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Equilibrium boundary layer (EBL) analysis is performed on filtered turbulence flow
fields for the purpose of deriving key closure models for scale-resolving simulations (SRS)
of turbulence. The objective is to convey the near-wall closure modeling advantages of the
Reynolds-averaged Navier-Stokes (RANS) method to SRS methodology. In the context of
two-equation SRS turbulence closure, the filtered flow field EBL analysis leads to closure
models for turbulent transport of unresolved kinetic energy and dissipation as a function
of degree of resolution. The resulting model is then employed to perform SRS-PANS
(partially averaged Navier-Stokes method) computations of turbulent channel flow. It is
first demonstrated that PANS computations yield flow-field statistics that are consistent
with filtered-field closure modeling assumptions. The PANS results are then compared
against established direct numerical simulation and experimental data. It is exhibited
that mean velocity, Reynolds stresses, and qualitative and quantitative coherent-structure
features are well captured at a reasonable computational effort.
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I. INTRODUCTION

In recent years scale-resolving simulations (SRS) have emerged as a preferred option for
computing complex turbulent flows of engineering interest. In order to achieve reasonable results
at an affordable computational cost, SRS is envisioned to selectively resolve only vital large-
scale turbulence structures on an “accuracy-on-demand” basis. The SRS methods can be broadly
classified into two categories: zonal and bridging approaches. In zonal approaches the partitioning
of the flow field into high- and low-fidelity parts occurs in physical space. In the regions of the
flow with complex coherent structures, the flow field is computed with high-fidelity large-eddy
simulations (LES). Other regions of canonical turbulence are computed with Reynolds-averaged
Navier-Stokes (RANS) models. Thus, zonal models achieve computational savings due to the
use of inexpensive RANS in flow regions of simple turbulence features. The main challenge in
the SRS zonal approach is the treatment of the “hand-shake” or “grey” region at the interface
of the RANS and LES domains. On the other hand, much like LES, the bridging SRS approach
uses the same filtered Navier-Stokes equations throughout the flow domain. The key differences
between LES and bridging SRS methods are (i) the bridging SRS methods are intended for resolving
a much narrower range of scales than LES; (ii) the SRS filter is implicit and the cut-off length scale
is determined by the effective eddy viscosity; and (iii) the SRS closure models solve additional
equations for computing the eddy viscosity of the unresolved scales of motion. The SRS effective
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cutoff can be varied by suitably modifying the coefficients in the eddy-viscosity model equations in
a manner consistent with turbulence physics. The main challenge of the bridging SRS approach is
to develop subgrid stress model equations that are suitably sensitive to the implied cut-off length. In
principle, bridging SRS computation reduces to RANS in the low-resolution limit and asymptotes
to direct numerical simulation (DNS) in the high-resolution limit. In order to accommodate cutoff
in larger scales of motion, the bridging SRS subgrid closure model must account for more complex
turbulence physics than its LES counterpart.

For computing important statistical features of turbulent boundary layers, the RANS method
offers useful advantages over SRS or LES. The SRS and LES approaches are inherently more
accurate away from the wall, as they resolve important flow features, but they can be prohibitively
expensive for resolving the small scales of motion encountered at the walls. The advantage of RANS
at the wall is due to the fact that the closure models are derived from scaling laws established
within the equilibrium boundary layer (EBL). There have been many attempts to reduce the LES
computational cost at the wall by incorporating features of EBL into subgrid stress models [1–4].
While the resulting “wall-modeled” LES approaches have achieved success, there is opportunity for
further improvement of SRS models in the near-wall region.

The focus of this work is on the near-wall modeling for SRS approaches. The bridging
SRS approach of choice in this work is the partially averaged Navier-Stokes (PANS) model of
Girimaji [5], which has many features in common with the single-point partially integrated transport
model (PITM) [6–8]. Multiscale closure of PITM is also discussed in [9]. PANS adapts and
extends proven two-equation RANS or second moment closure (SMC) models for representing
the effects of subgrid scales on the resolved flow field. The physical rationale and mathematical
framework for modifying the RANS model to represent the subgrid physics as a function of
scale resolution have been developed in Refs. [5–7,10]. The motivation for using a two-equation
closure is that individual evolution equations must be solved for the subgrid velocity and length
scales to determine subgrid stress. This approach has already been well documented for a variety
of canonical flows [11–13]. The partition between resolved and unresolved fields is defined by
specifying the ratios of the unresolved-to-total kinetic energy ( fk = ku/k) and unresolved-to-total
specific dissipation rate ( fω = ωu/ω) [5,14]. The PANS framework for adapting the RANS model
developed in [5,10] does not comprehensively address the turbulent transport closure or near-wall
behavior. Those works propose a model based solely on scale-interaction arguments. There is a clear
and imminent need for advancing the physical fidelity of the SRS transport models.

