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Small-scale energy cascade in homogeneous isotropic turbulence
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The dynamics behind the multiscale energy transfer in turbulent flows is investigated in a
numerical simulation of homogeneous isotropic turbulence (HIT). The investigation relies
on conservation laws derived from the incompressible morphing continuum theory on the
basis of the Boltzmann-Curtiss kinetic theory. The resulting conservation laws reveal the
existence of small-scale routes for the flow of energy, which broadens the view on energy
cascade (forward or inverse). The comparison of the turbulence characteristic with the
reference study indicates that the turbulence features in both frameworks are equivalent
at the global and small-scales; however, the presented framework shows a more detailed
energy flow mechanism, while maintaining the same global dissipation rate. The study
reveals that the theoretical small-scale structures can represent the small-scale structures
in the turbulent flow. Finally, the energy analysis is carried out based on the presented
conservation laws. The analysis reveals that at the small-scale both forward and inverse
energy cascade exist in HIT; however, an overall negative energy flux (forward cascade)
is present globally. Finally, the energy analysis shows that the energy cascade is highly
dependent on the rotation of the small-scale structure as well as their translational motion.
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I. INTRODUCTION

Turbulence remains as one of the most relevant problems in physics today. For a century, much
work has been done on finding universal physical parameters that can describe the behavior of all
turbulent flows [1]. Nevertheless, most of the applied turbulence models to date still lack universality
[2]. This quality holds true for turbulence closure models in Large eddy simulations [3], Reynolds-
averaged Navier-Stokes equations [4], and for flows in complex configurations [5]. With the rapid
developments in aerospace engineering, the need for a universal turbulent model for all types of
flows is apparent.

To further the understanding of turbulence, it is important to study the energy flow in both small
and large-scale turbulent structures [1]. Large-scale structures are usually of the order of the flow
width and contain most of the energy. They dominate the transport of mass, momentum, and internal
energy. Small scales, however, are responsible for most of the energy dissipation [1]. Although
theses scales can be easily defined at high Reynolds numbers [6], a certain level of ambiguity has
always been persistent in flows with moderate Reynolds number [1].
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Of the two turbulent scales, characterizations of the small-scale turbulent structures have a
higher prospect of producing a universal or quasiuniversal model than the large-scale structures
[1]. Taylor [7] and Betchov [8] pioneered the study on the small-scale characteristics, evolution,
and contribution to the turbulent bulk flow. Their work, though limited to homogeneous turbulence,
established the importance of small-scale strain amplification and vortex stretching in energy
cascade.

It is not until the celebrated work of Kolmogorov’s K41 theory [9], the study of the small-
scale turbulent structure became a focal point in the characterization of turbulence. The first
premises of the K41 theory is, at large Reynolds numbers, the average energy dissipation rate is
independent of the viscosity. The second premise (known as local isotropy) is that small-scale
structures at sufficiently high Reynolds numbers are statistically independent of the large-scale
one. These small-scale structures are homogeneous, isotropic, and steady. In short, K41 states
that the statistical properties at the dissipation scales are determined universally by the viscosity
and average dissipation rate, while those at the inertial range, (at high Reynolds number), are
determined by the average dissipation rate only. It implies that Richardson’s multistep energy
cascade process disappears at the smallest scales. The K41 theory has made remarkable predictions
on the statistical properties of homogeneous and isotropic turbulence both experimentally and
numerically [1]. Kolmogorov K41 theory was by far the first theory which gave a quantitative
meaning for turbulence.

Although Kolmogorov’s theory unveiled universal features depicting the flow of energy at
the small-scale and inertial scale, these results were derived under the assumption of a globally
homogeneous and isotropic turbulence. The global isotropy assumption can be relaxed, but,
apparently, not the assumption of global homogeneity [10]. Zubair [11] showed that at atmospheric
Reynolds numbers, large-scale structures can contribute to the energy dissipation in a much greater
scale than what Kolmogorov had predicted. Vincent and Meneguzzi [12] observed that when the
small-scale turbulent vortices are arranged in tube like structures, the energy cascade does not
follow the traditional view described by Kolmogorov and Richardson in the inertia range. Instead,
it is a one step process with a strong correlation between the small and large-scale structures.
Jimenez and Wray [13] showed that the highest dissipation of kinetic energy is achieved when
the small-scale structures are arranged as sheets. Horiuti [14] later showed that the topology of the
sheets contributes to the magnitude of energy dissipation with flat sheets dissipating more energy
than curved sheets. Even if the global homogeneous isotropy condition was satisfied, Kolmogorov’s
K41 was found to be inconsistent with some numerical and experimental studies [1]. Thus, the
challenge of understanding the energy flow at the level of small-scale turbulence still remains.

In light of these publications, the motivation behind the present work is to analyze the flow
of energy at the small-scale level. The study aims at understanding the relation between the
kinematics of the small-scale structures and the energy flow. In particular, the work decouples
small-scale rotational motions from the translational motions to explain the energy flow. Resorting
to Navier-Stokes (NS)-based direct numerical simulations to showcase this energy flow is tedious
considering the strong coupling between translational and rotational motions of the fluid. The
present work is on the basis of a morphing continuum theory (MCT), a high order continuum
theory. MCT incorporates small-scale structures and has their own independent degrees of freedom
for translational and rotational motions [15]. These small-scale structures decouple the rotational
motion from the translational motion of the flow, giving the fluid element a total of six-degrees of
motion. The study assumes that the small-scale structures adopt the role of the smallest turbulent
structures. The present work emphasizes the contribution of the small-scale kinematics on the
energy flow in turbulence.

The current study utilizes the incompressible MCT governing equations to explore the physics
of energy transfer in homogeneous isotropic turbulence (HIT), a regime where the flow shows
agreement with the universal teardrop features of turbulence [16]. To accomplish this task, the
study starts by giving a brief description of the morphing continuum theory, and its balance laws in
dimensional and dimensionless form in Sec. II. In Sec. III, the study derives the morphing continuum
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conservation laws in the framework of a translational symmetry. The conservation laws shed light
on the routes that control the energy flow at small-scale. These energy routes are implemented to
analyze the HIT work of Ooi et al. [17] in Sec. IV. The section starts by proposing a model that
translates an NS case into the MCT framework, and is followed by analyzing the capability of the
model in reproducing the turbulent characteristics of the reference case at the global and small
scale. Finally, the study employs the newly derived energy routes derived in Sec. III to investigate
the energy cascade at the level of the small-scale turbulent structures in Sec. V.

II. MORPHING CONTINUUM THEORY

A morphing continuum theory (also known as microcontinuum [18,19], microfluid [20], or
generalized extended Navier-Stokes [21]), describes a continuous fluent medium composed of
finite-size structures at the small scale, whose properties and behaviors affect the global motion
of the fluid. A morphing continuum differs from the classical continuum which considers the space
as a continuous set of volumeless points. Eringen [18,19,22,23] and De Groot and Mazur [24], the
pioneers behind the theory, developed it to deal with a class of fluids which exhibit certain small-
scale effects arising from the local structure and small-scale motions of the fluid elements. Most
importantly, their work showed that the independent description of rotational motion (including
gyration) allows capturing the small-scale structures without relying on arbitrarily fine meshes. It
provides the opportunity to explore regimes where classical fluid equations break down. Recently,
Wonnel and Chen [25] have formulated the governing laws of MCT under the framework of kinetic
theory with Boltzmann-Curtiss distribution, and they demonstrated the correlation between the
MCT and NS governing laws.

