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Two-dimensional (2D) turbulence with Ekman friction and quasi-static magnetohydro-
dynamic (QS MHD) turbulence are complex flows. In this paper, we present models for
these flows by extending Pao’s hypothesis [Phys. Fluids 8, 1063 (1965)] for hydrodynamic
turbulence to them. For 2D Ekman turbulence, the energy spectrum predicted by the model
is steeper than its hydrodynamic counterpart due to Ekman friction. The model predictions
are consistent with earlier theoretical predictions and experimental and numerical results.
Similarly, the model for QS MHD turbulence predicts a steeper energy spectrum due to
Joule dissipation; the model predictions fit with earlier numerical results quite well.
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I. INTRODUCTION

To date, turbulence remains a poorly understood phenomenon. One of the important known
results of three-dimensional (3D) turbulence is due to Kolmogorov [1,2], according to which a
constant energy flux cascades from large scales to small scales, leading to energy-spectrum scaling
as

Eu(k) = KKoε
2/3
u k−5/3. (1)

Here, εu is the energy flux, and KKo is Kolmogorov’s constant. The above energy spectrum and
flux have been observed in three-dimensional homogeneous isotropic turbulence at high Reynolds
number [3–6] but is modified for different forcing. For example, inclusion of rotation, magnetic
field, and buoyancy alter turbulence properties significantly [5,7–11]. In some flows, the presence of
an external dissipation (for example, Ekman friction [12–14] and Joule dissipation [10,15]) dampens
the energy of multiscale flow structures more than that predicted by Kolmogorov’s theory. This
leads to steepening in the energy flux and spectrum. Modeling such complex flows is quite difficult.
Fortunately, an extension of Pao’s hypothesis for hydrodynamic turbulence offers a set of models
for two-dimensional (2D) Ekman turbulence and quasi-static magnetohydrodynamic (QS MHD)
turbulence; this is the topic of the present paper.

Friction at the bottom of the container in a shallow layer [16], and the friction of the surrounding
air in soap film [17] induce drag which is commonly termed Ekman friction. Such flows are
typically modeled as 2D turbulence because of the shallow nature of the flow, and they have been
widely studied by researchers using experiments and numerical simulations. A common theme in
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these works is that the Ekman friction yields a steeper energy spectrum than that predicted by
Kraichnan [18] in the forward enstrophy cascade regime; that is, Eu(k) ∼ k−3−ξ where ξ is the
correction in the spectral exponent.

Belmonte et al. [19] performed an experiment on soap film and observed Eu(k) ∼ k−3.3. In a
similar experiment of soap film freely suspended by an electromagnetic force, Rivera and Wu [20]
reported a significant energy dissipation due to atmospheric drag. Boffetta et al. [21] performed
an experiment on a thin layer of fluid flow driven by electromagnetic force and observed a steeper
energy spectrum due to the bottom friction. They predicted an energy spectrum as Eu(k) ∼ k−3−2α/λ,
where λ is the Lyapunov exponent of the vorticity field (ω = ∇ × u) and α is the coefficient of
Ekman friction. They assumed that λ ∝ ωrms, where ωrms is the root mean square vorticity, which
can be calculated by using the velocity field. Refer to reviews [22,23] for additional works in this
field.

Boffetta et al. [24] performed numerical simulations of 2D Ekman turbulence with enstrophy
injections at large scales and reported a steeper energy spectrum compared with Kraichnan’s
theory of 2D turbulence. Nam et al. [12] also observed similar results, and derived a complex
expression for ξ in terms of the frictional coefficient α and probability distribution function for
a finite-time Lyapunov exponent. Using variable enstrophy flux theory, Verma [13] assumed the
enstrophy flux to be variable in wave number and derived formulas for the enstrophy flux and
spectrum in the inertial-dissipation range. Verma’s formulas provide a good fit to the inertial-range
spectrum.

Liquid metal flows are observed in planetary cores and many engineering applications [25,26].
Note that liquid metals have very low magnetic Prandtl number Pm, which is the ratio of kinematic
viscosity ν to magnetic diffusivity η of the fluid. A special class of MHD flows is quasi-static
magnetohydrodynamics (QS MHD) for which the magnetic Reynolds number Rm = U0L/η �
1 [10,27]; here, U0 and L are the large-scale velocity and length, respectively. For this case, the
energy is dissipated both by the Joule dissipation and viscous dissipation.

The effect of Joule dissipation in QS MHD turbulence has been studied by many researchers.
Because of Joule dissipation, energy flux is no longer constant, and the energy spectrum becomes
steeper than the corresponding hydrodynamic energy spectrum [28]. The steepening of the spectrum
depends on the intensity of the applied magnetic field, or the interaction parameter N , which is the
ratio of the Lorentz force to the nonlinear term. Using numerical simulations, Hossain [29] observed
that, for N = 10, Eu(k) ∼ k−3, similar to that found in 2D turbulence [18]. Using the perturbative
method, Ishida [30] derived that Eu(k) ∼ k−7/3; in the same work, they obtained a similar energy
spectrum by using a numerical simulation. Vorobev et al. [31] performed direct numerical simulation
(DNS) and large eddy simulations (LESs) for N = 0 to 5 and observed that the spectrum becomes
steeper and steeper (from k−5/3 to k−3) with increasing N .