As mentioned earlier, the RANS turbulent transport models for kinetic energy and dissipation
are derived from EBL analysis. This raises the question of whether a similar EBL analysis can be
developed for filtered flow fields leading to SRS transport models. The RANS turbulent transport
models are expected to reproduce physically consistent one-point statistics only. On the other hand,
the SRS approaches are required to yield not only the correct one-point statistical behavior but also
emulate important nonlocal and unsteady flow features. Therefore, it is important to ensure that
any SRS turbulent transport model produces one-point statistics and key coherent-structure features
consistent with the flow physics.

The three key objectives of the current work are:
(1) Adapt and extend equilibrium boundary layer (EBL) analysis to filtered turbulent fields,

leading to turbulent transport models for unresolved kinetic energy and unresolved (specific)
dissipation.

(2) Perform SRS-PANS simulations of benchmark channel flow and evaluate the PANS behavior
in equilibrium log-layer by comparison against DNS statistics of Hoyas and Jiménez [15].

(3) Examine the ability of PANS to capture key qualitative and quantitative aspects of coherent
structures in channel flows.

Although much of the closure model development in this paper is in the context of PANS, the
analytical framework and closure expressions are applicable to other bridging SRS methods.

The paper is organized as follows. The basic premise of the PANS model, as well as a detailed
derivation of the SRS turbulent transport model based on EBL analysis, is described in Sec. II.
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Section III discusses the simulated test cases. In Sec. IV, the results of the proposed transport model
are assessed by comparing PANS results with DNS data and known features of coherent structures.

II. GOVERNING EQUATIONS

The evolution equations governing an incompressible turbulent flow are continuity and Navier-
Stokes equations which are respectively expressed as

∂Vi

∂xi
= 0, (1)

∂Vi

∂t
+ Vj

∂Vi

∂x j
= − ∂ p

∂xi
+ ν

∂2Vi

∂x j∂x j
. (2)

Here, density is subsumed into the pressure term. A generalized filter is used to decompose the
velocity and pressure fields into the resolved and unresolved parts [5]. The filter is taken to be
commutative and constant preserving:

Vi = Ui + u′
i, Ui = 〈Vi〉, 〈u′

i〉 �= 0, (3)

p = P + p′, P = 〈p〉, 〈p′〉 �= 0. (4)

where Vi is the total velocity and Ui is the filtered velocity field. By applying the filter to the Navier-
Stokes equations, the momentum equation for the resolved field is given by

∂Ui

∂t
+ Uj

∂Ui

∂x j
= −∂τ (Vi,Vj )

∂x j
− ∂〈p〉

∂xi
+ ν

∂2Ui

∂x j∂x j
. (5)

The effect of the unresolved field on resolved velocity-field evolution is manifested via the
generalized “subfilter stress” τ (Vi,Vj ) [16]. The goal of any bridging SRS model is to develop a
suitable closure for the subfilter stress (SFS). The general form of the “subfilter stress” τ (Vi,Vj ) is
represented as [16]

τ (Vi,Vj ) = 〈ViVj〉 − 〈Vi〉〈Vj〉. (6)

The PANS bridging SRS approach is based on the premise that RANS-type turbulence closure
is well suited for SFS closure, as they were originally developed to represent the physics of the
entire spectrum of scales on the mean flow. Accordingly, the original PANS works [5,10] develop
the physical foundation and mathematical framework to adapt RANS models for filtered flow fields.

