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Stratified turbulence shows scale- and direction-dependent anisotropy and the coex-
istence of weak turbulence of internal gravity waves and strong turbulence of eddies.
Straightforward application of standard analyses developed in isotropic turbulence some-
times masks important aspects of the anisotropic turbulence. To capture detailed structures
of the energy distribution in the wave-number space, it is indispensable to examine the
energy distribution with nonintegrated spectra by fixing the codimensional wave-number
component or in the two-dimensional domain spanned by both the horizontal and the
vertical wave numbers. Indices which separate the range of the anisotropic weak-wave
turbulence in the wave-number space are proposed based on the decomposed energies. In
addition, the dominance of the waves in the range is also verified by the small frequency
deviation from the linear dispersion relation. In the wave-dominant range, the linear wave
periods given by the linear dispersion relation are smaller than approximately one third of
the eddy-turnover time. The linear wave periods reflect the anisotropy of the system, while
the isotropic Brunt-Väisälä period is used to evaluate the Ozmidov wave number, which is
necessarily isotropic. It is found that the time scales in consideration of the anisotropy of
the flow field must be appropriately selected to obtain the critical wave number separating
the weak-wave turbulence.

DOI: 10.1103/PhysRevFluids.4.104602

I. INTRODUCTION

Turbulence in nature essentially has anisotropy, especially at large scales. Theoretical approaches
in turbulence research originate from Kolmogorov’s local isotropy hypothesis and have been
extended to research in anisotropic turbulence systems. Numerical simulations of high-Reynolds-
number turbulent flows and their analyses are developed also in homogeneous statistically isotropic
turbulence systems and are often incorporated in anisotropic turbulence systems simply. It is
essential to introduce appropriate analytical tools which do not diminish scale- and direction-
dependent anisotropic properties in the anisotropic turbulence.

Stratified turbulence is one of the most fundamental turbulence systems which have statistical
anisotropy and is observed in the oceans and the atmosphere. The gravity produces density or
thermal stratification and makes statistical differences in energy distribution between the vertical
direction and the horizontal direction. The breaking of the internal gravity waves affects the global
climate and our lives; the upwelling due to breaking is an important part of the thermohaline
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circulation in the oceans [1], and the breaking in the atmosphere sometimes causes clear-air
turbulence that may expose aircraft flight to risk [2]. The breaking corresponds the energy transfer
from waves to vortices.

Various kinds of energy spectra have been reported in observations, experiments, and simulations
of stratified turbulence. The variety is derived from the physical mechanisms, the length scales,
and other parameters. Such different energy spectra can coexist, and the coexistence is obtained in
atmospheric observations and numerical simulations [3–5]. For example, a kinetic-energy spectrum
observed in atmospheric flows has a power law K⊥(k⊥) ∝ k−3

⊥ at large scales [3]. Here, k⊥ is a
horizontal wave number, and K⊥(k⊥) is the horizontal kinetic-energy spectrum as a function of
k⊥. Another power law, K⊥(k⊥) ∝ k−5/3

⊥ , is also observed at mesoscales, and the same power law is
obtained analytically and numerically [5]. Observation and theoretical prediction also have a variety
of the kinetic-energy spectrum as a function of the vertical wave number k‖: the breaking of the
internal gravity waves makes the total kinetic-energy spectrum K (k‖) ∝ k−3

‖ [6], for example. The
Bolgiano-Obukhov phenomenology predicts the coexistence of two power laws in kinetic spectra:
K (k) ∝ k−11/5 for k < kB and K (k) ∝ k−5/3 for k > kB, where kB is the Bolgiano wave number [7,8].
The pioneering work for the two-dimensional (2D) energy spectrum of the internal gravity waves
observed in the ocean is the Garrett-Munk spectrum, which has K (k⊥, k‖) ∝ k−2

⊥ k−1
‖ at relatively

large wave numbers [9]. The weak turbulence theory predicts a variety of power laws including the
Garrett-Munk spectrum [10]. A spectral model that allows even variability was proposed [11]. In this
way, the kinetic-energy spectra as well as the potential-energy spectra are diverse, and the diversity
may result from the boundary conditions and the magnitude relation between the horizontal wave
number and the vertical wave number. On the other hand, when the stratification is relatively weak,
the vortices are dominant in the flow, and the 3D isotropic Kolmogorov turbulence appears. Then
the energy spectrum shows the Kolmogorov’s power law K (k) ∝ k−5/3.