The theory has been implemented in simulating flows that diverge from NS equations, like flows
in microchannels [26], lubrication theory [27], and blood flow through tapered arteries with stenosis
[28]. More recently, MCT was implemented in simulating incompressible turbulence over a flat plate
[29], and compressible turbulence over different types of geometries [30–32].

The current work assumes a continuum that is made up of rigid small-scale structures that retain
their own rotational effects and small-scale rotational inertia [20]. The small-scale structures do
not incorporate axial contractions or expansions, but compromise solely of rotational motion about
their center of mass. The small-scale structures are considered to be rigid spherical structures with
constant material properties. Thus, the inertia of these structures ( j) has the relation j = 2

5 r2, where
r represents the radius of a sphere [33]. The motion variables that control the behavior of the small-
scale structures are the translational velocity vk , and the gyration, ωk which characterizes the local
rotation of these structures. From the aforementioned variables, one can see that the kinetic energy
of the flow is two folds; the classical translational kinetic energy ( 1

2vivi) and a new form of kinetic
energy that is characterized by the gyration of the small-scale structures called the rotational kinetic
energy ( 1

2 jωiωi) [33]. The resultant deformation rate tensors that govern the behavior of a morphing
continuum flow are [15,34]

akl = vl,k + εlkmωm, (1)

bkl = ωk,l , (2)

where akl resembles the classical deformation-rate tensor from the Navier-Stokes equations with an
additional term representing the effect of the gyration of the small-scale structures. The bkl tensor is
a new deformation tensor not found in the classical fluid theory, representing the strain and rotation
gradients experienced by gradients of the gyration [15].

A. Balance laws

With the aforementioned deformation rate tensors, the linear constitutive equations can be
derived from Clausius-Duhem inequality [15,22]. By inserting the constitutive equations into the
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thermodynamic balance laws, the morphing continuum governing equations for incompressible
fluids can be found as

conservation of mass:

vm,m = 0, (3)

Balance of linear momentum:

Dvm

Dt
= − p,m

ρ
+ (μ + κ )

ρ
vm,nn + κ

ρ
εmnkωk,n + Fm, (4)

Balance of angular momentum:

Dωm

Dt
= (α + β )

jρ
ωl,lm + γ

ρ j
ωm,nn + κ

ρ j
(εmnkvk,n − 2ωm) + Lm, (5)

Balance of internal energy:

De

Dt
= − p

ρ
vk,k + μ

ρ
(vl,k + vk,l )vl,k + κ

ρ
(vl,kvl,k − 2ωmεmklvl,k + 2ωmωm)

+ α

ρ
ωm,mωk,k + β

ρ
ωk,lωl,k + γ

ρ
ωl,kωl,k − qk,k

ρ
, (6)

Clausius-Duhem inequality:

−
(

Dψ

Dt
+ η

Dθ

Dt

)
+ μ

ρ
(vl,k + vk,l )vl,k + κ

ρ
(vl,kvl,k − 2ωmεmklvl,k + 2ωmωm) + α

ρ
ωm,mωk,k

+ β

ρ
ωk,lωk,l + γ

ρ
ωl,kωk,l − qk

ρθ
θ,k � 0, (7)

where ρ is the fluid density, qk is the heat flux, ψ is Helmholtz free energy density, θ is absolute
temperature, e is the internal energy density, p is the hydrostatic pressure, j is the inertia of the small-
scale structures, μ is the dynamic viscosity, κ is the rotational viscosity (also called the coupling
coefficient between the linear and angular momenta [33]), γ is the gyration diffusion coefficient,
and α and β are viscous coefficients related to the gyration. Fm and Lm are the large-scale forcing
and large-scale torque divided by the density, and added to the momentum equations, respectively.

B. Balance laws in dimensionless form

The current subsection dimensionalizes the MCT balance laws with the dimensionless groups
defined based on the physical parameters of interest. Only the continuity and momentum balance
laws are nondimensionalized. Starting with the distance and motion variables, the length scales xm,
and the translation velocity vm are parameterized with the root-mean-square velocity vrms, and the
Taylor microscale λ defined as [17]

λ =
√

〈vpvp〉
〈vi,iv j, j〉 , (8)

where 〈...〉 is the volume average over the computational domain. In this regard, normalizing the
balance laws with the Taylor microscale leads to the dimensionless form, i.e.,

Dimensionless linear momentum equation:

∂ (v̂)

∂ t̂
+ v̂ · ∇̂v̂ = −∇̂ p̂ + 1

Reλ

∇̂2v̂ + 1

Erλ
(2∇̂ × ω̂ + ∇̂2v̂) + Fm, (9)
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Dimensionless angular momentum equation:

∂ (ω̂)

∂ t̂
+ v̂ · ∇̂ω̂ = 1

Cαβ

λ

∇̂(∇̂ · ω̂) + 1

Cγ

λ

∇̂2ω̂ + D
Erλ

(∇̂ × v̂ − 2ω̂) + Lm, (10)

where D = 2λ2/ j = 5(λ/r)2 represents the square ratio of the Taylor microscale, to the radius of
the MCT small-scale structures. This parameter illustrates one of the biggest advantage of MCT over
classical fluid theory, namely, the ability to probe the physics of the smallest length scale without
the need for extremely fine grids, or ad hoc models [29,35].

One of the nondimensional variables that appears in the governing equations is the MCT Taylor
Reynolds number, which measures the ratio of the inertial forces to the viscous forces. In the current
work, μ + κ/2 is used to represent the viscous forces, due to the fact that it will appears in the
dissipation term of the total kinetic energy (ε) in Sec. III. Earlier work used μ + κ to represent the
viscous forces [35]; however, after deriving the energy routes in Sec. III, it became apparent that
only μ + κ/2 contributes to the total kinetic energy dissipation, while the remaining κ/2 contributes
to energy loss through the MCT enstrophy. Consequently, the Taylor-Reynolds number is

Reλ = ρvrms λ

μ + κ/2
. (11)

The next three dimensionless terms are Eringen’s number Er in honor of Eringen, Cαβ

λ a dimension-
less parameter that governs the gyration viscous coefficients and Cγ

λ a dimensionless parameter that
governs the diffusion of the gyration,

Erλ = ρvrms λ

κ/2
, Cαβ

λ = ρvrmsλ j

α + β
, Cγ

λ = ρvrmsλ j

γ
. (12)

III. CONSERVATION LAWS FOR INCOMPRESSIBLE FLUIDS

Ever since the work of Arnold et al. [36] on two- and three-dimensional incompressible flows,
it has been shown that the Eulerian form of the governing equations for many fluid systems can
be expressed as an infinite-dimensional, generalized Hamiltonian dynamical system [37]. Such
expression permits the use of analytical mechanics, in particular Noether’s theorem. This theory
states that for each conservation law there exists an adjacent variational symmetry associated
with the law itself [38]. Following Noether’s theorem, theoretical physicists tended to combine
conservation laws with symmetry. For example, the momentum conservation law in classical fluid
theory corresponds to the symmetry of space translation, x(t, �r) = x(t, �r + �p) [10].