Verma and Reddy [28] derived analytic expressions for the energy spectrum and flux by
postulating a k-dependent 	u(k) in the inertial-dissipation range, and substituting it in place
of the dissipation rate in Pope’s model [3] for the energy spectrum. Their model captures the
energy flux and spectrum in the inertial range quite well, but there is a significant discrepancy
between the model predictions and the numerical results in the dissipation range. This deficiency
induced us to explore an extension of Pao’s model of hydrodynamic turbulence to QS MHD
turbulence.

Before the construction of new models for Ekman and QS MHD turbulence, it is best to
summarize Pao’s model for hydrodynamic turbulence. To extend Kolmogorov’s spectrum in the
inertial range to the dissipation range, Pao [32] conjectured that, for three-dimensional homoge-
neous isotropic turbulence, Eu(k)/	u(k) is independent of viscosity, and it depends solely on the
total energy dissipation rate εu and wave number k, where 	u(k) is the energy flux. Hence, using
dimensional analysis, we get

Eu(k)

	u(k)
= KKoε

−1/3
u k−5/3. (2)
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Substituting this into the equation for variable energy flux, d	u(k)/dk = −2νk2Eu(k), yields

Eu(k) = KKoε
2/3
u k−5/3 exp

[
−3

2
KKo

(
k

kd

)4/3
]
, (3)

where kd = (εu/ν
3)1/4 is the Kolmogorov wave number. Recently, Verma et al. [33] verified Pao’s

model by using direct numerical simulation. In the present paper, we extend Pao’s hypothesis to
model the energy spectrum of 2D Ekman turbulence and QS MHD turbulence.

The paper is organized as follows: In Sec. II, we review the role of Ekman friction in 2D
turbulence, develop a model for the steeper energy spectrum, and compare our predictions with
earlier results. In Sec. III, we perform similar analysis for QS MHD turbulence with N � 1. We
conclude in Sec. IV.

II. MODELING TWO-DIMENSIONAL TURBULENCE WITH EKMAN FRICTION

In this section, we employ Pao’s hypothesis to derive energy spectrum and flux for the inertial-
dissipation range of 2D Ekman turbulence. We show how Ekman friction is responsible for the
steeper energy spectrum in 2D turbulence. We also compare the model predictions with earlier
experimental and numerical results.

A. Derivation of energy spectrum for Ekman turbulence using Pao’s hypothesis

The governing equations for the vorticity field of a 2D (xy plane) flow with Ekman friction are

∂ω

∂t
+ (u · ∇)ω = −αω + ν∇2ω + fω, (4)

∇ · u = 0, (5)

where u is the velocity field, ω = (∇ × u) · ẑ is the vorticity field, and fω = (∇ × fu) · ẑ, with fu

being the external acceleration (apart from Ekman friction). The Ekman friction is modeled as
−αu, where α is the linear frictional coefficient. Equation (5) follows due to the incompressibility
condition.

We assume that the flow is forced at k f ≈ 1/L, where L is the system size. Under this forcing,
for the pure hydrodynamic case (α = 0), in the inertial range we expect a constant enstrophy flux
and k−3 energy spectrum [18]:

Eu(k) = K2Dε2/3
ω k−3, (6)

	ω(k) = εω, (7)

where K2D is a constant, and εω is the total enstrophy dissipation rate. Note that Eω(k) = k2Eu(k) ∼
k−1. Also, the flow does not exhibit inverse energy cascade due to absence of the k < k f regime.
In the present paper we extend the above inertial spectrum to the inertial-dissipation range for
nonzero α.

The evolution equation for the one-dimensional enstrophy spectrum is [13]

∂

∂t
Eω(k, t ) = − ∂

∂k
	ω(k, t ) − (

2νk2 + 2α
)
Eω(k, t ) + Fω(k, t ). (8)

Here, the terms 2νk2Eω(k) and 2αEω(k) represent the rate of enstrophy dissipation due to viscosity
and Ekman friction, respectively, and Fω(k) is the enstrophy injection rate by the external force. In
the steady state, ∂Eω(k, t )/∂t = 0, in the inertial-dissipation range where Fω(k) = 0, Eq. (8) gets
transformed to

d

dk
	ω(k) = −2(νk2 + α)Eω(k). (9)
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The above equation indicates that the viscous friction is significant in the dissipation range
(large k). However, Ekman friction is significant at all values of k and hence suppresses the
enstrophy flux in the inertial range itself. To solve Eq. (9), we extend Pao’s model for 3D
hydrodynamic turbulence to such flows as follows: We assume that Eω(k)/	ω(k) depends solely
on εω and k, but not on ν or the forcing function. Therefore, dimensional analysis yields

Eω(k)

	ω(k)
= K2Dε−1/3

ω k−1. (10)

Substitution of Eω(k) of Eq. (10) into Eq. (9) and an integration yields

	ω(k) = 	ω(k0)