In principle, any RANS closure, including the full Reynolds stress closure model (RSCM)
that solves transport equations for all Reynolds stress components, can be adapted to the PANS
framework. However, the more sophisticated RANS models will increase the stiffness of the
equations and the complexity of the computations. It is therefore important to consider the overall
benefits of using higher-level closures. There are two main reasons for employing higher-complexity
closure models in the RANS context: (i) anisotropy and nonlinearity of the constitutive relation and
(ii) nonlocal effects of turbulence due to history effects and the elliptic nature of pressure. Both
these effects are strong functions of wave number. With increasing wave numbers, these effects
become less and less significant. In a SRS computation, when the cut-off wave number is high
enough to capture any resident coherent structures, (i) much of anisotropy and nonlocality effects
are captured in the resolved scales, and (ii) any of these effects residing in the unresolved scales do
not significantly affect the main statistics of the flow field. For these reasons, in this work we utilize
the simple and robust Boussinesq approximation [5] for the subgrid stress:

τ (Vi,Vj ) = 2

3
kuδi j − 2νuS̄i j, νu = ku

ωu
, ωu = εu

β∗ku
, (7)
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in which νu, Si j , ku, εu, ωu, and β∗ are the unresolved eddy viscosity, strain tensor of the resolved
field, unresolved kinetic energy, unresolved dissipation rate, unresolved specific dissipation rate,
and closure coefficient, respectively. The goal of PANS closure is to derive suitable evolution
equations for the kinetic energy and (specific) dissipation of the unresolved field as a function of
the desired resolution. The motivation for a two-equation closure stems from the fact that, at a
minimum, unresolved-field length and velocity scales are required to specify SFS with some degree
of generality.

The partition between resolved and unresolved scales of motion is characterized in terms of the
fractions of unresolved kinetic energy and (specific) dissipation [5]:

fk = ku

k
, fε = εu

ε
, fω = ωu

ω
= fε

fk
. (8)

Only two of the above three ratios are independent. The two independent parameters determine the
effective cut-off length scale of the simulation as a function of the Reynolds number and are called
the resolution control parameters. These control parameters prescribe the effective viscosity due to
the unresolved scales—the smaller the effective viscosity, more and more scales of the resolved
field will be liberated. The relationship between grid size and PANS resolution parameters can be
derived using simple scaling arguments [17]:

ηu > 
 → fk � 3

(



L

) 2
3

where L = k
3
2

ε
, (9)

in which ηu is the computational Kolmogorov scale expressed by [(ν + νu)3/εu]
1
4 , 
 is the smallest

grid dimension, and L is the local turbulence length scale. In high-Reynolds-number flows, it can be
reasonably assumed that all of the dissipation is contained in modeled scales, leading to fε = 1.0.
Thus at high Reynolds numbers, only one parameter ( fk ) needs to be specified. For simulating
low-Reynolds-number flows, both independent parameters need to be specified. The quantitative
criteria for determining optimal fk value are discussed in Pereira et al. [18].

Model equations for the unresolved turbulent kinetic energy (ku) and specific dissipation rate
(ωu) as functions of resolution control parameters are derived from parent RANS equations using
the averaging invariance principle [16] and the fixed point analysis in homogeneous turbulence flows
found in Girimaji et al. [10]. These equations are given by

∂ku

∂t
+ Uj

∂ku

∂x j
= Pu − β∗kuωu + ∂

∂x j

[(
ν + νu

σku

)
∂ku

∂x j

]
, (10)

∂ωu

∂t
+ Uj

∂ωu

∂x j
= α

Puωu

ku
− αβ∗ω2

u + αβ∗ ω2
u

fω
− β

ω2
u

fω
+ ∂

∂x j

[(
ν + νu

σωu

)
∂ωu

∂x j

]
, (11)

where the closure coefficients are β∗ = 0.09, α = 5/9, and β = 0.075. The last term on the right-
hand side of the above evolution equations represents the transport effects. The turbulent transport
closure is not a part of the homogeneous flow fixed point analysis. In the original works [5,10],
simple scale-interaction arguments are used to suggest a range of physically permissible unresolved
kinetic energy and dissipation Prandtl numbers.

Over the last decade, the PANS methodology has experienced several important developments:
(1) The paradigm that PANS is a DNS of a variable-viscosity medium is developed in Reyes

et al. [19] to adapt Kolmogorov hypotheses to characterize the unsteady features of the simulated
flow field. It is shown that the PANS unsteady field captures important high-order and multipoint
statistics of turbulence in accordance with Kolmogorov theory.

(2) A closure model for commutation residual terms is derived in Girimaji and Wallin [20] from
the conservation of total energy principle.

(3) The DNS of variable viscosity paradigm is used to derive important criteria for optimal
PANS resolution in flows with spatially evolving coherent structures [18].
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(4) PANS has been benchmarked against DNS, LES, and experimental data in several canonical
flows [11–13,21–23].