The current section derives the conservation laws for an incompressible flow by utilizing the
the symmetry of spatial translation, which assumes periodic boundary conditions over the whole
domain. The study assumes smoothness of the velocity, gyration, and pressure fields to permit
any differential manipulations of the said fields. All source terms in the governing equations are
nullified, and all variables are averaged over the whole domain where the angular brackets are
denoted for the volume average,

〈 f 〉 = 1

R3

∫
BR

f (�r)d�r, (13)

where f (�r) is an arbitrary periodic function, BR is the domain boundary, and R is the domain width.
Some useful identities can be found in the book by Frisch [10].

In the following sections the word “global” references the volume average (〈...〉), and the word
“local” refers to the unaveraged or total field. Thus, “local” is for a single point while “global” is for
the whole domain. Since MCT assumes the continuum to be comprised of small-scale structures,
every point is associated with a small structure. So the local scale in this regard becomes equivalent
to the MCT small-scale structure.
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A. Conservation of linear momentum

Conservation of linear momentum is derived by applying spatial averaging over the incompress-
ible linear momentum balance [Eq. (4)] as

d〈vm〉
dt

= −〈p,m〉
ρ

+ μ + κ

ρ
〈vm,nn〉 + κ

ρ
〈εmlnωn,l〉. (14)

All the spatial derivatives of a periodic function in the linear momentum equation are dropped after
spatial averaging. The final form of the conservation of linear momentum equation is

d〈vm〉
dt

= 0. (15)

This signifies that the linear momentum is conserved in MCT, similar to results obtained in the
classical fluid theory [10].

B. Conservation of angular momentum

Similarly, the conservation of angular momentum is derived by applying spatial averaging over
the angular momentum,

d〈ωm〉
dt

= (α + β )

jρ
〈ωl,lm〉 + γ

jρ
〈ωm,ll〉 + κ

jρ
〈εmlnvn,l − 2ωm〉. (16)

By removing all the spatial derivatives, the equation becomes

d〈ωm〉
dt

= −2κ

ρ j
〈ωm〉. (17)

From the equation, one can see that the angular momentum is not conserved, but decays with a
characteristic time constant τω = ρ j

2κ
. This is inconsistent with the definition of conservation of

angular momentum, which requires that d〈ωm〉/dt = 0. Thus, to ensure conservation of angular
momentum, the mean gyration 〈ωm〉 of the system should equal to zero, or the local vorticity of the
flow should equal to twice the gyration (εmlnvn,l = 2ωm).

Such a concept of relaxation time has been reported in the extended Kinetic theory [39]. Kinetic
theory describes many systems that diverge from their equilibrium state, and one of the most famous
equations that model such systems is the BGK model of the Boltzmann’s equation [39]. The BGK
model replaces the nonlinear collision term of the Boltzmann equation by a simpler term that
describes molecular interaction by introducing a characteristic time scale τBGK. The characteristic
time scale in the BGK model represents weak departure from the local equilibrium, and has long
been recognized as a good approximation [40]. One approximation to the characteristic time τBGK,
is to use the turbulence relaxation time τ turb for the departure from local equilibrium due to turbulent
eddy interactions and their inhomogeneity in the main flow [41]. Following this logic, the derived
τω could be used as a turbulence relaxation time, since it represents the decay time of the rotational
speed of the turbulent eddies.

C. Conservation of energy

The kinetic energy in MCT is decomposed into translation ( 1
2vivi) and rotation ( 1

2 jωiωi)
components [33]. The decoupled kinetic energy routes in global scales can be found in Fig. 1.
The translational kinetic energy can be derived by multiplying the balance law of linear momentum
[Eq. (4)] by the velocity,

1

2

d (vmvm)

dt
= − p,kvm

ρ
+ (μ + κ )

ρ
vm,kkvm

κ

ρ
vmεmlkωl,k . (18)
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FIG. 1. Global energy routes.

Applying spatial averaging over Eq. (18) yields the average conservation of the translational kinetic
energy,

1

2

d〈vmvm〉
dt

= μ + κ

ρ
〈vmvm,nn〉 + κ

ρ
〈vm(εmlnωn,l )〉. (19)

This equation is similar to the Navier-Stokes conservation of energy [10], but contains an extra term
on the right-hand side. The first term on the right-hand side can be expanded as the mean dissipation
rate of the translational motion 〈εv〉,

1

2

d〈vmvm〉
dt

= − μ + κ

2ρ
〈(vk, j + v j,k )(vk, j + v j,k )︸ ︷︷ ︸

〈εv〉

〉 + κ

ρ
〈vm(εmlnωn,l )〉︸ ︷︷ ︸

〈T v〉

, (20)

where the local translation dissipation rate is

εv = μ + κ

2ρ
(vk, j + v j,k )(vk, j + v j,k ). (21)

Instead of expanding the first term to get the mean translational dissipation term 〈εv〉, one can
expand it to get the mean enstrophy 〈Zv〉 as

1

2

d〈vmvm〉
dt

= − 2
μ + κ

ρ

〈
1

2
εi jkvk, jεimnvn,m

〉
︸ ︷︷ ︸

〈Zv〉

+ κ

ρ
〈vm(εmlnωn,l )〉︸ ︷︷ ︸

〈T v〉

, (22)

where the local enstrophy is

Zv = 1
2εi jkvk, jεimnvn,m. (23)

Both the mean enstrophy and mean translational dissipation rate are equivalent at the global scale,
but at the local scale they are related by the pressure Poisson equation as

Zv − ρ

2(μ + κ )
εv = p,mm

ρ
. (24)

As for the second term on the right-hand side,

T v = κ

ρ
vm(εmlnωn,l ), (25)
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it represents the local energy transferred in or out of the translation kinetic energy through gyration.
This term represents the impact of the gyration on the energy flow of the translational kinetic energy
equation. One should note that this term does not mean that the translational energy is taking or
giving energy to the rotational energy, it only means that the existence of the gyration impacts the
translational kinetic energy either by injection or ejection regardless of the source.

