscus shapes considered are minimal, for all values of U∞ and
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FIG. 10. Contour plots showing variation of ρ/ρs, Ma, and T /Ts (respectively from left to right) for the
semicircle meniscus, S3. The flow fields shown are for a fixed porosity φ = 0.5 and free-stream velocity
U∞ = 30 m/s, but different degrees of flow rarefaction: (a) Kn = 0.05, (b) Kn = 0.1, and (c) Kn = 10. Only
a selected portion of the computational domain is shown for each case.
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FIG. 11. Variation in (a) ρ/ρs, (b) Ma, and (c) T/Ts plotted along the extent of the computational domain
at U∞ = 30 m/s and different degrees of flow rarefaction.

φ considered. However, for lower degrees of flow rarefaction (Kn � 0.1), significant differences
in mass flux can be noted between the meniscus cases, particularly so at higher free-stream
velocities considered. For instance, the semicircle meniscus, S3, attains the largest relative increase
in evaporation rates, notably in the early slip/continuum regime. At Kn = 0.025 and φ = 1, the
relative increases in computed mass flux for the semicircle meniscus (with respect to the flat
meniscus case) are about 5.6%, 7.4%, and 15%, respectively, for U∞ = 30, 60, and 180 m/s. The
increase in relative mass flux as U∞ increases (for the same Kn) can be attributed to the fact that, at
higher flow velocities near the interface, there is relatively a higher probability for most molecules
to travel unidirectionally (i.e., in the flow direction) and for correspondingly fewer molecules to
travel in the opposite direction (i.e., towards the interface), resulting in a relatively smaller chance
of condensation at the interface.

Additionally, Fig. 12 suggests that the proportion by which the mass flux reduces as porosity
decreases is relatively lower near the early slip regime in comparison with the free molecular
regime, particularly so at the low values of free-stream velocity considered. For instance, for
the semicircle meniscus case considered at U∞ = 30 m/s and φ = 0.5 the reduction in mass
flux at Kn = 10 is about 20% (with respect to the ideal case of φ = 1), whereas at Kn =
0.025 and U∞ = 30 m/s the corresponding reduction is only about 13.4%. As the flow ap-
proaches the free molecular regime, rarefaction effects become predominant and there is a greater
chance of molecular condensation at the interface due to the fact that the collision frequency
decreases.
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FIG. 12. Normalized mass flux versus the Knudsen number plotted for three selected free-stream velocities.
Dashed lines represent the semicircle meniscus, S3; dotted lines represent the curved meniscus, S2; and solid
lines represent the flat meniscus, S1.

D. Impact of the evaporation coefficient

All the results presented so far have considered an evaporation coefficient of unity. Although
σ = 1 is considered generally to be a reasonable assumption, previous studies based on experi-
mental [53,54], transition state theory [55], and molecular dynamics [56–58] studies suggest that it
is possible for the evaporation coefficient to be significantly less than 1 under certain conditions,
particularly for polyatomic gases like water, methanol, and refrigerants. It is also sensitive to
interface conditions like temperature. It is therefore very important to study the dependence of
evaporation coefficient on the performance of nanoporous membranes. To investigate the effect
of the evaporation coefficient σ on the evaporation rates, a selected fixed free-stream velocity of
U∞ = 60 m/s has been considered for all cases in this part of the study. First, we study the impact of
nonunity evaporation coefficients for evaporation from a planar surface in the one-dimensional limit.
For this, the computed mass flux for different values is plotted together with its analytical solution
[from Eq. (6)] in Fig 15. Excellent agreement can be noted between the computed and analytical
results. The absolute value of mass flux clearly decreases with any reduction in the evaporation
coefficient.

The impact of σ on the evaporation rates for different meniscus shapes is investigated next. The
computed mass flux as a function of σ is shown in Figs. 16(a) and 16(b) for φ = 1 and two selected
values of Knudsen number, i.e., Kn = 0.1 and Kn = 10. The mass flux in these plots has been
normalized with the analytical mass flux, M1D, σ , corresponding to the evaporation coefficient under
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FIG. 13. Variation in (a) ρ/ρs, (b) u/U∞, and (c) T/Ts plotted along the extent of the computational domain
at Kn = 10 and three different free-stream velocities for the flat meniscus, S1.