(
k

k0

)−2αK2Dε
−1/3
ω

exp

[
− K2D

k2
d2D

(
k2 − k2

0

)]
, (11)

where 	ω(k0) is the reference enstrophy flux corresponding to k = k0, and kd2D = (ε1/3
ω /ν)1/2. We

choose k0 where enstrophy flux is a maximum, and hence 	ω(k0) = εω. Substitution of 	ω(k) from
Eq. (11) into Eq. (10) and using 	ω(k0) = εω and Eu(k) = k−2Eω(k), we obtain

Eu(k) = K2Dε2/3
ω k−3

(
k

k0

)−2αK2Dε
−1/3
ω

exp

[
− K2D

k2
d2D

(
k2 − k2

0

)]
. (12)

Thus, we derive the enstrophy flux and energy spectrum for Ekman turbulence by using Pao’s
hypothesis. Clearly, both quantities, enstrophy flux and spectrum, steepen relative to those of 2D
turbulence. The correction in the spectral exponent of the energy spectrum due to Ekman friction is

ξm = −2αK2Dε−1/3
ω . (13)

Here the subscript “m” stands for the model. The above prediction of ξm ∝ α is consistent with the
results of Nam et al. [12]. In addition, Boffetta et al. [21] predict the correction to be 2α/λ, where
λ is the Lyapunov exponent for the evolution of the vorticity fluctuations. Also,

λ = ωrms ∝ 1

ε
1/3
ω

. (14)

Hence, the prediction of Boffetta et al. [21] for the correction in the spectral exponent has a similar
form as that of Eq. (13).

In the next section, we compare the model predictions with earlier experimental and numerical
results.

B. Comparison of model predictions with earlier results

We compare the aforementioned model predictions for the spectrum and flux with earlier experi-
ments of Boffetta et al. [21] and the simulation of Boffetta et al. [24]. Boffetta et al. [21] performed
experiments on a thin layer of an electromagnetically driven fluid—an electrolyte solution of water
and sodium chloride—for α = 0.037, 0.059, and 0.069 and obtained the corresponding corrections
in the spectral exponent ξ . In addition, Boffetta et al. [24] performed a direct numerical simulation
with forcing at large scales and the enstrophy injection rate maintained at εω = 0.16. They reported
that, for α = 0.15, the energy spectrum is steeper than that of 2D hydrodynamic turbulence, with
the correction being ξ ≈ 1.20.

In Table I we list the spectral corrections reported in the experiments of Boffetta et al. [21], and
the DNS of Boffetta et al. [24], along with the corresponding predictions by the model [Eq. (13)].
We estimate εω for the experimental data by using

εω =
∫ ∞

0
2νk4Eu(k)dk,
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TABLE I. For 2D Ekman turbulence, this table lists the spectral corrections by model predictions (ξm =
2αK2Dε−1/3

ω ) and experimental and numerical results. α = 0.037, 0.059, and 0.069 correspond to Ref. [21], and
α = 0.15 belongs to Ref. [24]. We obtain K2D = 1.6 ± 0.3 for the experimental case from the compensated
energy spectra and assume K2D = 2.2 ± 0.3 for the DNS case. The errors in ξm are computed by using the
uncertainties in the constant K2D.

α (s−1) εω (s−3) ξ ξm

0.037 2.0 × 10−2 0.50 ± 0.01 0.44 ± 0.09
0.059 1.0 × 10−2 0.80 ± 0.02 0.87 ± 0.17
0.069 9.4 × 10−3 1.00 ± 0.02 1.05 ± 0.21
0.15 1.6 × 10−1 1.2 ± 0.2 1.2 ± 0.2

where ν = 0.01 cm2/s for the electrolyte, which is mostly water. The constant K2D is reported to
vary between 1.3 to 1.7 for 2D turbulence [23]. Since we do not have data for α = 0, we compute
K2D for the lowest α (0.037) by using the compensated energy spectrum [K2D = k3Eu(k)ε−2/3

ω ]. As
illustrated in Fig. 1(a), K2D = 1.6 ± 0.3. As shown in Table I, the estimated ξm using experimental
data varies from 0.44 to 1.05 and matches quite closely the experimental results.

In Fig. 2 we illustrate the energy spectra reported in the experiments of Boffetta et al. [21]
and the model predictions [Eq. (12)] for α = 0.037, 0.059, and 0.069. It is evident that the energy
spectra are steeper than Kraichnan’s prediction [Eu(k) ∼ k−3]. The predicted spectra by the model
fit well with the experimental results in the inertial range. Each of the functions Eu(k) from Boffetta
et al. [21] exhibit a slight bump near the transition zone from the inertial range to the dissipation
range. This feature appears similar to the bottleneck effect, which has been primarily observed in
3D hydrodynamic turbulence [34–36], and in magnetohydrodynamic turbulence [37]. However, the
bottleneck effect in 2D hydrodynamic turbulence needs to be studied in detail in the future.

