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We report on an instability arising when surface gravity waves propagate in a rotating
frame. The Stokes drift associated to the uniform wave field, together with global rotation,
drives a mean flow in the form of a horizontally invariant Ekman-Stokes spiral. We show
that the latter can be subject to an instability that triggers the appearance of an additional
horizontally-structured cellular flow. We determine the instability threshold numerically, in
terms of the Rossby number Ro associated to the Stokes drift of the waves and the Ekman
number E. We confirm the numerical results through asymptotic expansions at both large
and low Ekman number. At large E the instability reduces to that of a standard Ekman
spiral driven by the wave-induced surface stress instead of a wind stress, while at low E the
Stokes-drift profile crucially determines the shape of the unstable mode. In both limits the
instability threshold asymptotes to an Ekman-number-independent critical Rossby number,
which in both cases also corresponds to a critical Reynolds number associated to the
Lagrangian base-flow velocity profile. Parameter values typical of ocean swell fall into the
low-E unstable regime: the corresponding “anti-Stokes” flows are unstable, with possible
consequences for particle dispersion and mixing.

DOI: 10.1103/PhysRevFluids.4.104802

I. INTRODUCTION

The interaction between waves and mean flows is a key ingredient of oceanic and atmospheric
dynamics. Focusing on the ocean surface only, mean flows can refract and focus surface gravity
waves [1–6], while surface gravity waves can induce and distort near-surface currents [7–11].
A particularly visual example of wave-induced currents are Langmuir cells, i.e., cellular motion
near the ocean surface, the axis of the cells being aligned with the dominant direction of wave
propagation. These wave-induced mean flows affect dispersion and mixing in the upper ocean
[12,13]. With the goal of describing the emergence of Langmuir cells, Craik and Leibovich [14–16]
derived an equation governing the evolution of a slow incompressible mean flow u arising at second
order in the weak slope of the surface gravity waves:

∂t u = −∇p + (u + us) × ω. (1)

In this equation, us denotes the Stokes drift associated with the wave field, ω = ∇ × u is the
vorticity field and p denotes the generalized pressure field. This equation resembles the standard
Navier-Stokes equation, with the addition of a “vortex force” term us × ω. Focusing on the
interaction between a spanwise-varying Stokes drift and a vertically sheared wind-driven current,
Craik and Leibovich showed that the vortex force induces cellular motion reminiscent of Langmuir

*kannabiran.seshasayanan@cea.fr

2469-990X/2019/4(10)/104802(15) 104802-1 ©2019 American Physical Society

https://orcid.org/0000-0002-5673-3284
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.4.104802&domain=pdf&date_stamp=2019-10-30
https://doi.org/10.1103/PhysRevFluids.4.104802


KANNABIRAN SESHASAYANAN AND BASILE GALLET

cells. Craik later realized that, even when the Stokes drift is horizontally homogeneous, an instability
mechanism leads to the spontaneous emergence of a similar cellular flow [17]. A complication
arising in Craik’s study—as well as in subsequent ones—is that the wind stress imposed at the fluid
surface induces unbounded growth of the kinetic energy of the background shear flow, as momentum
accumulates inside the semi-infinite fluid region. These studies therefore need to restrict attention
to a “quasistationary” base state, where the slowly evolving mean flow is approximated by a steady
one and standard linear stability analysis can be applied. This approach is sound when the instability
unfolds on a timescale much faster than the evolution of the base flow [17–19], an assumption that
breaks down in the vicinity of the instability threshold.

As we will see in the following, a solution to this issue consists in including global rotation—a
key ingredient of oceanic flows—to arrest the accumulation of momentum in the fluid layer. Wave
mean-flow interactions are modified significantly when global rotation � and viscosity ν are taken
into account, both at second-order in wave slope [20]. First, the wave-averaged equation for the
slowly evolving mean flow becomes

∂t u = −∇p + (u + us) × (ω + 2�) + ν�u. (2)

Second, viscosity crucially modifies the boundary conditions for the mean flow at the free surface
[21–24]. On average over a wave period, the stress-free boundary condition at the deformed top
boundary results in a net viscous stress ρν∂zus|z=0 acting on the underlying mean flow. Balancing
this wave-induced stress with the standard viscous stress ρν∂zu⊥|z=0 exerted by the fluid slightly
below the surface yields the modified boundary conditions for the mean flow at the surface:

∂zu⊥|z=0 = ∂zus|z=0 , ez · u|z=0 = 0, (3)

where z is the vertical direction, with z = 0 the rest position of the free surface, ez is the unit
vector along z and u⊥ is the horizontal velocity vector. We stress the fact that including a small
viscosity ν is a very singular perturbation to the undamped problem: the boundary condition Eq. (3)
is independent of ν and does not reduce to the standard stress-free boundary condition ∂zu⊥|z=0 = 0
when ν → 0. As far as we can tell, this boundary condition was initially derived more than half a
century ago by Longuet-Higgins [21]. Surprisingly however, even though some studies correctly
include it [22–24], many studies in oceanography and physics forget about the wave-induced
stress. Part of the reason may be that the original derivation by Longuet-Higgins is rather involved
mathematically: it requires switching to a curvilinear frame attached to the wavy interface before
performing a boundary-layer approximation. With the goal of popularizing the modified boundary
condition, Xu and Bowen provide a much simpler derivation, that they refer to as an energy budget
[24]. However, their approach really is a momentum budget: We provide a similar derivation in
Appendix A, correcting a few incorrect steps in Xu and Bowen.