The rotational kinetic energy component ( 1
2 jωiωi) is derived by multiplying the balance law of

angular momentum [Eq. (5)] by the gyration,

1

2

d ( jωmωm)

dt
= (α + β )

jρ
ωl,lmωm + γ

ρ
ωm,llωm + κ

ρ
(εmlkvk,lωm − 2ωmωm). (26)

Applying spatial averaging over Eq. (26) yields the mean conservation of rotational energy,

j

2

d〈ωmωm〉
dt

= − (α + β )

jρ
〈ωl,lωm,m〉︸ ︷︷ ︸〈

εω
αβ

〉
− γ

ρ
〈ωm,lωm,l〉︸ ︷︷ ︸〈

εω
γ

〉
+ κ

ρ
〈ωm(εmlnvn,l )〉︸ ︷︷ ︸

〈T ω〉

− 2
κ

ρ
〈ωmωm〉︸ ︷︷ ︸
〈δω〉

. (27)

Similar to the translational energy, the first two terms on the right-hand side represent the mean of
the rotational dissipation terms,

εω
αβ = α + β

ρ
ωm,mωl,l , εω

γ = γ

ρ
ωm,lωm,l . (28)

The first term (εω
αβ) measures the dissipation of rotational kinetic energy due to the expansion or

contraction of the gyration. The second term (εω
γ ) measures the mechanical dissipation of rotational

kinetic energy due to friction between adjacent gyrations. The last term (δω) represents the small-
scale decay of the rotational energy, i.e.,

δω = 2
κ

ρ
ωmωm. (29)

This term is also associated with the time constant τω which governs the decay of angular
momentum in MCT as shown in Eq. (17). Therefore, δω is a decay term, not a dissipative term. The
difference between the dissipation terms (εω

αβ and εω
γ ) and the decay term (δω) is that the dissipation

terms cause a loss of rotational kinetic energy through the gradient of the local motion. Therefore,
if the local rotational motion (ωm) is constant throughout the whole domain, then εω

αβ and εω
γ are

zero. However, δω measures the energy loss from the rotational motion until rotation equilibrium is
achieved.

The only term left in Eq. (27) is

T ω = κ

ρ
ωm(εmlnvn,l ). (30)

This term represents the small-scale energy transferred in or out of the rotational kinetic energy by
the curl of the velocity (vorticity). Note that both T v and T ω are equal on average, i.e.,

〈T v〉 = 〈T ω〉, (31)

indicating that they transfer equal amounts of energy to both forms of the kinetic energy in the same
quantity. On the local scale, these components are related by the equation

κ

ρ
(εmlnωlvn),m = T v − T ω, (32)

where the spatial average of (εmlnωlvn),m is zero, leading it to vanish at the global scale. On the
local scale, however, κ

ρ
(εmklωkvl ),m controls the direction of energy flow, either to the translational

or rotational component of the kinetic energy. If κ
ρ

(εmklωkvl ),m is positive, then the translational
component gains kinetic energy, and the rotational component loses it. Another way to understand
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FIG. 2. Sketch showing the kinematics of the small-scale structures. (a) Motions that govern the sign of T v

and (b) motions that govern the sign of T ω.

how κ
ρ

(εmklωkvl ),m works is to look at the motion of the small-scale structures. If the curl of
the gyration (∇ × �ω) is generating a translational motion along the direction of the velocity (i.e.,
α < 90), then energy is injected into the translational motion as shown in Fig. 2(a). However, if the
resultant translation caused by the curl of the gyration is opposing the velocity of the small-scale
structure, then the translational energy is lost as heat. Similarly, T ω has the capability of giving
rise to both forms of energy transfer. If the vorticity is generating a rotational motion in the same
sense of the gyration (i.e., β < 90), then energy is injected into the rotational motion motion as
shown in Fig. 2(b). However, if the vorticity is opposing the gyration of the small-scale structure
(i.e., β > 90), then the rotational kinetic energy is lost as heat.

By decoupling the rotational energy from the translational energy, the detailed interaction
between the two is revealed. In the translational kinetic energy, i.e., Eq. (19), It can be seen that
the existence of an additional energy routes that inject energy through T v . As for the rotational
kinetic energy, it contains its own terms for the injecting, decaying and dissipating energy in the
system.

To ensure conservation of total energy, all the kinetic energy that was lost or gained by the
translational or rotational kinetic energy should appear in the conservation of internal energy.
Applying spatial averaging over the internal energy [Eq. (6)] yields

d〈e〉
dt

= 〈εv〉 − 〈T v〉 − 〈T ω〉 + 〈δω〉 + 〈
εω
αβ

〉 + 〈
εω
γ

〉
. (33)

All the terms that attribute to the rate of change of the translational or rotational kinetic energy are
found in the conservation of internal energy but with opposite signs. This confirms the conservation
of total energy in the system. The global picture of energy transfer is shown in Fig. 1. The figure
reveals two different kind of routes of the energy flow. The first routes are unidirectional, i.e.,
one-way arrow. These routes refer to the dissipative and decay terms (δω, εω

αβ , εω
γ , and εv). The

second routes are multidirectional routes, and they represent the transfer terms (T v and T ω).
The multidirectional routes couple the energy flow between the rotational and translation kinetic
energies.

The spatial average of Clausius-Duhem inequality [Eq. (7)] is examined to ensure thermodynam-
ical consistency, i.e.,

−
〈

dψ

dt
+ η

dθ

dt

〉
+ 〈εv〉 − 〈T v〉 − 〈T ω〉 + 〈δω〉 + 〈

εω
αβ

〉 + 〈
εω
γ

〉
� 0. (34)
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One can see that there is no constraint on the routes that dissipate or decays energy (〈δω〉, 〈εω
αβ〉,

〈εω
γ 〉, and 〈εv〉) at steady state. The second law only constrains the two multidirectional routes 〈T v〉

and 〈T ω〉. From Eq. (34), one can see that at steady state 〈T v〉 and 〈T ω〉 have an upper limit for
injecting energy into the translational or rotational components of the kinetic energy. The upper
limit is equal to the summation of the other four routes (〈δω〉, 〈εω

αβ〉, 〈εω
γ 〉, and 〈εv〉). If the two

multidirectional routes 〈T v〉 and 〈T ω〉 are ejecting kinetic energy, then there is no constraint on
them.

To compare the conservation of energy between the classical fluid theory and morphing
continuum, one has to look at the total kinetic energy (KE = 1

2 uiui + 1
2 jωiωi). Equations (19) and

(27) describe the transfer of energy in the translational and rotational components of the kinetic
energy. The MCT conservation law for the total kinetic energy is derived by adding Eqs. (18) and
(26), followed by a spatial averaging,

d〈KE〉
dt

=〈T v〉 + 〈T ω〉 − 〈εv〉 − 〈δω〉 − 〈
εω
αβ

〉 − 〈
εω
γ

〉
. (35)

From the above equation one can see that there are four terms that eject kinetic energy: 〈εv〉,
〈εω

αβ〉, 〈εω
γ 〉, and 〈δω〉; and two terms that may inject or eject kinetic energy: 〈T v〉 and 〈T ω〉.

Combining 〈T v〉, 〈T ω〉, and 〈δω〉, the conservation of total kinetic energy becomes

d〈KE〉
dt

= − μ + κ/2

2ρ
〈(vl,k + vk,l )(vl,k + vk,l )〉︸ ︷︷ ︸

〈εV 〉

−
(

α + β

ρ
〈ωm,mωl,l〉 + γ

ρ
〈ωl,nωl,n〉

)
︸ ︷︷ ︸

〈ε�〉

− κ

ρ

(
1

2

〈
�a

m�a
m

〉)
︸ ︷︷ ︸〈

Z�
〉

, (36)

where �a
m = εlkmvm,k − 2ωl is the absolute rotation field, Z� = 1

2�a
m�a

m is the MCT enstrophy.
The absolute rotation is a relativistic field that measures the difference in rotational speed between
the gyration and the vorticity [42]. The total local rotational dissipation is ε� = εω

γ + εω
αβ .