(5) A near-wall low-Reynolds-number version of PANS is developed in [23], but it does not
address turbulent transport closure.

As mentioned in the Introduction, the objective of the present study is to formally derive and
validate the PANS turbulent transport model using EBL analysis.

A. Equilibrium boundary layer analysis for RANS

We first present the RANS-EBL formulation before developing a similar analysis for filtered
fields. In the RANS approach, the functional form of the turbulent transport model is presumed
from the gradient transport hypothesis, and the closure coefficient (Prandtl number) is derived using
equilibrium boundary layer analysis.

The EBL is amenable to the following simplifications:

dk

dt
= dω

dt
= 0, and P = ε. (12)

Further, the following scaling is proposed [24]:

k = u2
τ√
cμ

, τxy = −u2
τ , and

dU

dy
= uτ

κy
, (13)

where uτ and κ are the friction velocity and von Kármán constant, respectively. From the above, the
following expressions for production can be derived:

P = −τxy
∂U

∂y
= u3

τ

κy
, (14)

P = νt

(
∂U

∂y

)2

= k

ω

u2
τ

κ2y2
= ε. (15)

The eddy viscosity can be identified as

νt = k

ω
= κuτ y. (16)

These scalings are employed to determine σω for RANS transport models [24]:

σω = κ2

√
β∗

(
β

β∗ − α

)−1

. (17)

There is a wide range of values from 0.384 to 0.41 suggested for the von Kármán coefficient in
literature [25]. In the current study, we use κ = 0.41, which is the standard value employed in open
source and commercial codes. After substituting the values of the closure coefficients along with
κ = 0.41 into the expression above, we obtain σω = 2.0. This value yields the correct slope of the
logarithmic layer in an equilibrium boundary layer. The kinetic energy Prandtl number is set to be
equal to σω [24]:

σk = σω . (18)

B. Equilibrium boundary layer analysis for partially filtered fields

We now seek to develop a similar analysis for PANS equations of filtered fields. For practical
applications, variable resolution (VR-PANS), going from RANS at the wall to desired resolution
in the wake, is desirable. For VR-PANS, additional modeling of the commutation error residue is
needed [20], which will be examined in a future study. Throughout this analysis, we will assume
that fk , fε, and fω are uniform in space for ease of EBL model derivation. For any decomposition
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of resolved and unresolved fields, one can write the following equations for corresponding kinetic
energies:

dkR

dt
= Pm

r − εr − γru + Tr, (19)

dku

dt
= Pm

u − εu + γru + Tu, (20)

where Pm
r and Pm

u are production of resolved and unresolved kinetic energy due to mean flow, εr and
εu are dissipation occurring in resolved and unresolved fields, γru is the spectral transfer of energy
from resolved to unresolved fields, and Tr and Tu are the turbulent transport of respective energies.

In order for the boundary layer to be in an equilibrium state, the entire energy spectrum should
be in equilibrium. Thus we propose (in a statistical average sense)

dkR

dt
≈ dku

dt
≈ 0, and Tr = Tu ≈ 0. (21)

Then it follows that

Pm
r − εr − γru = 0, (22)

Pm
u − εu + γru = 0. (23)

Further, the overall unresolved kinetic energy production is given by

Pu = γru + Pm
u . (24)

That is, the unresolved kinetic energy is generated directly from mean flows as well as for spectral
energy transfer from larger scales. These arguments lead to the following:

Pu − εu ≈ 0. (25)

This relationship forms the basis of the filtered EBL analysis. In EBL, we thus suggest the following
simplifications to hold true on an average:

dku

dt
= dωu

dt
= 0, and Pu = εu. (26)

Let us first consider the unresolved kinetic energy equation. Following the RANS analysis [24],
we assume that the molecular viscosity is negligible compared to the eddy viscosity in the EBL.
The energy equation is trivially satisfied, confirming that

ku(y) = constant (27)

within the EBL.
Now we consider the unresolved turbulence frequency equation within EBL. Once again,

neglecting the effect of molecular transport within EBL leads to

0 ≈ α
ωuPu

ku
− β ′ω2

u + ∂

∂y

(
νu

σωu

∂ωu

∂y

)
. (28)

In the equilibrium boundary layer, from the definitions of ku and ωu, it follows that

ku = fkk = fk
u2

τ√
β∗ , (29)

ωu = fωω = fω
uτ

κy
√

β∗ , (30)

νu = fk

fω
νt = fk

fω
uτ κy. (31)
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TABLE I. Details of the test cases examined.