Most other studies motivated by the oceanographic situation forget about the wave-induced stress
near the surface. This can be justified when a wind stress is included in the problem, provided it is
much stronger than the wave-induced stress. If the latter is evaluated using the molecular viscosity of
water, then one concludes that any realistic wind stress dominates the wave-induced surface stress by
orders of magnitude. However, instead of molecular viscosity, many of these studies consider eddy
viscosity all the way to the fluid surface. For instance, the seminal papers of Craik and Leibovich
[14] and Huang [20] assume values of the eddy viscosity of the order of 10−2 m2 s−1, but forget
about the wave-induced stress. Consider typical parameter values for swell waves: a surface Stokes
drift Us = 0.068 m s−1, a wave number k = 0.105 m−1 and a typical wind stress of 0.037 N m−2

[12]. From these values, one concludes that the wave-induced stress estimated using eddy viscosity
is four times larger than the wind stress, and thus cannot be neglected. Whether molecular or eddy
viscosity should be retained in the vicinity of the free surface is debatable and we shall not elaborate
more here. Instead, in the following we consider ν to be the (uniform) viscosity of the fluid and focus
on propagating waves in the absence of external wind stress.

An important consequence of both viscosity and global rotation is that u = 0 is a solution to
Eq. (1) but not to Eq. (2). Indeed, the simplest steady solution to Eq. (2) is a horizontally invariant
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FIG. 1. Left: Theoretical setup. Monochromatic surface gravity waves propagate towards x > 0 in a frame
rotating at a rate � = f /2 around the vertical z axis. Right: The base-flow solution associated with this
geometry for Ro = 10 and E = 10−3, in dimensionless units (see text for details). Notice the two characteristic
scales in the vertical direction, 1/4π from the Stokes drift and

√
E from the standard Ekman layer scaling.

mean flow, driven both by the wave-induced surface-stress Eq. (3) and by the body-force term us ×
2� in Eq. (2). This “Coriolis-Stokes” body force corresponds to the shearing of planetary vorticity
by the Stokes drift [25,26]. The resulting base flow was coined the Ekman-Stokes spiral [27]: it
is somewhat similar to an Ekman spiral, but it is driven by the Stokes drift and the wave-induced
surface stress, instead of a surface wind stress. The stability of the Ekman-Stokes spiral has received
little attention so far, except for one study [28]. The authors of that study include a wind-stress, but
they omit the wave-induced surface stress and use a Galerkin expansion that is incompatible with
the boundary conditions of the problem, making any quantitative comparison difficult.

In the following, we restrict attention to surface waves propagating in a rotating frame in the
absence of wind stress, with the following questions in mind: is the Ekman-Stokes spiral stable?
Can it break down into cellular motion? How much mixing and dispersion would it induce then?
How much energy can the instability extract from the wave field?

To address these questions, we introduce in Sec. II an idealized pilot problem where monochro-
matic surface waves propagate in a rotating frame and derive the corresponding Ekman-Stokes
spiral. In Sec. III, we consider the linear stability of this base flow. We solve the corresponding
eigenvalue problem numerically and demonstrate the existence of an instability. The numerical
problem becomes particularly stiff at low Ekman number, which calls for an analytical confirmation
of the numerical results. In Sec. IV, we thus consider the asymptotic limits of large and low Ekman
number. After connecting the large-Ekman-number regime to the instability of the standard Ekman
spiral, we perform a boundary-layer analysis to shed light on the low-Ekman-number instability
mechanism, where the Stokes drift profile plays a key role in setting the instability threshold and the
structure of unstable eigenmode. In the discussion Sec. V, we show that the instability threshold—a
critical Rossby number based on the characteristics of the Stokes drift profile—also corresponds
to a critical Reynolds number associated to the Lagrangian velocity profile. We finally discuss the
energy budget in the nonlinear regime of the instability, by deriving an upper bound on the power
dissipated by the background flow.

II. EKMAN-STOKES SPIRAL

The theoretical setup is sketched in Fig. 1(a): We consider a layer of incompressible fluid
with infinite extent in both horizontal directions x and y and semi-infinite extent along z, in a
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frame rotating at angular frequency � around the vertical axis ez. At the free surface is a field
of monochromatic surface gravity waves propagating towards positive x, with an amplitude aw, a
frequency σ and a wave number k = 2π/λ, λ being the wavelength. The waves have a weak-slope,
awk � 1. We focus on global rotation rates � much lower than the wave frequency σ , so that we
can safely neglect the modifications to the wave dispersion relation induced by global rotation [29].
The surface gravity waves thus follow the standard dispersion relation σ = √

gk. The interaction
between these waves and a slowly evolving background flow u = uex + vey + wez is governed by
Eq. (2) above, where the Stokes drift associated to the deep-water monochromatic surface-wave
field is:

us = us(z)ex = Use
2kzex, (4)

with Us = a2
w
σk. The goal of the present study is to investigate the solutions to Eq. (2) with the

Stokes drift Eq. (4) and the boundary conditions Eq. (3), and the stability of these solutions. The
problem involves two dimensionless parameters:

E = ν/( f λ2), Ro = Us/(λ f ). (5)

E is a standard Ekman number written in terms of the Coriolis parameter f = 2�, and Ro is a
Rossby number associated with the Stokes drift velocity Us. Both parameters are based on the
wavelength λ, which is the typical depth of the Stokes drift profile.