The local translational dissipation rate of the total kinetic energy becomes

εV = μ + κ/2

2ρ
(vk, j + v j,k )(vk, j + v j,k ). (37)

The relationship between the local translational dissipation of the total kinetic energy εV and the
local translational dissipation of the translational kinetic energy εv is

εV = εv + κ

4ρ
(vk, j + v j,k )(vk, j + v j,k ). (38)

Equation (36) shows that although both translational and rotational kinetic energies have terms that
could inject energy into them (T ω and T v), the global flow of the total kinetic energy is always
dissipative, similar to the classical fluid theory [10]. Equation (36) can be further reduced down if
the conservation of angular momentum is conserved by enforcing the small-scale vorticity to be
equivalent to twice the gyration (2ωm = εmlnvn,l ). In that case, both the absolute rotation (�a

m) and
the MCT enstrophy (Z�) become null, and the conservation of total kinetic energy becomes

d〈KE〉
dt

= −μ + κ/2

2ρ
〈(vk, j + v j,k )(vk, j + v j,k )〉 − γ

4ρ
〈v j,iiv j,ll〉. (39)

One can see that the MCT conservation of total kinetic energy becomes similar to the classical
conservation of energy with an additional term representing the impact of the rotation on the
dissipation of energy. Figure 3 compares the single energy decay route in NS [c.f. Eq. (39) and
Fig. 3(a)] and the multiple routes proposed by MCT [c.f. Eq. (36) and Fig. 3(b)].
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FIG. 3. Global total kinetic energy decay in (a) Navier-Stokes and (b) morphing continuum.

IV. NUMERICAL SIMULATION OF HOMOGENEOUS ISOTROPIC TURBULENCE

The present work is based on simulations of homogeneous isotropic turbulence in a triply
periodic box. The reference case is taken from Ooi et al. [17] with Taylor-Reynolds number
Reλ = 70.9 and Kolmogorov length scale η = 2.3 × 10−2. The aim of the current work is to
reproduce Ooi’s Navier-Stokes (NS) work in the presented morphing continuum framework (MCT)
framework, and explore the energy cascade phenomena. The current study utilizes the small-scale
structures to capture the small-scale turbulent structures or smallest eddies. This approach enables
a clear insight into the effect of the translational and rotational motion of the small-scale eddies on
the energy cascade phenomena.

To accomplish the above task, the current section is divided into three parts. In the first part,
a model that gives meaning to the material parameters is presented. The model is implemented
to translate a NS-based HIT case into the presented framework. Afterwards, the study presents the
details of the numerical simulation. In the final section, the study assess the accuracy of the proposed
model. The study compares the turbulent characteristic of both cases and evaluates whether the
small-scale structures are capturing the smallest eddies in the flow.

A. Advanced kinetic theory

The difficulty in simulating a NS case in the MCT framework comes from estimating the value
of the new dimensionless parameters that are not present in the classical theory (Erλ, Cαβ

λ , Cγ

λ , D).
For this reason, the current study employs the work of Chen [42] and Wonnell and Chen [25] to give
a kinetic description for the new material properties. The study by Wonnell and Chen shows that the
only parameters that contribute to the viscous forces in MCT are the rotational viscosity (κ) and the
gyrational diffusion (γ ). Both of them are related by the equation γ = 3

2 jκ . From these definitions,
two of the dimensionless parameters can be represented in terms the Taylor-Reynolds number as

Cαβ

λ = 0, Erλ = Reλ, Cγ

λ = Reλ

3
. (40)

B. Details of the NS and MCT numerical simulations

The simulation domain spans a distance of 2π ≈ 273η in all directions. For the current case,
isotropic forcing is achieved by adding energy into the linear momentum balance law only (i.e.,
Lm = 0). Different methods for injecting energy into low wave numbers have been described in
the literature [43–45]. The linear momentum forcing implemented in the current study is similar
to the work of Eswaran et al. [43] and Ooi et al. [17]. The energy inserted in the domain is
added in the form of low wave number Fourier modes (k � 2

√
2) as a forcing term in the linear
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TABLE I. Numerical and flow parameters for the two cases that are implemented or measured in this study.

Case μ κ γ j λ η τ D

NS 0.025 0 0 – 0.38 0.023 0.21 –
MCT 0 0.05 1.8 × 10−5 2.4 × 10−4 0.38 – – 3

momentum equation of the MCT balance laws. A Wiener statistical process is used to increment
forcing in each time step. The forcing is projected onto a plane normal to the wave vector to ensure
incompressibility.

The statistical quantities that are calculated at each time step are based on the three-dimensional
translational energy spectrum Ev ,

1

2
vivi =

∫ ∞

0
Ev (k)dk, (41)

where the r.m.s. velocity is

v2
rms = 2

3

∫ ∞

0
Ev (k)dk, (42)

and the integral length scale is

L = π

2v2
rms

∫ ∞

0

Ev (k)

k
dk. (43)

The other statistical quantities that are calculated only for the Navier-Stokes reference case is the
Kolmogorov scale, i.e.,

η =
(

ν2

2
∫ ∞

0 k2Ev (k)dk

)1/4

, (44)

and the eddy turnover time is [6]

τ = L

vrms
. (45)

Table I summarizes the characteristics of the two different cases. The first case [17] is used as a
reference case for the universal features of turbulence [16]. The second case represents a replica of
the reference case but in the proposed framework. The diameter of the small-scale structure in case
2 is taken to be equal to the mesh size d = 2π/128, which is about seven times smaller than the
Taylor microscale. This signifies that the small-scale structures are capturing eddies that are seven
times smaller than the Taylor microscale.

Both cases are run sufficiently long (∼200 eddy turnover times) for the instantaneous energy
spectra and other integral characteristics to become statistically steady. It may not be long enough
for the large scales to reach statistical steadiness, but enough for the small scales. To ensure the
simulation reached a steady-state solution, the temporal evolution of the volume-averaged total
kinetic energy ( 1

2vivi + 1
2 jωiωi) is plotted in Fig. 4. The transient phase took around 10 large-eddy

turnover times, while the steady-state solution was run for 200 large-eddy turnover times. One
interesting observation from Fig. 4, is that both cases show a similar trend in the instantaneous
mean kinetic energy. If the steady-state data are averaged temporally, then the values are very close
to each other (NS, 16.52 ± 2.57; MCT, 16.42 ± 2.72). As for the lag between the peaks of the data,
it can be attributed to the time constant derived in the conservation of angular momentum in Sec. III.

The translational kinetic energy spectra, shown in Fig. 5(a), are averaged both spatially and
temporally after the flow reaches a steady solution. The wave numbers shown in Fig. 5(a) are
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FIG. 4. Time evolution of the total mean kinetic energy.

normalized by the Kolmogorov scale obtained from the reference case. The figure confirms that
the −5/3 Kolmogorov power-law slope exists for the total energy spectrum of the two cases around
the integral scale.