Simulation 
+
x y+

1 
+
z Reτ Ny fk σku , σωu

Case 1 11.25 0.72 5.6 180 50 0.2 0.08
Case 2 34.4 1.7 17.2 550 50 0.1 0.02
Case 3 34.4 0.3 17.2 550 150 0.1 0.02
Case 4 34.4 0.19 17.2 550 200 0.1 0.02
Case 5 34.4 1.7 17.2 550 50 0.15 0.045
Case 6 34.4 1.7 17.2 550 50 0.2 0.08
Case 7 23 1.7 17.2 550 50 0.1 0.02
Case 8 34.4 0.19 17.2 550 200 0.1 2.0 (Unmodified)
Case 9 59 0.53 19 950 120 0.1 0.02
DNS1a 9 6.7 186 97
DNS2a 13 6.7 547 257
DNS3a 11 5.7 934 385

aFrom Ref. [15].

After substituting for ku and ωu from the scalings defined in Eqs. (29) and (30) into the evolution
equation of the modeled specific dissipation rate, Eq. (28), the following relationship between the
modified specific dissipation rate σωu and other PANS closure coefficients is obtained:

σωu = fk

fω

κ2

√
β∗

(
β

β∗ − α

)−1

. (32)

Comparison of Eq. (32) with the RANS counterpart, Eq. (17), leads to the following Prandtl number
for unresolved turbulence frequency:

σωu = fk

fω
σω. (33)

We propose that the kinetic energy Prandtl numbers maintain the same ratio as the RANS
counterpart. This leads to

σku = fk

fω
σk, (34)

where σk and σω are the RANS Prandtl numbers.
The Prandtl number for unresolved kinetic energy and dissipation obtained above from the EBL

analysis is consistent with the zero-transport model (ZTM) proposed in [10]. The ZTM model is
obtained when the resolved scales transport of unresolved kinetic energy or dissipation is negligible.
In the remainder of the paper we perform PANS simulations to verify and validate the proposed
transport model in the turbulent channel flow.

III. SIMULATION PROCEDURE

We perform the benchmark turbulent channel flow PANS simulations using the incompressible
finite volume solver in OpenFOAM [26]. Table I summarizes different computational and physical
resolutions of the conducted PANS simulations. The DNS of Hoyas and Jiménez [15] serves as the
reference for the purpose of validation study.

A computational domain of dimensions 4h × 2h × 2h respectively in the streamwise, wall-
normal, and spanwise directions has been considered, where h is the channel half-height. Hexahedral
meshes with uniform streamwise and spanwise grid resolutions and stretched wall-normal spacing
have been generated. All the grid resolutions reported in Table I are in viscous wall units.

104607-7



PEDRAM TAZRAEI AND SHARATH S. GIRIMAJI

Flow through the channel is sustained by prescribing a constant pressure gradient in the
streamwise direction for three different friction Reynolds numbers of uτ h/ν = 180, 550, and 950.
A cyclic boundary condition is applied in the streamwise and spanwise directions, and a no-slip
condition is employed at the top and bottom walls. All of the statistics reported here are obtained by
temporal averaging over 50h/uτ time units and spatial averaging in homogeneous directions.

The discretization in space and time is of second order, and the number of subiterations is dictated
by the requirement that the residuals at each time step should not exceed 10−6. In addition, in
order to ensure the stability of the time integration, the maximum local Courant number is set to a
conservative value, CFL < 0.6.

IV. RESULTS AND DISCUSSION

The results are presented in three parts. In the first part we ensure that the key modeling
assumptions are upheld in the computed results. Next, we demonstrate that the PANS single-point
statistics in the EBL compare well against DNS data. Finally, the PANS vorticity structures are
examined for qualitative and quantitative consistency against established experimental results.

A. Internal consistency

The principal function of any subgrid model is to simulate the correct level of eddy viscosity
and ensure the overall energy level is captured. For the PANS approach to serve as a reasonable
SRS scheme, it is very important to ensure that the simulation produces (i) the prescribed degree
of viscosity reduction and (ii) the correct kinetic energy balance. We will first examine if PANS
simulations produce the desired behavior. In this section, we verify that PANS computed results are
consistent with the prescribed parameters and modeling assumptions.