We nondimensionalize Eq. (2) using the lengthscale λ and the timescale f −1. Denoting the
dimensionless quantities with a ∗, we obtain

∂t∗u∗ = −∇∗ p∗ + (u∗ + u∗
s ) × (∇∗ × u∗ + ez ) + E �∗u∗, (6)

where u∗
s = Ro e4πz∗

ex. The dimensionless boundary conditions are

∂z∗u∗
⊥|z∗=0 = 4π Ro ex, w∗|z∗=0 = 0. (7)

To alleviate the algebra, we drop the stars in the following, all the quantities being dimensionless
unless stated otherwise.

A consequence of global rotation is that Eq. (6) admits a time-independent and horizontally
invariant base-flow solution. The incompressibility condition together with the boundary conditions
yield w = 0, while the horizontal velocity components are

u = 4π
√

E

√
(4π )4E2 + 4

(4π )4E2 + 1
cos(z/

√
2E − θ )ez/

√
2ERo − 1

1 + (4π )4E2 Ro e4πz, (8)

v = 4π
√

E

√
(4π )4E2 + 4

(4π )4E2 + 1
sin(z/

√
2E − θ )ez/

√
2ERo + (4π )2E

1 + (4π )4E2 Ro e4πz, (9)

where θ = arctan{[(4π )4E2 + (4π )2E + 2]/[(4π )4E2 − (4π )2E + 2]}. This base flow was derived
in Lagrangian form by Madsen [23] and is shown in Fig. 1(b). It is referred to as the Ekman-Stokes
spiral, as it resembles an Ekman spiral but is driven by the Stokes drift instead of a wind stress.
The Stokes drift appears directly in Eq. (6) but also in the wave-induced surface stress Eq. (7). As
can be seen in Fig. 1(b), the velocity profile evolves over two different length scales in the vertical
direction: the Ekman layer depth λ

√
E = √

ν/ f , and the wavelength λ. The former is the length
scale of the classical Ekman spiral, while the latter is the signature of the depth dependence of
the Stokes drift. In the limit of very small Ekman number, the velocity profile tends to u = −us

pointwise. This Eulerian profile is often referred to as an “anti-Stokes” flow [30–32], as it cancels
the Stokes drift velocity in the expression of the Lagrangian velocity, uL = u + us � 0. However,
the vertical derivatives of u and −us differ strongly in the vicinity of the fluid surface, because
these two fields satisfy different boundary conditions. As a result, there is an Ekman boundary layer
extending over a typical depth

√
ν/ f near z = 0 for u to satisfy the boundary conditions Eq. (7) at

the fluid surface.
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III. LINEAR STABILITY ANALYSIS

We consider the stability of the Ekman-Stokes spiral to infinitesimal perturbations. The base-flow
being invariant along x and y, we focus on a single Fourier mode of perturbation in these directions,
together with exponential growth/decay in time. The velocity field reads

u(x, y, z, t ) =
⎛
⎝u(z)

v(z)
0

⎞
⎠ +

⎛
⎝ ũ(z)

ṽ(z)
w̃(z)

⎞
⎠ei(kxx+kyy+γ t ) + c.c., (10)

where the ·̃ denote infinitesimal perturbations, kx and ky are the wave numbers of the perturbation
along x and y, and c.c. is the complex conjugate of the second term. The angular frequency γ is
complex, and if its imaginary part Im(γ ) is negative then the perturbation grows exponentially with
time. Upon linearizing the Craik-Leibovich Eq. (6) around the base-flow Eqs. (8) and (9), we obtain
two coupled equations for w̃ and ω̃z = ikx ṽ − ikyũ:

iγ�w̃ = −[ikx(u + us) + ikyv]�w̃ + w̃∂zz[ikxu + ikyv] + ikyω̃z∂zus − ∂zω̃z + E �2w̃, (11)

iγ ω̃z = −[ikx(u + us) + ikyv]ω̃z − w̃∂z[ikxv − ikyu] + ∂zw̃ + E �ω̃z. (12)

The boundary conditions for the perturbations are

w̃ = ∂zũ = ∂zṽ = ∂zω̃z = 0, at z = 0 and z → −∞. (13)

Eqs. (11) and (12) with the boundary conditions Eq. (13) represent an eigenvalue problem for
the complex eigenvalue γ , that we solve numerically using a Chebyschev collocation method. In
practice, we replace the boundary conditions at infinite depth by a stress-free boundary at some
depth z = −H , choosing a large enough H for the results to be independent of H . We focus on the
eigenvalue with the lowest imaginary part, after minimization over the horizontal wave numbers kx

and ky, as it corresponds to the least stable (or most unstable) eigenmode. For a given value of the
Ekman number, the imaginary part of this eigenvalue becomes negative above a threshold value Roc

of the Rossby number, which indicates a linear instability. In Fig. 2(a), we plot this critical Rossby
number as a function of the Ekman number. Roc is always of the order of unity, and it tends to
limiting asymptotic values in both limits E → ∞ and E → 0. The numerical eigenvalue problem
becomes particularly stiff in the latter limit, which calls for a theoretical confirmation. The following
section is thus devoted to the analytical determination of the E → ∞ and E → 0 asymptotic values
of the threshold Rossby number. In Fig. 2(b), we show the wave vector and angular frequency Re(γ )
of the most unstable mode at the threshold of the instability [Ro = Roc, Im(γ ) = 0]. The angular
frequency is always nonzero, indicating a Hopf bifurcation, with a value close to f . The wave vector
is predominantly along x for low Ekman number, which corresponds to cellular motion, the axes
of the rolls being horizontal and perpendicular to the direction of wave propagation. By contrast,
for large Ekman number kx and ky are comparable, which corresponds to rolls whose axes are
horizontal and form an angle close to 45◦ with the direction of wave propagation. In Fig. 3, we
show the detailed structure of the eigenmode in both limits.