consideration. The absolute magnitude of mass flux is proportional to the evaporation coefficient, as
expected for all meniscus cases (not shown). More interestingly, the curved meniscus cases attain
a significantly higher mass flux relative to the flat meniscus case, S1, particularly as σ decreases.
For instance, when σ = 0.1, the semicircle meniscus, S3, predicts about 40% higher mass flux than
S1. The reason for this can be attributed to the fact that all the molecules crossing the interface are
lost (condensed) for σ = 1. However, for σ < 1, a fraction of the molecules (proportional to 1 − σ )
crossing the interface get reemitted. This clearly makes a difference, as it can be noted that the
variations in mass flux between the meniscus cases is minimal when σ = 1; however, as σ reduces,
the mass flux becomes proportional to the interface surface (i.e., area per unit width). In particular,
as σ → 0, the ratio of mass flux predicted by the semicircle meniscus to that by the flat meniscus
approaches π /2 (the ratio of the semicircle meniscus to the flat meniscus).

The evaporation coefficient sensitivity study has also been done for porosity φ = 0.75, and the
corresponding results are shown in Figs. 16(c) and 16(d). The trends are similar to those for φ = 1.
The variations in mass flux between the meniscus cases are again relatively minimal when σ = 1,
for both Knudsen numbers (particularly for Kn = 10). However, as σ reduces, the curved meniscus
cases predict a larger mass flux as the evaporation rates becomes proportional to the interfacial
surface.
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FIG. 14. Variation in (a) ρ/ρs, (b) u/U∞, and (c) T/Ts plotted along the extent of the computational domain
at Kn = 10 and U∞ = 180 m/s, but at different porosities for the flat meniscus, S1.

FIG. 15. Validation of computed mass flux as a function of the evaporation coefficient against the analytical
solution for a fixed free-stream velocity, U∞ = 60 m/s.
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FIG. 16. Normalized mass flux as a function of the evaporation coefficient for different values of φ and
Kn, computed for a fixed free-stream velocity, U∞ = 60 m/s.

E. Receding meniscus cases

So far, we have considered an ideal meniscus case, i.e., when the meniscus is pinned to the top of
the pore. In practice, the meniscus could actually recede down the pore under a range of operating
conditions, such as a higher pore surface temperature or heat flux. Therefore, receding meniscus
cases need to be investigated to assess their influence on nanopore efficacy. Figure 17 illustrates a
receding meniscus case, where h denotes the distance by which the top of the meniscus is below the
top of the nanopore.

Receding meniscus cases have been considered by studying three selected cases of h, i.e., h =
Lp/6, Lp/2, and 2Lp, and comparing their respective evaporation rates with the ideal pinned meniscus
case, i.e., h = 0. A fixed free-stream velocity, U∞ = 60 m/s, is considered for all cases in this part
of the study. Figure 18 shows the computed normalized flux as a function of Kn for different values
of h, at two porosities, φ = 1 and φ = 0.75. It can be noted that as the meniscus recedes down the
pore the evaporation rates reduce significantly. This can be attributed to the additional losses (vapor
transport resistance) encountered, as the vapor travels up the pore before it eventually escapes. For
instance, when the meniscus recedes by a distance of just 2Lp, the mass flux reduces by about 28%
for Kn = 10 and φ = 1. The substantial reduction in evaporation rates is generally consistent with
experimental findings [19]. More interestingly, the trend in the variation of evaporation rate with
Kn alters significantly as the meniscus recedes down the pore. For small values of h (i.e., Lp/6 and
Lp/2), the trends in the variation of mass flux with Kn are similar to the pinned meniscus case. As
the meniscus recedes down the pore, the behavior changes and is now noted to be similar to the
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FIG. 17. Schematic of the receding meniscus case.

mass flux variation in Poiseuille flow. For h = 2Lp, the mass flux first decreases as Kn increases and
then increases with a Knudsen number minimum in the transition regime. This behavior holds true
for both cases of porosity considered.

We also examine the effect of the evaporation coefficient on the receding meniscus case. A
selected evaporation coefficient of σ = 0.1 and receding height h = 2Lp are considered for this
purpose. The evaporation rates for this receding case are plotted in Fig. 19. The mass flux in
these plots has been normalized with the analytical mass flux, M1D, corresponding to σ = 0.1.
The apparent reduction in the magnitude of mass flux as σ reduces can be clearly noted for h = 2Lp

[by comparing Fig. 19(a) against Fig. 18(a)]. More interestingly, at σ = 0.1, the curved meniscus
cases consistently produce a much higher mass flux when compared to the flat meniscus cases,
for all degrees of flow rarefaction. Evidently, as σ reduces, mass flux is consistently proportional
to the interface surface, and this behavior holds true irrespective of the Knudsen number under
consideration. Quantitatively, the ratio of mass flux predicted by the semicircle meniscus to that by
the flat meniscus is noted to be about 1.4 for σ = 0.1, which suggests that as σ → 0 this ratio will
again approach π /2. Comparison of the receding case with the pinned case for σ = 0.1 is also made