Consider a PANS simulation with prescribed fk and fε or fω. We define the viscosity reduction
factor ( fν) as the ratio between PANS viscosity value and that of the total fluctuations or RANS
under similar conditions:

fν ≡ νu

νt
. (35)

The expected or prescribed value of the ratio is

( fν )prescribed = f 2
k

fε
= fk

fω
. (36)

It is reasonable to demand that, on average, the computed results are consistent with the prescribed
eddy-viscosity ratio.

For the case of channel flow, the average subgrid PANS viscosity is a function of the wall-normal
distance and can be computed as follows:

νu(y) = (ku/ωu)(y). (37)

The viscosity of the total field is estimated from the computations using the total kinetic energy and
total dissipation:

νt (PANS) = cμ

k2
t

εt
= cμ

(ku + kr )
2

(εu + εr )
, (38)

where kr , εu, and εr are obtained as follows from the PANS computation:

kr (y) = ViVi − V̄iV̄i, (39)

εu = βkuωu, and εr = 2ν[Si jSi j − S̄i j S̄i j]. (40)
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FIG. 1. Consistency profiles for Reτ = 550: (a) case 2, (b) case 5, and (c) case 8.

A second approach to estimating the total viscosity is to perform a RANS simulation for the same
flow conditions. Based on these two estimates of total viscosity, we define two metrics for computed
eddy-viscosity ratio:

( fν )C1 = νu(PANS)

νt (PANS)
, (41)

and

( fν )C2 = νu(PANS)

νt (RANS)
. (42)

First we verify the consistency between the two estimates of the computed eddy-viscosity ratio
and the prescribed ratio for the case of Reτ = 550. We also include results from PANS calculation
(case 8) in which the turbulent transport is not modified according to the EBL analysis. As shown in
Table I, the PANS transport coefficients in case 8 are retained at the RANS values. Figure 1(a) shows
the comparison between prescribed and computed values for case 2 ( fk = 0.1) in which the PANS
transport coefficient is modified according to the EBL analysis. Clearly both C1 and C2 computed
eddy-viscosity estimates are in good agreement with prescribed value of 0.01. In Fig. 1(b) a similar
comparison is made for case 5 ( fk = 0.15) in which the transport coefficients are also modified.
Again, the agreement between computed and prescribed ratios is good. Next, we compare case 8
( fk = 0.1) in which the transport coefficients are unmodified from RANS values [Fig. 1(c)]. The
computed eddy-viscosity ratio is close to unity rather than the prescribed value of fν = 0.01. This
clearly demonstrates the importance of modifying the transport coefficient in accordance with EBL
analysis. Unless the transport coefficients are modified, the PANS eddy-viscosity value approaches
that of RANS irrespective of fk values specified. It will be shown later that the flow structures
computed in case 8 (Unmodified coefficients) do not display a large range of resolved scales.
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FIG. 2. Production-to-dissipation ratio for Reτ = 550 in terms of budgets of (a) subgrid kinetic energy and
(b) total kinetic energy.

Having established that the PANS simulation (with modified coefficients) does indeed produce
the required reduction in eddy viscosity, we next investigate if the correct balance between pro-
duction and dissipation is attained. Toward this end, we examine two important ratios: production-
dissipation ratio of the unresolved field (Pu/εu) and total field (Pt/εt ). The various production terms
are obtained as follows:

Pu = 2νuSi jSi j and Pt = −u′
iu

′
j

∂Vi

∂x j
. (43)

It is important to note that due to the unsteady nature of Pu and εu, they have been averaged over
homogeneous planes as a function of wall distance. The two important ratios as a function of wall-
normal distance is shown in Fig. 2(a). There is a clear balance between unresolved production and
unresolved dissipation of energy within the logarithmic layer, which effectively decouples the buffer
layer and wake flow regions as dictated by physics. Comparison of total production-to-dissipation
ratio obtained from the same PANS simulation is now compared against the DNS data of Hoyas and
Jiménez [15]. Apart from the region very close to the wall, the agreement is quite reasonable.

We have established that the PANS model produces the prescribed degree of viscosity reduction
and reasonable production-dissipation balance. Now we proceed to the validation stage where the
PANS statistics and flow structures are compared against established data.