IV. ASYMPTOTIC BEHAVIOR FOR LOW AND LARGE EKMAN NUMBER

To gain further understanding of the instability mechanism, we focus on the asymptotic limits
of low and large Ekman number. We will see that, at large Ekman number, the problem reduces to
the stability analysis of a standard Ekman spiral driven by the effective surface stress, Eq. (3), and a
connection can be made with the literature on Ekman spiral instabilities. By contrast, in the low-E
limit one needs to retain both the body force us × 2� and the effective surface-stress, Eq. (3), and a
novel instability arises.
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FIG. 2. (a) Critical Rossby number Roc as a function of the Ekman number. (b) The wave numbers kx (•)
and ky (�), and the angular frequency Re(γ ) (
) at criticality. The dashed lines indicate the asymptotic results
for low and large E, which fully confirm the numerical study.

A. Large Ekman number limit, E → ∞
In the large-Ekman-number limit, the base-flow described by Eqs. (8) and (9) reduces to

a standard Ekman spiral driven by the wave-induced surface stress in Eq. (3). The norm
of the velocity vector at the free surface is V = 4πUs

√
E, in dimensional form. Through

a systematic expansion in powers of E−1/2, we show in Appendix B that the Stokes-
drift profile disappears from the linearized equations, which reduce to the standard lin-
ear stability problem of the Ekman spiral. These equations depend on the parameter Ro
only, allowing us to compute numerically the asymptotic threshold value Roc in the limit
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FIG. 3. Marginally stable eigenmode at the instability threshold for E = 10−8 (left) and E = 108 (right).
We represent the projection of the velocity vector onto each side of the cube.

of large Ekman number. We solved this linear stability problem numerically and obtained
the asymptotic threshold value Roc|E→∞ = 0.67.

We can compare this value to the instability threshold computed by Faller and Kaylor [33]
for the standard Ekman spiral. They obtain an instability for Re � 12, where Re is a Reynolds
number based on the norm V of the base-flow velocity at the surface and the Ekman-depth

√
ν/ f :

Re = V/
√

ν f /2 = 4π
√

2 Ro. Their instability threshold thus corresponds to Roc = 0.67 using our
notations, which fully confirms the value that we obtained numerically (and reported in Fig. 2(a)).
This validates our numerical computations, and the fact that the effective body-force us × 2� is
negligible in this limit, the flow being predominantly an Ekman spiral driven by the wave-induced
surface stress.

B. Weak viscosity regime, E → 0

In the low-Ekman-number limit, the base-flow evolves over two-length scales: the O(1)
characteristic depth of the Stokes drift, and the O(E1/2) Ekman-layer thickness. Accordingly, the
eigenmode can be computed in the asymptotic limit E → 0 through a boundary layer expansion.
It consists of an outer solution at the scale O(1), plus some small boundary layer corrections on a
scale O(E1/2) near z = 0. We introduce a small parameter ε = √

E and the following ansatz for the
form of the eigenmode:

w̃ = w̄0(z) + ε2 [w̄2(z) + ŵ2(z/ε)] + O(ε3), (14)

ω̃z = ω̄0(z) + ε ω̂1(z/ε) + ε2 [ω̄2(z) + ω̂2(z/ε)] + O(ε3). (15)

The quantities with a ·̄ denote the outer solution, while the quantities with a ·̂ denote boundary layer
corrections. Both the fields with a ·̄ and a ·̂, and their derivatives, are O(1) when their argument is
O(1). All the boundary layer corrections (the fields with a ·̂) vanish when their argument is large,
i.e., when z/ε → −∞.

1. Outer solution

The outer region corresponds to z = O(1), z/ε → −∞. In this limit the boundary layer
corrections disappear and the base flow reduces to

u = − Ro e4πz + O(ε4), (16)

v = ε216π2Ro e4πz + O(ε5). (17)
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It consists of an anti-Stokes flow, Eq. (16), and a much weaker cross-flow, Eq. (17). At order O(ε0),
Eqs. (11) and (12) yield

iγ

(
d2

dz2
− k2

x

)
w̄0(z) + 16π2ikxRo e4πzw̄0(z) + ω̄′

0(z) = 0, (18)

iγ ω̄0(z) − w̄′
0(z) = 0, (19)

where the ′ symbol denotes a derivative with respect to z. Keeping only the solution that decays for
z → −∞, we obtain

w̄0(z) = AJa[b e2πz]�(1 + a), (20)

ω̄0(z) = A
π b e2πz

iγ
(Ja−1[b e2πz] − Ja+1[b e2πz])�(1 + a), (21)

where a = kxγ /(2π
√

γ 2 − 1), b = 2
√

γ kxRo/
√

γ 2 − 1, J denotes a Bessel function of the first
kind, � denotes the standard � function, and A is the arbitrary complex amplitude of the eigenmode.
At order O(ε2), Eqs. (11) and (12) read

iγ

(
d2

dz2
− k2

x

)
w̄2(z) + 16π2ikxRoe4πzw̄2(z) + ω̄′

2(z) =
(

d2

dz2
− k2

x

)2

w̄0, (22)

iγ ω̄2 − w̄′
2(z) = −64π3ikxRoe4πzw̄0 +

(
d2

dz2
− k2

x

)
ω̄0(z). (23)

The solution to the homogeneous equation would just correspond to a slight modification of the
amplitude A in the O(1) outer solution, so we can discard it (or include it into A). In the following
we only need the w̄2 response to the forcing terms on the right-hand side of these two equations,
evaluated at z = 0. We obtain

w̄2(0) = 4 i π2A

2aγ
J−a[b]�(1 − a)

{
�2(1 + a)

b2

6

[
3(a2 + 2) + p

(
b2 − 2 − 4a2 + 3

k2
x

4π2

)]
J 2

a−1[b]

+ a

2
(p − 1)

(
a2 − k2

x

4 π2

)(
b

2

)2 a

2F3

[(
1

2
+ a, a

)
, (1 + a, 1 + a, 1 + 2 a),−b2

]}
, (24)

where p = (γ 2 + 1)/(γ 2 − 1), and 2F3 denotes a generalized hypergeometric function.