FIG. 18. Computed normalized mass flux as a function of Knudsen number for different values of h.
The line types represent different meniscus shapes; i.e., solid lines denote the flat meniscus, S1; dotted lines
represent the curved meniscus, S2; dashed lines represent the semicircle meniscus, S3.
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FIG. 19. Comparison of the computed mass flux between the receding case (h = 2Lp) and the pinned case
(h = 0) for σ = 0.1 and φ = 1. The line types represent different meniscus shapes; i.e., solid lines denote
the flat meniscus, S1; dotted lines represent the curved meniscus, S2; dashed lines represent the semicircle
meniscus, S3.

in Fig. 14. It can be noted that the trends in the variation of evaporation rates between the receding
and pinned cases for σ = 0.1 are similar. Additionally, unlike for an evaporation coefficient of
unity, the magnitude of mass flux is relatively similar for both receding and pinned meniscus cases
when σ = 0.1, i.e., the relative mass flux reduction (losses) as the meniscus recedes down the pore
becomes minimal for very low values of σ .

IV. CONCLUSIONS

In the present study, the direct simulation Monte Carlo method has been used to investigate
the gas dynamics associated with evaporation processes from a model nanoporous membrane
cooling device. In particular, the evaporation from representative nanoporous meniscus shapes
corresponding to different operating conditions has been investigated. Evaporation rates and the
corresponding free-stream to interface density ratios and temperature jumps have been characterized
as a function of a wide range of interface Knudsen numbers and free-stream Mach numbers.
Simulations in this work have led to several insights into the nanoporous evaporation phenomena.
The main findings of this work are as follows:

(1) The meniscus shape does not play a critical role, for relatively large Knudsen numbers (from
the early transition to free molecular regime) and evaporation coefficient close to unity, as the curved
menisci predict an evaporation rate similar to that of the flat meniscus case. This is due to the fact that
a higher Knudsen number favors a relatively greater chance of condensation due to lower collision
frequency near the interface. On the other hand, at lower Knudsen numbers (in the continuum and
slip regimes), the meniscus shape plays a key role as the curved meniscus cases consistently produce
a larger mass flux in comparison to a flat meniscus. This is particularly so at higher free-stream
velocities, since a higher flow velocity near the interface (for the same Kn) reduces the backscattered
fraction of molecules condensing at the interface.

(2) Small changes in porosity lead to substantial reductions in mass flux, particularly as the
free-stream Mach number (or indirectly, the interface to free-stream density ratio) increases. This
can be attributed to the combined effect of the decrease in the relative available evaporative interface
surface as porosity decreases and the increased role of the gas expansion phenomenon as free-stream
Mach number increases.

(3) The choice of evaporation coefficient has been found to have a significant effect on the
evaporation rates. This is due to the relative importance of the molecular emission and reemission
phenomenon at the interface varying with the evaporation coefficient. In particular, for low values
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of the evaporation coefficient, the curved meniscus cases attain a significantly higher mass flux
irrespective of the interface Knudsen number conditions.

(4) The relative evaporation rates for the receding menisci drop significantly, since the vapor
encounters additional losses as it travels up the pore. Additionally, it was found that the trend in
the variation of evaporation rate with Knudsen number alters significantly with the location of the
receding meniscus. Furthermore, an analysis of the impact of evaporation coefficient on the receding
meniscus cases has revealed that the relative mass flux reduction as the meniscus recedes down the
pore becomes minimal for very low values of evaporation coefficient.

In summary, this work has demonstrated that the efficacy of the nanoporous membrane needs
to be carefully examined as it is ultimately determined by the interplay between a host of
relevant parameters, including the meniscus shape, Knudsen number, porosity, and the evaporation
coefficient. This work on nanoporous evaporation thus not only provides useful information for
the design of novel nanoporous membrane-based cooling devices but also has relevance to related
applications, such as sea water desalination using carbon nanotubes. Finally, future work will
consider a wider range of parameter space to cover additional relevant combinations of porosity,
evaporation coefficient, and receding menisci that have not been considered in this study. In
particular, we will explore in the near future the feasibility of an effective one-dimensional approach
to predict the mass flux and jump relations across the Knudsen layer for arbitrary nanoporous
configurations, through specification of an appropriate effective evaporation coefficient.
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