B. One-point statistics

1. Mean flow field

The grid convergence study in terms of the mean velocity field is shown in Fig. 3(a). Cases
2, 3, and 4 in Table I examine the grid convergence in the wall-normal direction, while cases 2
and 7 assess the grid convergence in the stream parallel direction. For the cases with modified
coefficients, all three grids considered (Ny = 50, 150, 200) converge to the DNS data. The case
with unmodified coefficient (case 8), however, exhibits a significant deviation, even with the highest
resolution studied (Ny = 200). This finding once again emphasizes the importance of turbulent
transport coefficients.

Figure 3(b) exhibits the PANS mean velocity profiles at three different Reτ values: 180, 550, and
950. The results show that the right slope of the log layer is recovered at all Reynolds numbers.

In Fig. 3(c), the mean profiles obtained for three different fk values are shown for the case of
Reτ = 550. All these simulations are run on the coarsest grid resolution, with only 204 000 grid
cells. As expected, by decreasing the fk value, a higher amount of unsteadiness within the flow field
is resolved, and the PANS results converge to the DNS profile.
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FIG. 3. Mean velocity profiles for different simulation parameters: (a) grid size Ny, (b) Reτ , (c) and fk

values. DNS data are taken from Hoyas and Jiménez [15].

2. Reynolds stresses

Figure 4 displays the Reynolds shear stress and anisotropy profiles for fk = 0.1 and Rτ = 550
at different grid resolutions. For all resolutions considered, the PANS shear stress is in excellent
agreement with the DNS data. The anisotropy of PANS Reynolds stresses is exhibited on the
invariant map [27], shown in Fig. 4(b). All cases shown exhibit the correct degree of anisotropy
as a function of wall distance. The anisotropy starts at the two-component limit near the wall and
proceeds toward the one-component state. Finally, it evolves along the axisymmetric expansion line,
approaching isotropic state near the centerline.

FIG. 4. Reynolds stresses at different grid resolutions for Reτ = 550: (a) shear stress profile and
(b) anisotropy profile on invariant map.
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FIG. 5. Reynolds stresses as a function of physical resolution ( fk) for Reτ = 550: (a) shear stress,
(b) normal streamwise stress, (c) wall-normal stress, and (d) normal spanwise stress.

The fk dependence of the different Reynolds stress components is shown in Fig. 5. Once
again, the PANS results converge to DNS values with decreasing fk . For the case of fk = 0.1, the
agreement is quite good.

C. Multipoint statistics and structures

1. Energy spectra

To demonstrate the scale-resolving capability of WR-PANS, plots of power spectral density of
streamwise velocity fluctuations corresponding to case 4 in Table I are shown in Fig. 6. In order
to obtain the temporal energy spectra, a large number of samples are recorded at three different
wall-normal locations: y+ = 50, 100, and 150. The spectrum is normalized by the local turbulent

FIG. 6. One-dimensional frequency spectra of streamwise velocity at three wall distances in case 4.
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FIG. 7. Two-point correlations Ruu in the streamwise direction at y+ = 330. Solid circles are DNS of Sillero
et al. [30].

kinetic energy, and frequency is scaled by the centerline velocity Uc and channel half-height (h). In
addition, to improve the signal clarity, a Hanning window [28] was applied to obtain the spectra.
Figure 6 illustrates the computed spectra at the three locations. Each spectrum exhibits a −5/3 slope
at the large-scale side of the inertial range. Then at smaller inertial scales, the spectrum exhibits a
−7 slope. The slopes of the spectra agree very well with the spectral behavior of the boundary layer
shown in Wu and Moin [29]. Thus, PANS simulation results yield the correct spectral scaling.

2. Two-point correlation

To further demonstrate the ability of PANS to capture turbulence structures, we now examine
the spatial two-point correlations in case 4 (Fig. 7). The PANS two-point streamwise velocity
correlation function is compared against the DNS data of Sillero et al. [30]. The agreement is
reasonable for small separation distances and excellent for larger separations. The discrepancy
at small separation distances is to be expected as PANS uses a closure model for representing
small-scale physics. The larger scales are captured more accurately, leading to better agreement
of the two-point correlations at larger separation distances.