2. Inner expansion and boundary conditions

Before considering the inner expansion, let us focus on the boundary condition w̃(0) = 0, which
at order O(1) simply yields w̄0(0) = 0. This leads to a first relation between the eigenvalue γ , kx

and Ro in terms of a, b as

Ja[b] = 0. (25)

One can check that when this constraint is satisfied we also have ω̄′
0(0) = 0, which we substitute

into Eq. (18) to obtain w̄′′
0 (0) = 0. The constraint Eq. (25) is not sufficient to fully determine the

eigenvalue γ . One needs to consider the inner expansion to get an additional constraint. We thus
introduce the inner variable Z = z/ε before expanding the ansatz Eqs. (14) and (15) in the inner re-
gion, z � 1 and Z = O(1). In this region the outer solutions are expanded as, e.g., w̄0(z) = w̄0(0) +
zw̄′

0(0) + z2w̄′′
0 (0)/2 + O(ε3) = w̄0(0) + εZw̄′

0(0) + ε2Z2w̄′′
0 (0)/2 + O(ε3), and the fields read

w̃ = ε Zw̄′
0(0) + ε2[w̄2(0) + ŵ2(Z )] + O(ε3), (26)

ω̃z = ω̄0(0) + ε ω̂1(Z ) + O(ε2), (27)
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where we have simplified the expressions using w̄0(0) = 0, ω̄′
0(0) = 0 and w̄′′

0 (0) = 0. Differentiat-
ing these expressions with respect to z, remembering that d

dz = 1
ε

d
dZ , the boundary conditions (13)

evaluated order-by-order yield

w̄2(0) + ŵ2(0) = 0, ŵ′′
2 (0) = 0, and ω̂′

1(0) = 0. (28)

The combinations of the Stokes drift, the base flow and its derivatives appearing in the linearized
equations take the following form in the inner region:

u(z) + us = ε 8πRo e
Z√
2 cos

(
Z√
2

− π

4

)
+ O(ε3), (29)

∂zv = 8πRo e
Z√
2 sin

(
Z√
2

)
+ O(ε2). (30)

The governing equations for ŵ2 and ω̂1 are obtained by considering Eq. (11) at order O(1) and
Eq. (12) at order O(ε), in the inner region:

ŵ′′′′
2 (Z ) − iγ ŵ′′

2 (Z ) − ω̂′
1(Z ) = 0, (31)

−ω̂′′
1 (Z ) + iγ ω̂1(Z ) − ŵ′

2(Z )

= −ω̄0(0) 8π ikxRo e
Z√
2

[
cos

(
Z√
2

− π

4

)
+ iγ Z sin

(
Z√
2

)]
. (32)

We integrate the first equation from −∞ to Z , to remove one order of differentiation from each
term. This yields an expression for ω̂1(Z ) in terms of ŵ′′′

2 (Z ) and ŵ′
2(Z ), which we insert into the

second equation to obtain an ODE for ŵ2(Z ) only. Integrating the resulting equation from −∞ to Z
allows us to remove again one order of differentiation, and we finally obtain

ŵ′′′′
2 (Z ) − 2iγ ŵ′′

2 (Z ) + (1 − γ 2)ŵ2(Z )

= 4πkxRoω̄0(0) e
Z√
2

[
(−2 +

√
2Z )γ cos

(
Z√
2

)
+ (2i −

√
2γ Z ) sin

(
Z√
2

)]
. (33)

Inserting the boundary conditions (28) into Eq. (31) evaluated at Z = 0 yields an additional
boundary condition on ŵ2: ŵ′′′′

2 (0) = 0. Evaluating Eq. (33) at Z = 0, remembering that ŵ′′′′
2 (0) =

0, ŵ′′
2 (0) = 0 and ŵ2(0) = −w̄2(0), finally gives

(γ 2 − 1)w̄2(0) = −8πγ kxRo ω̄0(0). (34)

It is worth stressing the fact that we have obtained an additional constraint on the outer solution,
Eq. (34), without even solving explicitly for the inner correction. The expression of w̄2(0) is given
in Eq. (24), while ω̄0(0) is obtained by evaluating Eq. (21) at z = 0. Substitution into Eq. (34) finally
leads to the second relation between γ , kx and Ro:

J−a[b]Ja−1[b]
2 π2 b2

3ak2
x

[
2a2(−2 + b2 − 4a2) + k2

x

4π2
(8 + 13a2 − b2) − 3 k4

x

16π4

]

+ 4π2

k2
x

(
b

2

)2a
( − a2 + k2

x
4π2

)2

�[1 + a]2

J−a[b]

Ja−1[b]
2F3

[
1

2
+ a, a; 1 + a, 1 + a, 1 + 2a; − b2

]