Similarly, in Fig. 3, we exhibit the enstrophy spectrum and flux obtained from the DNS of
Boffetta et al. [24] and the predictions of our model. In this case, the energy spectrum, Eu(k) ∼ k−4.2,
is significantly steeper than Eu(k) ∼ k−3 in the inertial range, so we cannot get a constant value of
K2D in the power-law regime by using the compensated energy spectra. Here, we had to employ
K2D = 2.2 ± 0.3 in Eq. (12) to get a better agreement with the numerical results. With this caveat,
the model predictions and numerical results are quite close to each in the inertial range, but they
differ in the dissipation range. As shown in Fig. 3, our model [Eqs. (11) and (12)] underpredicts
the energy flux and spectrum in the dissipation range. To compensate for this deficiency, we modify
the kinematic viscosity as ν → cν, where c is a constant. We observe the best fit to the numerical
results for c = 0.2. See Fig. 3 for an illustration.

FIG. 1. Computation of K2D and KKo for 2D Ekman and QS MHD turbulence, respectively, using the
compensated energy spectrum. (a) K2D = 1.6 for 2D Ekman turbulence using the experimental data of Boffetta
et al. [21] for α = 0.037. (b) KKo = 2.3 computed by using the N = 0 numerical run of Verma and Reddy [28].
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FIG. 2. 2D Ekman turbulence: Plots of energy spectrum reported in the experiments of Boffetta et al. [21]
(circles), and the model predictions of Eq. (12) (solid lines) for (a) α = 0.037, (b) α = 0.059, and (c) α =
0.069. The dashed lines represent fits in the inertial range.

Thus, we demonstrate that our model of Ekman turbulence based on Pao’s hypothesis provides a
good fit to the past experimental and numerical results of Ekman turbulence. In the next section, we
construct a similar model for QS MHD turbulence.

III. MODELING QUASI-STATIC MAGNETOHYDRODYNAMIC TURBULENCE

In this section, we develop a model for the energy spectrum of QS MHD turbulence by using
Pao’s hypothesis. We compare predictions of our model with earlier numerical results.

A. Basic equations and model based on Pao’s hypothesis

The nondimensional form of the governing equations for liquid metal flows with Rm ≈ 0 (the
quasi-static approximation) are [10,25,26]

∂u
∂t

+ (u · ∇)u = −∇p − L

ηU0
�−1[(B0 · ∇)2u] + 1

Re
∇2u + f, (15)

∇ · u = 0, (16)

where �−1 is the inverse of the Laplacian operator, u is the velocity field, p is the pressure field,
B0 = B0ẑ is the mean magnetic field in velocity units, Reynolds number Re = U0L/ν, and f is the
external force field. The corresponding momentum equation in Fourier space is [10,27]

∂ ûi(k)

∂t
= −iki p̂(k) − ik j

∑
q

û j (q)ûi(k − q) − B2
0L

U0η
(cos2 ζ )ûi(k) − 1

Re
k2ûi(k) + f̂i(k), (17)

FIG. 3. 2D Ekman turbulence: The predictions of the model [Eqs. (11) and (12)], match with the plots of
Boffetta et al. [24] of (a) the enstrophy spectrum and (b) enstrophy flux (dot-dashed black lines) for α = 0.15.
The model plots are for the original model with ν from DNS (thick solid blue lines) and for the modified model
with 0.2ν (thin solid red lines).
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where û(k) is the Fourier transform of the velocity field, and ζ is the angle between B0 and wave
number k. In the above equation,

N = B2
0L

U0η
, (18)

which is called the interaction parameter, represents the ratio of the Lorentz force to the nonlinear
term. The evolution equation for the one-dimensional energy spectrum is [10,28]

∂

∂t
Eu(k, t ) = − ∂

∂k
	u(k, t ) − 2νk2Eu(k, t ) − 2Nc2Eu(k, t ) + Fu(k), (19)

where

c2 =
∫ π

0
cos2 ζ

g(ζ )

π
dζ . (20)

Here, g(ζ ) describes the angular dependence of the energy spectrum due to anisotropy, 	u(k) is the
energy flux, 2νk2Eu(k) is the viscous dissipation rate, 2Nc2Eu(k) is the Joule dissipation rate, and
Fu(k) is the energy injection rate by the external force.

The behavior of the energy spectrum in QS MHD depends crucially on N . For N → 0, Joule
dissipation becomes negligible, and we observe the properties of QS MHD to be similar to those of
hydrodynamic turbulence. However, for N � 1, Joule dissipation becomes significant, and it results
in a considerable decrease in the energy flux in the inertial range. Consequently, the energy spectrum
becomes steeper. This steepening of the energy spectrum due to Joule dissipation is reported in
various experiments [38,39] and numerical simulations [15,31,40,41]. At moderately large N , the
flow becomes quasi-two-dimensional. For this range, Hossain [29] and Alemany et al. [38] argued
that Eu(k) ∼ k−3, but others have argued that the spectral index will vary with N [10,15,40]. In
case of very high N (>100), Joule dissipation becomes so strong that the energy spectrum becomes
exponential with Eu(k) ∼ exp(−bk) [42], where b is a constant. In this study, we consider the regime
N � 1 only and analyze the steepening of the energy spectrum and flux by using Pao’s hypothesis.
This is because the energy spectrum for this case is closer to that described by Kolmogorov’s theory
and Pao’s model. For larger N , we need to model complex quasi-2D turbulence.