3. Coherent structures

In evaluating SRS methods, it is very important to look beyond low-order statistics and examine
unsteady features and flow structures. Our goal here is to establish that PANS computations capture

FIG. 8. Assessment of the modified transport coefficients in terms of turbulence structures for Reτ = 550:
(a) case 4 and (b) case 8.
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FIG. 9. Organization of turbulence structures for Reτ = 550. (a) λ2 isosurfaces colored by streamwise
velocity, (b) hairpin packet in spanwise vorticity contour: (c) first hairpin, (d) second hairpin, and (e) third
hairpin.

key vorticity features characteristic of boundary layers. For the purpose of vortex visualization, λ2

isosurfaces representing the minimum local pressure have been employed [31].
Figure 8 illustrates λ2 isosurfaces, colored by the local streamwise velocity, for cases 4 and 8. The

difference between PANS simulations with modified transport coefficients (case 4) and unmodified
coefficients (case 8) is immediately evident. The reduced eddy viscosity in the modified case leads
to the liberation of a broader range of unsteady scale (case 4). On the other hand, the unmodified
case (case 8) exhibits very few unsteady scales. This finding is consistent with the viscosity ratio
exhibited in Fig. 1. Thus, the modified model leads to a prescribed degree of viscosity reduction
and captures a wider range of scales. Next, we will establish that the unsteady scales exhibit correct
physical behavior.
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While cases 2–4 show adequate resolution for capturing one-point statistics, for scrutinizing
the details of small-scale vorticity structures we use the highly resolved case 4 in Fig. 9.
Figure 9(a) provides a three-dimensional illustration of the λ2 isosurfaces, colored by the local
streamwise velocity. For a more quantitative examination, we also present the vorticity contours on
a streamwise-wall-normal plane in Fig. 9(b). From these figures we can identify different sets of
organized motions referred to as “coherent structures.” These structures mostly take the form of a
hairpin, which is consistent with the observations of Theodorsen [32].

Figure 9(a) shows resolved hairpin structures of different forms: symmetric, asymmetric, or cane
shape. Three distinguishable hairpins, along with some partially formed ones, are observed in the
figure shown. Since the spanwise component of velocity is nonzero, one-legged hairpins are most
prominent. This figure also shows that the grouped hairpins are aligned in a ramplike shape in
the streamwise direction at an angle φ = 12.5◦. This value of streamwise alignment angle lies in
the range of 12◦ < φ < 20◦ established by Christensen and Adrian [33] for fully developed wall-
bounded turbulent flows in this Reynolds number range.

Next we focus on a single packet to examine the flow-structure organization using “quadrant
analysis” [34]. Figures 9(c)–9(e) capture ejection and sweep mechanisms on the x-y plane of z/h =
0.7, going through the head of hairpins in the packet. By following fluctuation velocity field vectors,
this plot depicts how the low-speed near-wall fluid ejects away from the wall and the high-speed
outer layer fluid sweeps toward the wall. The shear layer at which low- and high-momentum fluids
meet is also clearly visible. The head of the hairpins, often referred to as the signature of coherent
structures, which corresponds to a strong spanwise vorticity region, is also clearly evident. It should
be emphasized that case 7 (with unmodified coefficients) does not capture any of the flow structures
at the same degree of computational resolution.

Overall, PANS, with transport equations modified according to EBL analysis, captures the
channel flow statistics and flow structures adequately at reasonable computational expense.

V. CONCLUSION

The objective of this study is to derive turbulent transport models for two-equation closures in
the context of scale-resolving simulations (SRS) of turbulence. Toward this end, along the lines of
RANS methodology, we develop the equilibrium boundary layer analysis of filtered flow fields. The
analysis leads to a closure model for turbulent transport Prandtl numbers σωu and, ultimately, to σku,
in terms of resolution control parameters fk, fω.

Employing the new turbulent transport closure models, PANS simulations of turbulent channel
flow are performed at different Reynolds numbers. It is first demonstrated that PANS computations
do yield the prescribed eddy-viscosity reduction. Further, the computations exhibit the required bal-
ance between production and dissipation. Then the PANS results are compared against established
DNS and experimental data. The mean flow profile, Reynolds stress magnitude, and anisotropy are
well captured by the PANS computations. Analyses of the energy spectra and two-point correlation
further confirm the fidelity of PANS methodology. Finally, it is also shown that unsteady flow
structures such as hairpin packets are simulated adequately.

The analysis and simulations presented in this paper represent an important step forward
toward using two-equation closures for scale-resolving simulations of practical turbulent flows. The
development in this work focuses on constant fk resolution. Work is currently underway to extend
the model for spatially varying fk . This will enable PANS simulation to go from RANS ( fk = 1) at
the wall to high degrees of resolution ( fk < 1) in the interior of the flow.
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