= 2b3 sin (πa)

πa
. (35)

3. Critical Rossby number and most unstable mode

The two implicit Eqs. (25) and (35) allow for the determination of the eigenvalue γ . The critical
Rossby number is obtained by demanding that γ be purely real and minimizing over kx. The
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FIG. 4. Eigenmode in the low-E regime (left: w̃, right: ω̃z). The analytical expression in the asymptotic
limit E → 0 (dashed lines) accurately matches the eigenmode computed numerically for E = 10−8, Ro = 0.24
and kx = 12 (solid lines).

theoretical minimum is found at kx = 12.67, with an associated critical Rossby number Roc =
0.23 ± 0.01, the eigenvalue—the angular frequency of the Hopf bifurcation—being γ = 1.059.
These asymptotic values are represented as dashed lines in the low-E region of Fig. 2 and fully
confirm the numerical results. In Fig. 4, the asymptotic eigenmode is compared to the one computed
numerically for E = 10−8, Ro = 0.24 and kx = 12. The agreement is excellent, the numerical results
being accurately captured by the asymptotic analysis at low Ekman number.

V. DISCUSSION

We have shown that the Ekman-Stokes spiral driven by surface waves propagating in a rotating
frame is unstable when the Stokes drift of the waves is fast enough. For large Ekman number, the
stability problem reduces to that of a standard Ekman spiral driven by the wave-induced surface
stress (instead of a wind stress in the classical case). By contrast, for low Ekman number the Stokes
drift profile directly affects both the instability threshold and structure of the eigenmode, which
we captured through a boundary-layer expansion valid in the asymptotic limit E → 0. We stress
the fact that, in that limit, the instability differs strongly from the inviscid instability reported by
Craik [17]: first, Craik’s instability induces a cellular flow structured in the spanwise direction,
whereas the present instability induces preferentially a streamwise-varying cellular flow. Second
and more importantly, the low-E bulk anti-Stokes flow corresponds to “Case II” described in Sec. 3
of Ref. [17]; because the shear in the Stokes drift profile and in the anti-Stokes Eulerian flow have
opposite signs, the flow is stable with respect to Craik’s instability mechanism.

A. Expressing the instability threshold as a critical Lagrangian Reynolds number

Although we have expressed the instability threshold in terms of a critical Rossby number
throughout this study, it is worth stressing the fact that, in both the large- and low-E asymptotic
limits, this threshold can be recast as a critical Reynolds number associated to the Lagrangian
flow uL = u + us. Indeed, for large Ekman number, the base flow reduces to a standard Ekman
spiral. The Eulerian flow is much faster than the Stokes drift, so that the latter can be neglected in
the expression of the Lagrangian velocity uL. The Lagrangian flow thus has a typical dimensional
surface speed UL ∼ √

EUs and a dimensional length-scale LL ∼ √
ν/ f = √

Eλ. Using ν = Eλ2 f ,
the Reynolds number associated to this Lagrangian base flow is Re(L) = ULLL/ν = Ro. Similarly,
for low Ekman number the base flow reduces to Eqs. (16) and (17). The corresponding Lagrangian
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flow is uL = u + us � E 16π2Roe4πzey. It varies on a typical dimensional length LL ∼ λ, with
a dimensional speed of order UL ∼ E Ro λ f . The dimensional viscosity being ν = E λ2 f , the
Reynolds number associated to the Lagrangian flow is, again, Re(L) = ULLL/ν = Ro. In both
the low- and large-E limits, we conclude that the Ekman-Stokes spiral becomes unstable when
the Reynolds number associated to the Lagrangian velocity profile exceeds a threshold value
independent of E .

B. Relevance in an oceanographic context

The combination of surface waves and global rotation arises when swell propagates at the ocean
surface. Of course, the pilot problem considered throughout this study lacks several important
ingredients of oceanic dynamics, such as density stratification, a horizontal component of the
global rotation vector, or spatiotemporal fluctuations of the swell. Nevertheless, it indicates rather
clearly that the anti-Stokes flows referred to in the oceanographic literature are unstable in standard
oceanic conditions. Indeed, with a typical swell wavelength of 100 m, the Ekman number is
approximately E � 10−6. This is well into the low-Ekman-number regime where the base flow is
dominated by the anti-Stokes flow, −us, plus a small Ekman-spiral correction. With a typical wave
amplitude aw � 1m, the Stokes drift amplitude is Us � 5. 10−2 m s−1 and the Rossby number is
Ro � 5, well above the threshold value Roc = 0.23 for instability. At such distance from threshold,
we found several unstable modes numerically, with growth rates as large as 700 × f � 0.1s−1.
Preliminary nonlinear simulations at large distance from threshold indicate that the flow can become
time-dependent and behave chaotically.