For a steady state and in the inertial-dissipation range where Fu(k) = 0, Eq. (19) becomes

d

dk
	u(k) = −(2νk2 + 2Nc2)Eu(k). (21)

At high Reynolds number and N � 1, we can expect Pao’s hypothesis (2) to perform well.
Substitution of Eu(k) from Eq. (2) into Eq. (21) and integrating yields

	u(k) = 	u(k0) exp

{
−3

2
KKo

[(
k

kd

)4/3

−
(

k0

kd

)4/3
]

+ 3c2KKo

[(
k

kd2

)−2/3

−
(

k0

kd2

)−2/3
]}

.

(22)

Here, 	(k0) ≈ εu is the reference energy flux at wave number k0, kd = (εu/ν
3)1/4, and kd2 =

(N3/εu)1/2. Note that 	(k) decreases from 	(k0) with the increase of k. Substitution of the above
	u(k) into Eq. (2) provides the energy spectrum:

Eu(k) = KKoε
2/3
u k−5/3 exp

{
−3

2
KKo

[(
k

kd

)4/3

−
(

k0

kd

)4/3
]

+ 3c2KKo

[(
k

kd2

)−2/3

−
(

k0

kd2

)−2/3
]}

. (23)
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FIG. 4. For QS MHD turbulence, plots of the energy spectrum for (a) N = 0.0, (b) N = 0.1, (c) N = 0.5,
and (d) N = 1.0 reported in the numerical simulations of Ref. [28] (dot-dashed lines) and by model prediction
(solid lines).

Thus we derive the energy flux and spectrum for quasi-static MHD turbulence for small N by using
Pao’s hypothesis. In these expressions, the second term in the exponential yields more steepening
than the hydrodynamic counterpart due to Joule dissipation. Equation (23) is also valid for pure
hydrodynamic turbulence; we recover Pao’s model [Eq. (3)] for N = 0.

In the next section, we compare the prediction of the model with earlier numerical results.

B. Comparison of prediction of the model with earlier numerical results

To verify the effectiveness of the model discussed in the previous section, we compare the model
predictions with the numerical results of Verma and Reddy [28]. Verma and Reddy [28] simulated
QS MHD turbulence for a wide range of N and demonstrated steepening of the energy spectrum
compared with hydrodynamic turbulence. In this section, we focus on the N � 1 regime because
our model is applicable to this range of N .

For a comparison of model predictions and numerical results, we consider N = 0.0, 0.1, 0.5,
and 1.0. The Kolmogorov constant KKo is computed by using the compensated energy spectrum
[Fig. 1(b)] for N = 0. Although the computed value, KKo ≈ 2.3, is slightly larger than that proposed
value (KKo ≈ 1.6) for high-Reynolds-number turbulence [43,44], this difference is frequently
observed in DNS at moderate Reynolds number [33]. In Figs. 4 and 5, we exhibit the energy
spectrum and flux obtained from the DNS and those predicted by the model [Eqs. (23) and (22)]. We
observe that the energy spectrum and flux become steeper with increasing N . The predicted energy
spectra and fluxes fit well with the numerical results in both the inertial and dissipation ranges.

Earlier, Verma and Reddy [28] constructed a similar model as above, but with Pope’s pre-
scription [3] for the energy spectrum. The model of Verma and Reddy [28] describes the inertial
range well, but it falters for the dissipation range. In comparison, the present model based on Pao’s
prescription describes both the inertial and dissipation ranges quite well.

We conclude in the next section.
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FIG. 5. For QS MHD turbulence, plots of the energy flux for (a) N = 0.0, (b) N = 0.1, (c) N = 0.5, and
(d) N = 1.0 reported by Ref. [28] (dot-dashed lines) and from the model predictions (solid lines).

IV. CONCLUSIONS

Modeling turbulent flows is a big challenge in science and engineering. In the present paper,
we consider Ekman and quasi-static MHD turbulence; these flows exhibit steepening in the energy
spectrum compared with their hydrodynamic counterpart due to additional dissipation arising from
Ekman friction and Joule heating. We extend Pao’s hypothesis for hydrodynamic turbulence to these
flows and employ a variable energy flux formalism. This exercise yields energy spectra and fluxes
for these flows in both inertial and dissipation range. We compare our model predictions with earlier
experimental and numerical results and find them to be in good agreement with each other.

The success of our model encourages us to attempt a similar exercise for other turbulent flows.
For large N , QS MHD turbulence becomes quasi-two-dimensional. Hence, for modeling such flows,
it may be better to start with two-dimensional turbulence (similar to the model described in Sec. II).
This exercise will be taken up in the future. Recently, Sharma et al. [45] employed Pao’s hypothesis
to model the energy spectrum of rapidly rotating turbulence. We envisage that Pao’s hypothesis may
be useful for modeling MHD turbulence, buoyancy-driven turbulence, etc.