The skewness (F3) and kurtosis (F4) of the x component of the velocity are plotted in Fig. 5(b)
for all four cases to ensure homogeneity. The Fn operator is defined as [17]

Fn(vα ) = (−1)n

〈
vn

α

〉
〈
v2

α

〉n/2 , (46)

where vα is any one component of the velocity. Figure 5(b) shows that the kurtosis of the
velocity remains constant at ∼2.85, which agrees with the kurtosis value reported by Batchelor’s
experimental data of grid turbulence [6]. The skewness of the velocity remained approximately zero
throughout the computational time, in accordance with Batchelor [6].

C. Validation for the morphing continuum theory

After confirming that both cases have the same kinetic energy at the global scale, and that the
simulation results are homogeneous, the next objective is to assess the feasibility of the proposed
framework in two folds. The first objective is to evaluate the degree to which the small-scale
structures are capturing the smallest eddies in the flow. Second, compare the turbulent features
of the presented case with the reference case.

Figure 6 maps the joint probability distribution function (pdf) of the magnitude of the vorticity
squared versus the magnitude of the gyration squared. The figures shows that highest concentration
for the gyration is along the line, ∇ × v = 2ω, which indicates that most of the small-scale MCT
structures are rotating at the same speed as the smallest eddies. Therefore, analyzing the gyration of
the flow is equivalent to analyzing the rotational speed of the smallest eddy. The small-scale MCT
structures can be used to capture the smallest turbulent structures (eddies) in the flow.

The next objective is to reproduce the invariant maps of Soria et al. [46], and show that both
cases are able to generate the universal features of turbulence [16]. A brief review of the invariants
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FIG. 5. The comparison of (a) three-dimensional translational kinetic energy spectra for the two cases and
(b) time evolution of the skewness and kurtosis of the x component of the velocity for the four cases.

employed in the classical fluid theory and their derivation is given first, followed by an analysis of
the invariant maps for both cases.

The deformation gradient in the classical fluid theory is the velocity gradient tensor vl,k , which
can be split into a symmetric and skew-symmetric tensors,

vl,k = Skl + �kl , (47)

where Skl is the strain rate tensor defined as

Skl = 1
2 (vl,k + vk,l ), (48)
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FIG. 6. Joint pdf of the magnitude of the vorticity squared vs the magnitude of the gyration squared. The
colors correspond to the value of the joint pdf (red, 10−5; violet, 0.1).

and �kl is the spin rate tensor defined as

�kl = 1
2 (vl,k − vk,l ). (49)

The characteristic equation that satisfies the eigenvalue equation for the velocity gradient tensor is

λ3
i + Pλ2

i + Qλi + R = 0, (50)

where λi is the eigenvalues of vk,l , and P, Q, and R are the first, second, and third invariants of
vk,l . The nature of the three roots of the characteristic equation helps identify the small-scale flow
topology by varying in the form of four possibilities: (1) three distinct real roots; (2) two equal real
roots and one different; (3) three equal real roots; and (4) one real root with two complex conjugate
roots.

Instead of solving for the roots of the characteristic equation to infer the category of solution,
Chong et al. [47] showed that by studying the properties of the three invariants P, Q, and R of
the velocity gradient, one can infer the nature of the roots, and the topology of the flow. The first
invariant P defined as

P = −tr(vk,l ) = −vk,k = −Skk . (51)

It represents the compressibility of the flow, thus vanishes for an incompressible flow. The second
invariant Q for an incompressible flow is defined as

Q = 1
4 (�k�k − 2Skl Skl ), (52)

where �k = ekmlvm,l is the vorticity field. Q measures the relative straining and enstrophy (Zv =
�k�k/2) experienced by a fluid element. The third invariant R for an incompressible flow is defined
as

R = − 1
3vk,lvl,mvm,k = − 1

3

(
SklSlmSmk + 3

4�k�l Skl
)
. (53)
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It measures the relative strain production or amplification (Si jS jkSki) over the enstrophy production
term (�i� jSi j). A similar decomposition for the invariants of the velocity gradient is used on the
strain rate tensor, Skl , and the spin rate tensor, �kl . The invariants of the rate-of-strain tensor Skl are

PS = −tr(Slk ) = −vk,k, (54)

QS = − 1
2 Skl Slk, (55)

RS = − 1
3 Si jS jkSki. (56)

The second invariant QS is proportional to the small-scale rate of viscous dissipation of translational
kinetic energy in both classical theory and morphing continuum theory. As for the third invariant
RS , it is proportional to the skewness of the strain rate and its production. The only nonzero invariant
for �kl is the second invariant,

QW = − 1
2�kl�lk = 1

4�m�m. (57)

This invariant is proportional to half the enstrophy (Zv).
To validate the turbulence features of the MCT simulation, the three most common invariant

maps of the presented simulation are compared with the reference simulation shown in Fig. 7.
The invariants are normalized with 〈Si jSi j〉 following the work of Da Silva and Pereira [48]. The
first invariant map that is analyzed is the second invariant of the velocity gradient tensor Q versus
third invariant R. The classical (Q, R) diagram gives insight in to the nature of the flows small-
scale topology (strain or enstrophy dominated), and the topology of the vortices (compression or
expansion) [48]. The joint pdfs of R and Q for the both cases are shown in Figs. 7(a) and 7(b). The
black dotted line represent the locus of points at which D = 0, where D is the discriminant [47], and
for an incompressible flow its defined as

D = 27
4 R2 + Q3. (58)

Figure 7(a), which refers to the reference case, and Fig. 7(b), which refers to the presented case,
show a joint pdf, similar to the well-known universal teardrop diagrams of Ooi et al. [17]. This
shape implies that the majority of the flow is enstrophy dominated (Q > 0) with a strong correlations
between the vortex stretching part (R < 0) and the vortex compression part (R > 0). An interesting
observation from both figures, is that the invariants of the presented case show to a high proximity
the same distribution and magnitude as the invariants of the reference case.

Another classical invariant map implemented in the study of the topology of the flow is the
(RS , QS) map. The importance of this map lies in its ability to analyze the geometry of the small-
scale straining of the fluid element. In particular, the third invariant RS is associated with the strain
production [48]. A negative RS indicates a region undergoing intense contraction and destruction of
the strain product, and a positive RS implies regions of high expansion, and production of the strain
product. Figures 7(c) and 7(d) show the joint pdfs of the (RS , QS) invariant maps for both cases. The
two joint pdfs are identical, and show a clear preference for the region where RS is greater than zero.
It indicates that most of the flow is experiencing regions of intense expansion of the fluid element,
while only a few regions are experiencing compression.

The third invariant map is the (−QS , QW ) map, analyzes the dissipation of translational kinetic
energy. Points close to the horizontal line (QW ) represents regions at the center of the vortex
tubes that have high enstrophy (Zv) but small translational dissipation (εv). However, points close
to the vertical line (−QS) represents regions away from the vortex tubes with high translational
dissipation but low enstrophy. Figures 7(e) and 7(f) confirm the observations previously made on
the topology of the flow in each case. The figures show a joint pdf similar to the work done on
isotropic turbulence by Ooi et al. [17], with no desirable tendency for the flow to be aligned near
the horizontal or vertical lines.
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FIG. 7. Joint pdfs of the invariants maps of (Q, R), (QS, RS), and (−QS, QW ) for both cases: (a, c, e) for the
NS case and (b, d, f) for the MCT case. Each map contains seven colors, which correspond to different joint
pdfs. All invariants are normalized by 〈Si jSi j〉.