The instability presented here is thus the first of a series of instabilities leading to chaotic and
possibly turbulent flows. However, we argue that this mechanism cannot extract much energy from
the wave field. Indeed, we will now show that the power dissipated by the mean flow—and extracted
from the wave field—remains negligible as compared to the power dissipated through standard
viscous damping of the propagating surface gravity waves. Focusing on dimensional quantities in
this discussion section, we form the Lagrangian kinetic energy budget by taking the dot product of
Eq. (2) with u + us:

∂t

[
u ·

(
u
2

+ us

)]
= −∇ · [p(u + us)] + ν(u + us) · �u. (36)

Consider this equation in a Cartesian domain D = [0, Lx] × [0, Ly] × [−H, 0], with kH  1,
periodic boundary conditions in x and y, and an impenetrable stress-free boundary at z = −H .
Integrate Eq. (36) over D, perform a few integrations by parts using the boundary conditions Eq. (3),
multiply by the density ρ and divide by LxLy before time-averaging, to get

Pdiss = ρν

LxLy

∫
D
〈|∇u|2〉dx = 2kρνU 2

s + 4k2Usρν

LxLy

∫
D

〈u〉e2kzdx, (37)

where Pdiss denotes the power dissipated by the mean flow u per unit area of fluid surface (in kg s−3),
and 〈·〉 is time average. We bound the second term on the right-hand side by extracting from the
integral the spatial maximum of 〈u〉:

Pdiss � 2kρνUs[Us + maxx∈D〈u〉(1 − e−2kH )]. (38)

After taking the limit kH → ∞ and introducing the Froude number Fr = maxx∈D〈u〉/c, where c is
the phase speed of the waves, we obtain

Pdiss � 2kρνUsc

[
Us

c
+ Fr

]
= 2Pwaves[(awk)2 + Fr], (39)

where Pwaves = kρνUsc denotes the standard viscous dissipation rate per unit horizontal area of the
monochromatic wave field, and aw is the wave amplitude. In the Craik-Leibovich ordering, the mean
flow arises at second order in wave slope, hence Fr ∼ (awk)2 � 1. The inequality (39) thus shows
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that the dissipated power associated to the background mean flow is negligible as compared to the
direct viscous dissipation of the surface-wave field, typically by a factor (awk)2. We conclude that
the transfer of energy from the wave field to the background mean flow is a negligible sink of wave
energy in the present system, even in the fully nonlinear regime.

We close this study by proposing a scenario through which the present instability could have
important consequences for near-surface particle dispersion in the ocean: assume that the succession
of instabilities leads to a fully turbulent flow, where the kinetic energy dissipation rate per unit mass
of fluid is of order U 3/λ, U being the typical Eulerian velocity of the turbulent flow, which we
assume to have a typical scale λ. Substituting this estimate into the left-hand side of Eq. (39) yields
U/Us � (ν/Usλ)1/3 � 1 for typical ocean values, i.e., the Eulerian flow is much weaker than the
anti-Stokes estimate U ∼ Us of the initial base flow. The Lagrangian velocity is then of order uL =
u + us � us, much larger than the anti-Stokes estimate uL = u + us � 0 associated with the initial
base-flow. The instability thus triggers enhanced dispersion: particles and tracers are carried by the
flow at a typical velocity Us, instead of the vanishing Lagrangian velocity estimate associated with
the anti-Stokes Eulerian flow. The central argument of this scenario is that the instability generates
a genuinely turbulent flow that dissipates kinetic energy at a rate independent of viscosity, in line
with the “zeroth law of turbulence” [34]. Whether this is the case can be investigated through direct
numerical simulation of the fully nonlinear equations, in the low-Ekman-number regime.
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APPENDIX A: BOUNDARY CONDITIONS

We consider monochromatic surface gravity waves propagating towards x > 0. We denote as
η(x, t ) the surface displacement. Throughout this Appendix, u = (u, v,w) denotes the full velocity
field, including both the fast wave motion and the background mean flow, the latter arising at second
order in wave slope. Angular brackets denote an average over one wave period only. The kinematic
boundary condition is

∂tη + (u · ∇)η = w|η. (A1)

Averaging over one wave period, and expanding around z = 0 to second order in wave-slope, we
obtain

〈∂tη〉 + 〈u|0∂xη〉 � 〈w|0〉 + 〈η∂zw|0〉. (A2)

The first term on the left-hand side vanishes up to second-order in wave slope. The quadratic terms
also vanish when one substitutes the various fields expressed for linear monochromatic waves, and
we are simply left with 〈w〉|0 = 0, which is the standard no-penetration boundary condition for the
background mean flow.

To address the consequences of a stress-free boundary condition, we denote as μ the dynamic
viscosity and θ (x, t ) the angle between the fluid surface and the horizontal, i.e., tan θ = ∂xη.
As sketched in Fig. 5, we denote as eθ the local vector tangent to the interface in an xz plane,

eθ

en

ex

ez

θ

FIG. 5. Local frame attached to the interface: eθ denotes the vector tangent to the interface in the xz plane.
en denotes the vector perpendicular to eθ in the xz plane, pointing upwards. θ denotes the local angle between
the horizontal direction ex and the tangent direction eθ .
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pointing towards positive x. We denote as en the vector perpendicular to eθ in an xz plane, pointing
upwards. We introduce the stress tensor τ, such that τi j = −pδi j + μ(∂ jui + ∂iu j ), and ask for the
local tangential stress at the (true) interface to vanish: en · τ|η · eθ = 0. Using the decompositions
eθ = cos θ ex + sin θ ez and en = − sin θ ex + cos θ ez, we obtain

0 = en · τ|η · eθ

= − sin θ cos θ τxx|η + cos2 θ τzx|η − sin2 θ τxz|η + sin θ cos θ τzz|η (A3)

= sin 2θ

2
(τzz|η − τxx|η ) + cos 2θ τxz|η,

where all the elements of τ are evaluated at the free surface z = η, and we have used τxz = τzx.
Substituting the expressions of τxx|η and τzz|η, we get

0 = μ sin(2θ )(∂zw|η − ∂xu|η ) + τxz|η cos(2θ ), (A4)

where all the velocity derivatives are evaluated at the interface, z = η. Because we retain terms up
to second order in wave slope only, the parenthesis (∂zw − ∂xu) above can be evaluated using the
wave velocity field only, for which incompressibility implies ∂xu = −∂zw. We finally obtain