ACKNOWLEDGMENTS

We thank Manohar Kumar Sharma, Roshan Samuel, Shashwat Bhattacharya, and Shadab Alam
for useful discussions on Pao’s hypothesis. This work was supported by Research Grant No.
PLANEX/PHY/2015239 from the Indian Space Research Organization, India.

[1] A. N. Kolmogorov, Dissipation of energy in locally isotropic turbulence, Dokl. Acad. Nauk. SSSR 32, 16
(1941).

[2] A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large
Reynolds numbers, Dokl. Acad. Nauk. SSSR 30, 301 (1941).

104611-9



MOHAMMAD ANAS AND MAHENDRA K. VERMA

[3] S. B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000).
[4] M. Lesieur, Turbulence in Fluids (Springer-Verlag, Dordrecht, 2008).
[5] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995).
[6] P. A. Davidson, Turbulence: An Introduction for Scientists and Engineers (Oxford University Press,

Oxford, 2004).
[7] P. A. Davidson, Turbulence in Rotating, Stratified and Electrically Conducting Fluids (Cambridge

University Press, Cambridge, 2013).
[8] A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence (Dover Publica-

tions, New York, 1973).
[9] M. K. Verma, A. Kumar, and A. Pandey, Phenomenology of buoyancy-driven turbulence: Recent results,

New J. Phys. 19, 025012 (2017).
[10] M. K. Verma, Anisotropy in quasi-static magnetohydrodynamic turbulence, Rep. Prog. Phys. 80, 087001

(2017).
[11] M. K. Verma, Physics of Buoyant Flows: From Instabilities to Turbulence (World Scientific, Singapore,

2018).
[12] K. Nam, E. Ott, T. M. Antonsen, and P. N. Guzdar, Lagrangian Chaos and the Effect of Drag on the

Enstrophy Cascade in Two-Dimensional Turbulence, Phys. Rev. Lett. 84, 5134 (2000).
[13] M. K. Verma, Variable enstrophy flux and energy spectrum in two-dimensional turbulence with Ekman

friction, Europhys. Lett. 98, 14003 (2012).
[14] V. Pandey, P. Perlekar, and D. Mitra, Clustering and energy spectra in two-dimensional dusty gas

turbulence, Phys. Rev. E 100, 013114 (2019).
[15] B. Knaepen and P. Moin, Large-eddy simulation of conductive flows at low magnetic Reynolds number,

Phys. Fluids 16, 1255 (2004).
[16] J. Paret and P. Tabeling, Experimental Observation of the Two-Dimensional Inverse Energy Cascade,

Phys. Rev. Lett. 79, 4162 (1997).
[17] M. Rivera, P. Vorobieff, and R. E. Ecke, Turbulence in Flowing Soap Films: Velocity, Vorticity, and

Thickness Fields, Phys. Rev. Lett. 81, 1417 (1998).
[18] R. H. Kraichnan, Inertial ranges in two-dimensional turbulence, Phys. Fluids 10, 1417 (1967).
[19] A. Belmonte, W. I. Goldburg, H. Kellay, M. A. Rutgers, B. Martin, and X. L. Wu, Velocity fluctuations

in a turbulent soap film: The third moment in two dimensions, Phys. Fluids 11, 1196 (1999).
[20] M. Rivera and X. L. Wu, External Dissipation in Driven Two-Dimensional Turbulence, Phys. Rev. Lett.

85, 976 (2000).
[21] G. Boffetta, A. Cenedese, S. Espa, and S. Musacchio, Effects of friction on 2D turbulence: An

experimental study of the direct cascade, Europhys. Lett. 71, 590 (2005).
[22] H. Kellay and W. I. Goldburg, Two-dimensional turbulence: A review of some recent experiments,

Rep. Prog. Phys. 65, 845 (2002).
[23] G. Boffetta and R. E. Ecke, Two-dimensional turbulence, Annu. Rev. Fluid Mech. 44, 427 (2012).
[24] G. Boffetta, A. Celani, S. Musacchio, and M. Vergassola, Intermittency in two-dimensional Ekman-

Navier-Stokes turbulence, Phys. Rev. E 66, 026304 (2002).
[25] P. A. Davidson, An Introduction to Magnetohydrodynamics, 2nd ed. (Cambridge University Press,

Cambridge, 2017).
[26] R. J. Moreau, Magnetohydrodynamics (Springer, Berlin, 1990).
[27] B. Knaepen and R. Moreau, Magnetohydrodynamic turbulence at low magnetic Reynolds number, Annu.

Rev. Fluid Mech. 40, 25 (2008).
[28] M. K. Verma and K. S. Reddy, Modeling quasi-static magnetohydrodynamic turbulence with variable

energy flux, Phys. Fluids 27, 025114 (2015).
[29] M. Hossain, Inverse energy cascades in three-dimensional turbulence, Phys. Fluids B 3, 511 (1991).
[30] T. Ishida, Small-scale anisotropy in magnetohydrodynamic turbulence under a strong uniform magnetic

field, Phys. Fluids 19, 075104 (2007).
[31] A. Vorobev, O. Zikanov, P. A. Davidson, and B. Knaepen, Anisotropy of magnetohydrodynamic

turbulence at low magnetic Reynolds number, Phys. Fluids 17, 125105 (2005).