The current section shows that the proposed methodology is not only capable of replicating the
turbulence characteristics of an NS simulation at the global scale, but also capable of replicating the
topological features of turbulence at the small scale.
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FIG. 8. Temporal evolution of the decay rate of the total kinetic energy ( d
dt 〈 1

2 vivi〉 + 〈 1
2 jωiωi〉).

V. ENERGY ANALYSIS

The energy routes are employed to investigate the flow of energy in homogeneous isotropic
turbulence. The analysis begins by investigating these energy routes at the global scale, followed by
an analysis at the small scale. In Sec. III, six routes that control the energy flow were derived; two for
the translational kinetic energy (εv and T v) and four for the rotational kinetic energy (εω

γ , εω
αβ , δω,

and T ω). These routes were found to be dependent on the translational velocity vi and the gyration of
the small-scale structures ωi. However, Sec. IV shows that the majority of the small-scale structures
are capturing the smallest eddy characterized by vorticity, i.e., ωi ≈ 1

2εi jkvk, j . Thus, the five active
energy routes (εω

αβ = 0) can be written in term of the translational velocity vi only.

A. Energy transfer at the global scale

The mean value of the newly derived energy routes are investigated in this section. The analysis
sheds light on the similarities between the classical energy route and newly derived energy route.
In the classical fluid theory, the only component that contributes to the change of the mean kinetic
energy is the mean dissipation term 〈ε〉. In the presented framework, there are six components
that contribute to the change of the mean total kinetic energy [Eq. (35)]. However, if the gyration
is equivalent to the rotational speed of the fluid element ( 1

2εi jkvk, j), then the six components can
be reduced to two components one of them similar to the classical dissipation term as shown in
Eq. (39).

The mean decay rate of the total kinetic energy of the box turbulence study cases is shown in
Fig. 8. The figure shows that both reference and presented cases are decaying almost identical
amount of total kinetic energy on a global scale (NS, 20.4 ± 3.2; MCT, 20.3 ± 3.4). The plot
strengthen the earlier observation, that the two cases are not only experiencing the same trend in
total kinetic energy but also similar decay rates.

To understand the detailed energy loss in the homogeneous isotropic turbulence, the total kinetic
energy is decoupled into the translational kinetic energy field 1

2vivi, and the rotational kinetic energy
field 1

2 jωiωi. Figures 9(a) and 9(b) plot the temporal evolution of the components responsible for
the change in translational or rotational kinetic energy. The sign of the plot is based on whether the
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FIG. 9. Temporal evolution of the components responsible rate of change of the translational and rotational
kinetic energy: (a) mean translational dissipation 〈εv〉, mean rotational dissipation 〈εω〉, and mean rotational
decay 〈δω〉; (b) mean translational transfer rate 〈T v〉, and mean rotational transfer rate 〈T ω〉.

component is causing a loss or gain in kinetic energy, i.e., a negative value implies a loss of kinetic
energy, and a positive value implies a gain of kinetic energy. It should be noted that the summation
of temporal evolution in Figs. 9(a) and 9(b) yields the total kinetic energy decay rate shown in Fig. 8.

Figure 9(a) plots the evolution of the components responsible for the dissipation and decay of
kinetic energy; the mean translational dissipation (〈εv〉), the mean rotational dissipation (〈εω〉), and
the mean rotational decay rate (〈δω〉). Figure 9(b) plots the evolution of the components responsible
for the transfer of kinetic energy; translational transfer rate (〈T v〉) and rotational transfer rate (〈T ω〉).
Figure 9(b) shows that the sign of the evolution of the transfer rates is positive, unlike the sign of
the evolution of the dissipation or decay rates [Fig. 9(a)]. This implies that 〈T v〉 and 〈T ω〉 are not
dispersing kinetic energy, but are injecting kinetic energy into the system. This behavior indicates a
new type of inverse energy cascade. One should note that T v and T ω do not take energy from the
small scale and give it to the large scale, like the conventional notation for inverse cascade. Instead,
they take energy from the internal energy and gives it to the system as a whole. This energy can
either go from the small scales to the large scales as the conventional inverse cascade or stay at the
small scales and dissipate into heat as the classical forward cascade.

Adding the two components responsible for the change in translational kinetic energy 〈T v〉 and
〈εv〉 yields a mean dissipative rate equivalent to the one shown in Fig. 8. Although MCT seems to
dissipate more translational kinetic energy than the classical theory, this larger loss is compensated
by the energy taken from the internal energy by T v . As for the rotational energy, comparing the
temporal evolution of 〈T ω〉, with 〈εω〉, one sees that they are identical. Thus, the lose in rotational
kinetic energy due to 〈δω〉 is accompanied by an increase in kinetic energy gain through the transfer
component 〈T ω〉. Resulting in an average rate of change of rotational kinetic energy to be very close
to zero. Thus, the energy gained by the rotational kinetic energy is equal to the energy lost by it. In
other words, the conservation of rotational kinetic is achieved at the global scale, which implies a
conservation of angular momentum, i.e., 〈ω〉 = 0.

B. Energy transfer at the small scale

The previous section investigated the energy routes on global scale, i.e., mean throughout the
domain. The current section instigates the same routes but on the local scale. However, since the
MCT small-scale structure is seven times smaller than the Taylor microscale, the local scale is close
to the small-scale turbulent structures. Thus, the investigation at the local scale is equivalent to that
at the turbulent small scale. In addition, since the results have already reached a statistical steady
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FIG. 10. Snapshot of the instantaneous isolines depicting the small-scale components responsible for the
rate of change of kinetic energy: (a) energy dissipation for the NS case ε, (b) translational dissipation εv ,
(c) rotational dissipation εω

γ , (d) translational transfer rate T v , (e) rotational transfer rate T ω, and (f) rotational
decay δω.

state, one can investigate the instantaneous behavior of the energy routes, and assume it is the same
through out the full elapsed steady-state time. Figures 10(a)–10(f) plots the instantaneous isolines of
the components responsible for the change in the kinetic energy in the MCT and NS cases. The color
of the plot is based on whether the component is causing a loss or a gain in kinetic energy; a red
color implies a loss, and a blue color implies a gain of kinetic energy. The isolines are normalized
by the instantaneous mean value for each component.