τxz|η = −2μ tan(2θ ) ∂zw|η. (A5)

In other words, τxz is nonzero because the surface is not flat and horizontal. Expanding the right-hand
side to second-order in wave slope yields

τxz|η � −4μθ∂zw|0 � −4μ∂x (η)∂zw|0. (A6)

Averaging Eq. (A6) over one period and substituting the expression of ∂xη and ∂zw|0 for small-
amplitude monochromatic waves leads to

〈τxz|η〉 � 2μk2a2
wσ = μ∂z(us)|0 · ex. (A7)

For small wave amplitude, the linearized equation of motion along x is

∂t u = −gekz∂xη + 1

ρ
∂zτxz. (A8)

Now perform a momentum budget by integrating this equation from z = −2aw (slightly below the
surface) to z = η, before averaging over one wave period:〈∫ η

−2aw

∂t udz

〉
= −g

〈∫ η

−2aw

ekz∂xηdz

〉
+ 1

ρ
(〈τxz|η〉 − 〈τxz|−2a〉). (A9)

The left-hand-side term vanishes to second order in wave slope:〈∫ η

−2aw

∂t udz

〉
=

〈
∂t

(∫ η

−2aw

udz

)〉
− 〈∂t (η)u|η〉 � 0 − 〈∂t (η)u|0〉 � −〈w|0u|0〉 = 0, (A10)

where the last equality is obtained by substituting the expressions of u|0 and w|0 for linear
monochromatic waves. The first term on the right-hand side of Eq. (A9) also vanishes to second-
order in wave slope:

−g

〈∫ η

−2aw

ekz∂xηdz

〉
= −g

k
〈(ekη − e−2kaw )∂xη〉 � −g〈(η + 2aw )∂xη〉

= −g∂x

〈
η2

2

〉
− 2awg∂x〈η〉 = 0, (A11)

so that Eq. (A9) reduces to 〈τxz|η〉 = 〈τxz|−2aw
〉 � 〈τxz|0〉, to second-order in wave-slope. We finally

obtain

〈τxz|0〉 = μ∂z(us)|0 · ex, (A12)
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valid up to second order in wave slope, which yields the boundary condition Eq. (3) for the
background mean flow. This boundary condition also holds if one allows for a small decay of the
waves, either in time or along the direction of wave propagation [35,36].

APPENDIX B: REDUCTION TO THE STANDARD EKMAN
SPIRAL STABILITY PROBLEM FOR E → ∞

In the large-Ekman-number limit, and throughout this Appendix only, we introduce the small
parameter ε = 1/

√
E and the slow variable Z = εz (not to be confused with the ε and Z introduced

in Sec. IV B). The base-flow is expanded in powers of ε as

u = ε−14πRo e
Z√
2 cos

(
Z√
2

− π

4

)
− ε

Ro

4π
e

Z√
2 cos

(
Z√
2

+ π

4

)
+ O(ε2), (B1)

v = ε−14πRo e
Z√
2 sin

(
Z√
2

− π

4

)
− ε

Ro

4π
e

Z√
2 sin

(
Z√
2

+ π

4

)
+ O(ε2). (B2)

The Stokes drift profile is negligible at this order of approximation and the base-flow reduces to
the standard Ekman spiral, which is a function of Z only. Correspondingly, the eigenfunctions will
evolve on the Ekman-layer depth only. We scale the perturbations as w̃ = w0(Z ) and ω̃z = ε ω1(Z ).
Guided by the large-E behavior of kx and ky in Fig. 2, we scale the horizontal wave numbers as
kx = εk̄x and ky = εk̄y. The linearized Eqs. (11) and (12) then yield at leading-order in ε:

iγ
(
∂ZZ − k̄2

x − k̄2
y

)
w0 + ∂Zω1 − (

∂ZZ − k̄2
x − k̄2

y

)2
w0

= −4πRo e
Z√
2

[
ik̄x cos

(
Z√
2

− π

4

)
+ ik̄y sin

(
Z√
2

− π

4

)](
∂ZZ − k̄2

x − k̄2
y

)
w0

+ 4πRo e
Z√
2

[
ik̄x cos

( Z√
2

+ π

4

)
+ ik̄y sin

(
Z√
2

+ π

4

)]
w0, (B3)

iγω1 − ∂Zw0 − (
∂ZZ − k̄2

x − k̄2
y

)
ω1

= −4πRo e
Z√
2

[
ik̄x cos

(
Z√
2

− π

4

)
+ ik̄y sin

(
Z√
2

− π

4

)]
ω1

− 4πRo e
Z√
2

[
ik̄x sin

(
Z√
2

)
− ik̄y cos

(
Z√
2

)]
w0, (B4)

with the boundary conditions w0(0) = 0, ∂Zω1|Z=0 = 0, and ∂ZZw0|Z=0 = 0. We solved this eigen-
value problem numerically, looking for the critical Rossby number Roc at which the imaginary part
of γ vanishes. After optimizing over k̄x and k̄y, the threshold Rossby number obtained numerically
is Roc = 0.664. The angular frequency of the unstable mode at threshold is γ = 1.067, while
the horizontal wave numbers are kx = 0.175/

√
E and ky = 0.143/

√
E. The instability induces a

traveling cellular flow, the axis of the cells making an angle close to 45◦ with the direction of
wave propagation. These results are fully compatible with those briefly mentioned in Faller and
Kaylor [33].
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