104611-10

https://doi.org/10.1088/1367-2630/aa5d63
https://doi.org/10.1088/1367-2630/aa5d63
https://doi.org/10.1088/1367-2630/aa5d63
https://doi.org/10.1088/1367-2630/aa5d63
https://doi.org/10.1088/1361-6633/aa6c82
https://doi.org/10.1088/1361-6633/aa6c82
https://doi.org/10.1088/1361-6633/aa6c82
https://doi.org/10.1088/1361-6633/aa6c82
https://doi.org/10.1103/PhysRevLett.84.5134
https://doi.org/10.1103/PhysRevLett.84.5134
https://doi.org/10.1103/PhysRevLett.84.5134
https://doi.org/10.1103/PhysRevLett.84.5134
https://doi.org/10.1209/0295-5075/98/14003
https://doi.org/10.1209/0295-5075/98/14003
https://doi.org/10.1209/0295-5075/98/14003
https://doi.org/10.1209/0295-5075/98/14003
https://doi.org/10.1103/PhysRevE.100.013114
https://doi.org/10.1103/PhysRevE.100.013114
https://doi.org/10.1103/PhysRevE.100.013114
https://doi.org/10.1103/PhysRevE.100.013114
https://doi.org/10.1063/1.1651484
https://doi.org/10.1063/1.1651484
https://doi.org/10.1063/1.1651484
https://doi.org/10.1063/1.1651484
https://doi.org/10.1103/PhysRevLett.79.4162
https://doi.org/10.1103/PhysRevLett.79.4162
https://doi.org/10.1103/PhysRevLett.79.4162
https://doi.org/10.1103/PhysRevLett.79.4162
https://doi.org/10.1103/PhysRevLett.81.1417
https://doi.org/10.1103/PhysRevLett.81.1417
https://doi.org/10.1103/PhysRevLett.81.1417
https://doi.org/10.1103/PhysRevLett.81.1417
https://doi.org/10.1063/1.1762301
https://doi.org/10.1063/1.1762301
https://doi.org/10.1063/1.1762301
https://doi.org/10.1063/1.1762301
https://doi.org/10.1063/1.869891
https://doi.org/10.1063/1.869891
https://doi.org/10.1063/1.869891
https://doi.org/10.1063/1.869891
https://doi.org/10.1103/PhysRevLett.85.976
https://doi.org/10.1103/PhysRevLett.85.976
https://doi.org/10.1103/PhysRevLett.85.976
https://doi.org/10.1103/PhysRevLett.85.976
https://doi.org/10.1209/epl/i2005-10111-6
https://doi.org/10.1209/epl/i2005-10111-6
https://doi.org/10.1209/epl/i2005-10111-6
https://doi.org/10.1209/epl/i2005-10111-6
https://doi.org/10.1088/0034-4885/65/5/204
https://doi.org/10.1088/0034-4885/65/5/204
https://doi.org/10.1088/0034-4885/65/5/204
https://doi.org/10.1088/0034-4885/65/5/204
https://doi.org/10.1146/annurev-fluid-120710-101240
https://doi.org/10.1146/annurev-fluid-120710-101240
https://doi.org/10.1146/annurev-fluid-120710-101240
https://doi.org/10.1146/annurev-fluid-120710-101240
https://doi.org/10.1103/PhysRevE.66.026304
https://doi.org/10.1103/PhysRevE.66.026304
https://doi.org/10.1103/PhysRevE.66.026304
https://doi.org/10.1103/PhysRevE.66.026304
https://doi.org/10.1146/annurev.fluid.39.050905.110231
https://doi.org/10.1146/annurev.fluid.39.050905.110231
https://doi.org/10.1146/annurev.fluid.39.050905.110231
https://doi.org/10.1146/annurev.fluid.39.050905.110231
https://doi.org/10.1063/1.4913499
https://doi.org/10.1063/1.4913499
https://doi.org/10.1063/1.4913499
https://doi.org/10.1063/1.4913499
https://doi.org/10.1063/1.859900
https://doi.org/10.1063/1.859900
https://doi.org/10.1063/1.859900
https://doi.org/10.1063/1.859900
https://doi.org/10.1063/1.2749815
https://doi.org/10.1063/1.2749815
https://doi.org/10.1063/1.2749815
https://doi.org/10.1063/1.2749815
https://doi.org/10.1063/1.2140847
https://doi.org/10.1063/1.2140847
https://doi.org/10.1063/1.2140847
https://doi.org/10.1063/1.2140847


MODELING EKMAN AND QUASI-STATIC …

[32] Y.-H. Pao, Structure of turbulent velocity and scalar fields at large wavenumbers, Phys. Fluids 8, 1063
(1965).

[33] M. K. Verma, A. Kumar, P. Kumar, S. Barman, A. G. Chatterjee, R. Samtaney, and R. Stepanov, Energy
spectra and fluxes in dissipation range of turbulent and laminar flows, Fluid Dyn. 53, 728 (2018).