Figure 10(a) plots the isolines for the dissipation rate of kinetic energy from the case (ε).
Figures 10(b)–10(f) plot the isolines for the components responsible for the change of kinetic
energy in the presented case. Figures 10(b), 10(c), and 10(d) plot the isolines for the components
responsible for the decay of total kinetic energy; translation dissipation (εv), rotational dissipation
(εω), and rotational decay rate (δω), respectively. Figures 10(d) and 10(e) plot the isolines for the
components responsible for injecting or ejecting kinetic energy (T v and T ω). The isolines for those
two figures are mostly colored blue indicating that they are causing a new type of inverse energy
cascade (energy flow from internal to kinetic). On the global scale, 〈T ω〉 and 〈T v〉 were shown to
be equal as shown in Fig. 9(b). On the small scale, however, it is a different story. Section III shows
that on the small scale T ω and T v are related through the equation

κ

ρ
(εmlnωlvn),m = T v − T ω, (59)
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FIG. 11. Joint pdf of the energy routes. (a) (T v, εv) and (b) (T v, T ω).

where the mean average of (εmlnωlvn),m is zero. Figures 10(d) and 10(e), which refer to T v and T ω,
respectively, show that these two terms never inject kinetic energy in the same location at the same
time. At a single location, either rotational kinetic energy is injected by T ω or translational kinetic
energy is injected by T v . Zone A, in Fig. 10(d), shows a blue spot in the middle surrounded by white
lines indicating a gain in translational kinetic energy. However, zone A in Fig. 10(e) shows a white
in the middle indicating no transfer of energy. This implies that at the small scale, points with high
value of T v have almost a null value of T ω, and vice versa. This phenomena is clearly explained
in the joint pdf of the energy routes shown in Fig. 11. The only way for T v and T ω to be equal on
the small scale is for (εmlnωlvn),m to be zero. One possible scenario is to have the velocity (vn) and
the axis at which the gyration (ωn) is rotating to be parallel to each other. This case can only occur
when the rotational motion of the small-scale structures decouples from the translational motion.

Comparing Figs. 10(e) and 10(f) for T ω and δω, one can see that the isolines are similar but their
colors are different. This proves that the rotational decay (δω) and the rotational transfer rate (T ω),
are equivalent at the global and small scales but with an inverted function. This can be easily proved
by going back to the definition of both routes and noting that ωi ≈ 1

2εi jkvk, j ,

T ω = κ

ρ
ωm(εmlnvn,l ) ≈ κ

2ρ
εm jkvk, jεmlnvn,l , (60)

δω = 2
κ

ρ
ωmωm ≈ κ

2ρ
εm jkvk, jεmlnvn,l . (61)

Thus, any point that is experiencing a decay in the rotational kinetic energy also experiences
an equivalent gain in the rotational kinetic energy so that the mean rotational kinetic energy is
kept constant. This behavior indicates that the conservation of the angular momentum at both the
global and small scale is conserved, i.e., the rate of change of the small-scale gyration equals zero
(dω/dt = 0).

Out of the six isolines shown in Fig. 10, only Fig. 10(d), which is for T v , is showing both forms
of energy transfer as evident in zones A and B. Thus, T v is the only term that is showing both
forms of energy cascade. To understand the dual function of T v in providing or dissipating energy
one has to look at the kinematics of the small-scale structures. Figure 2(a) shows that if the curl
of the gyration (∇ × �ω) is generating a translational motion along the direction of the velocity
(i.e., α < 90), energy is injected into the translational motion. However, if the resultant translation
motion created by the curl of the gyration is opposing the velocity of the small-scale structure, the
translational energy is lost as heat. Going back to Fig. 10, one can see that the dominant behavior for
the curl of the gyration and the velocity to be aligned in the same direction. In some cases, the curl
of the gyration and the velocity are against each other. This occurs when the small-scale structures
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suddenly shift their translational direction and move in a completely opposite manner. One reason
for this is due to absorbing so much translational kinetic energy in a small duration of time and not
allowing the gyration enough time to adjust to it.

To gain more insight into the relation between the energy routes, the joint pdf of the routes are
plotted in Fig. 11. Figure 11(a) plots the joint pdf of (T v , εv), while Fig. 11(b) plots the joint pdf of
(T v , T ω). Figure 11(a) shows that highest absolute levels of dissipation “|εv|” occurs in locations
where the translational transfer rate “T v” is almost null. The figure also shows that that regions
experiencing the highest |T v| are accompanied by the lowest values for |εv|. It Indicates that at
the small scale, the two routes T v and εv are inversely proportional. Figure 11(b) reveals a similar
relationship between the two transfer routes T v and T ω. The highest levels in rotational transfer rate
“T ω” occurs in locations where the translational transfer rate “T v” is almost null, and vice versa.
Even though the two transfer routes are equivalent at the global scale, locally they are inversely
proportional. The figure shows that at the small scale only one route can dominant the flow of the
energy, with the deciding factor lies with the kinematics of the small scales.

VI. CONCLUSION

The current paper addresses the energy flow in homogeneous isotropic turbulence (HIT) from
the perspective of a completely decoupled rotational and translational motions. The paper begins
by presenting the incompressible balance laws for MCT in their dimensional and dimensionless
form, and explains the meaning behind the new dimensionless parameters. The conservation laws
for linear momentum, angular momentum and energy are then derived. The laws show similarities
between the morphing continuum theory and the classical Navier-Stokes in conservation of linear
momentum, but they show differences in the conservation of angular momentum. It shows a
new time constant τω that represents the characteristic time for the angular momentum to reach
equilibrium, and links the derived time constant with the time constant of the extended Boltzmann
equation [41]. The conservation of energy shows that by segregating the kinetic energy into its
rotational and translational components, one can realize new energy routes not found in the classical
theory. In particular, the conservation law for the translational kinetic energy shows, in addition to
the classical dissipation route (εv), a new transfer route (T v) that could inject or eject energy. As
for the conservation law for the rotational kinetic energy they posses their own routes; one route
that dissipates energy (εω), one route that decays it (δω), and one transfer route (T ω) that could
inject or eject energy in it. The new transfer routes show that internal energy can be converted into
rotational or translational kinetic energy depending on the kinematics of the small-scale rotation
and translation.

The conservation laws are later employed in Ooi et al.’s [17] HIT study. The study begins by
presenting a model to reproduce the Navier-Stokes case into the presented framework, followed
by a comparison of both cases to assess the accuracy of the proposed model. The two cases show
similar results on the global scale by having equivalent mean kinetic energy and on the small scale
by agreeing to Kolmogorov 5/3 law. In addition, the two cases show similarities in joint pdfs of the
invariants of the velocity gradient indicating similar turbulent characteristics at all scales. Finally,
the study implements these routes to investigate the flow of energy. The study shows on the global
scale, sum of the energy routes is equivalent to the single classical dissipation route in NS. If divided
up, however, then the study shows that out of the six energy routes, two transfer routes are injecting
kinetic energy into the flow while the rest are dissipating energy. On the small scale, the study
shows that the relation between the rotational and translational motions of the small scales affect
the flow of energy through the translation transfer rate (T v). If the translational velocity and the curl
of the rotational velocity (ω) are aligned, the T v causes a gain in kinetic energy. However, if the
two motions are misaligned by more than 90◦, T v will dissipate kinetic energy. Finally, the study
analysis the joint pdfs of the three dominant routes (T v, T ω, and εv). The study shows that at the
global scale T v and T ω are equal, but on the small scale they are inversely proportional.
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