[34] G. Falkovich, Bottleneck phenomenon in developed turbulence, Phys. Fluids 6, 1411 (1994).
[35] M. K. Verma and D. A. Donzis, Energy transfer and bottleneck effect in turbulence, J. Phys. A: Math.

Theor. 40, 4401 (2007).
[36] C. Küchler, G. Bewley, and E. Bodenschatz, Experimental study of the bottleneck in fully developed

turbulence, J. Stat. Phys. 175, 617 (2019).
[37] D. Biskamp, E. Schwarz, and A. Celani, Nonlocal Bottleneck Effect in Two-Dimensional Turbulence,

Phys. Rev. Lett. 81, 4855 (1998).
[38] A. Alemany, R. Moreau, and U. Frisch, Influence of an external magnetic field on homogeneous MHD

turbulence, J. Mec. 18, 277 (1979).
[39] S. Eckert, G. Gerbeth, W. Witke, and H. Langenbrunner, MHD turbulence measurements in a sodium

channel flow exposed to a transverse magnetic field, Int. J. Heat Fluid Flow 22, 358 (2001).
[40] K. S. Reddy, R. Kumar, and M. K. Verma, Anisotropic energy transfers in quasi-static magnetohydrody-

namic turbulence, Phys. Plasmas 21, 102310 (2014).
[41] O. Zikanov and A. Thess, Direct numerical simulation of forced MHD turbulence at low magnetic

Reynolds number, J. Fluid Mech. 358, 299 (1998).
[42] K. S. Reddy and M. K. Verma, Strong anisotropy in quasi-static magnetohydrodynamic turbulence for

high interaction parameters, Phys. Fluids 26, 025109 (2014).
[43] D. A. Donzis and K. R. Sreenivasan, The bottleneck effect and the Kolmogorov constant in isotropic

turbulence, J. Fluid Mech. 657, 171 (2010).
[44] T. Ishihara, K. Morishita, M. Yokokawa, A. Uno, and Y. Kaneda, Energy spectrum in high-resolution

direct numerical simulations of turbulence, Phys. Rev. Fluids 1, 082403(R) (2016).
[45] M. K. Sharma, A. Kumar, M. K. Verma, and S. Chakraborty, Statistical features of rapidly rotating

decaying turbulence: Enstrophy and energy spectra and coherent structures, Phys. Fluids 30, 045103
(2018).

104611-11

https://doi.org/10.1063/1.1761356
https://doi.org/10.1063/1.1761356
https://doi.org/10.1063/1.1761356
https://doi.org/10.1063/1.1761356
https://doi.org/10.1134/S0015462818050166
https://doi.org/10.1134/S0015462818050166
https://doi.org/10.1134/S0015462818050166
https://doi.org/10.1134/S0015462818050166
https://doi.org/10.1063/1.868255
https://doi.org/10.1063/1.868255
https://doi.org/10.1063/1.868255
https://doi.org/10.1063/1.868255
https://doi.org/10.1088/1751-8113/40/16/010
https://doi.org/10.1088/1751-8113/40/16/010
https://doi.org/10.1088/1751-8113/40/16/010
https://doi.org/10.1088/1751-8113/40/16/010
https://doi.org/10.1007/s10955-019-02251-1
https://doi.org/10.1007/s10955-019-02251-1
https://doi.org/10.1007/s10955-019-02251-1
https://doi.org/10.1007/s10955-019-02251-1
https://doi.org/10.1103/PhysRevLett.81.4855
https://doi.org/10.1103/PhysRevLett.81.4855
https://doi.org/10.1103/PhysRevLett.81.4855
https://doi.org/10.1103/PhysRevLett.81.4855
https://doi.org/10.1016/S0142-727X(01)00099-6
https://doi.org/10.1016/S0142-727X(01)00099-6
https://doi.org/10.1016/S0142-727X(01)00099-6
https://doi.org/10.1016/S0142-727X(01)00099-6
https://doi.org/10.1063/1.4899202
https://doi.org/10.1063/1.4899202
https://doi.org/10.1063/1.4899202
https://doi.org/10.1063/1.4899202
https://doi.org/10.1017/S0022112097008239
https://doi.org/10.1017/S0022112097008239
https://doi.org/10.1017/S0022112097008239
https://doi.org/10.1017/S0022112097008239
https://doi.org/10.1063/1.4864654
https://doi.org/10.1063/1.4864654
https://doi.org/10.1063/1.4864654
https://doi.org/10.1063/1.4864654
https://doi.org/10.1017/S0022112010001400
https://doi.org/10.1017/S0022112010001400
https://doi.org/10.1017/S0022112010001400
https://doi.org/10.1017/S0022112010001400
https://doi.org/10.1103/PhysRevFluids.1.082403
https://doi.org/10.1103/PhysRevFluids.1.082403
https://doi.org/10.1103/PhysRevFluids.1.082403
https://doi.org/10.1103/PhysRevFluids.1.082403
https://doi.org/10.1063/1.5018346
https://doi.org/10.1063/1.5018346
https://doi.org/10.1063/1.5018346
https://doi.org/10.1063/1.5018346