To elucidate the variability of the energy spectra at the small wave numbers and to consistently
observe them, the dominant physical mechanism at a wave number must be evaluated. In this case,
the one-dimensionalized energy spectra such as K⊥(k⊥) obtained by integration over k‖ cannot
properly reflect the energy distribution in the anisotropic turbulence. The wave-number range where
one of the physical mechanisms framing the anisotropic turbulence is dominant should be identified
in the k⊥-k‖ space.

It is the general practice to focus on time scales to find a dominant mechanism in complex
dynamical systems which have multiple physics [12]. In the 3D isotropic Kolmogorov turbulence,
for example, the eddies in the inertial subrange have the eddy-turnover time shorter than the
dissipation time, while the dissipation time is shorter than the eddy-turnover time in the dissipation
range. The Kolmogorov wave number, which separates the inertial subrange and the dissipation
range, is defined so that the eddy-turnover time is equal to the dissipation time.

The weak turbulence theory, which has been successfully applied to the statistical description
of nonlinear energy transfers among weakly coupled dispersive waves, assumes that the linear time
scale evaluated by the linear dispersion relation is much smaller than the nonlinear time scale of
energy transfers. However, the linear time scale becomes comparable with the nonlinear time scale,
and the assumption of the weak nonlinearity is violated either at small or at large wave numbers
in most wave turbulence systems [13–15]. As a result, the weak-wave turbulence and the strong
turbulence coexist in many wave turbulence systems such as the stratified turbulence considered
here, rotating turbulence [16], magnetohydrodynamic turbulence [17], elastic-wave turbulence [18],
and quantum turbulence [19].

In stratified turbulence, the Brunt-Väisälä period and the eddy-turnover time have, respectively,
been used as the linear and nonlinear time scales. The Ozmidov wave number, defined as the wave
number at which these two time scales are comparable, has been considered the critical wave number
that separates the strongly anisotropic turbulence and the isotropic Kolmogorov turbulence [20]. In
fact, for wave numbers much larger than the Ozmidov wave number, the stratification can be almost
negligible, and the isotropic Kolmogorov turbulence appears. The buoyancy wave number, which is
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defined by the characteristic horizontal velocity and the Brunt-Väisälä frequency, gives the scale of
the shear layers and the breaking of the internal gravity waves [21].

On the other hand, the weak-wave turbulence does not appear at all wave numbers smaller
than the Ozmidov wave number or the buoyancy wave number. Anisotropic quasi-2D turbu-
lence such as layerwise 2D turbulence [22] and pancake turbulence [23] exists at such small
wave numbers. Neither the Ozmidov wave number nor the buoyancy wave number can identify
the wave-number range where statistically anisotropic gravity-wave turbulence is dominant because
of the isotropy assumed in their derivations. Anisotropy of the time scales can be introduced by
using the period given by the linear dispersion relation instead of the Brunt-Väisälä period as the
linear time scale [24]. The wave number at which the period given by the linear dispersion relation
and the eddy-turnover time are comparable can separate the weak-wave turbulence and the isotropic
or anisotropic strong turbulence in magnetohydrodynamic turbulence [17,25–27]. However, it is not
clear in rotating turbulence [28].

In this paper, direct numerical simulations of strongly stratified turbulence are performed, and
anisotropic properties of internal gravity-wave turbulence are characterized by distribution and
decomposition of energy. The organization of the paper is as follows. The numerical scheme of
the direct numerical simulations and decomposition of the wave-number space and the flow field
are shown in Sec. II, where some definitions of the energies to characterize the anisotropic
weak-wave turbulence are provided. The numerical results are exhibited in Sec. III. Indices to
identify the range of the anisotropic internal gravity-wave turbulence are proposed, and the range is
examined in the 2D domain spanned by both the horizontal and the vertical wave numbers. The last
section (Sec. IV) is devoted to summary.

II. FORMULATION

A. Numerical scheme

Incompressible flows in stably stratified background flow in the z direction are considered. Under
the Boussinesq approximation, the governing equation for the velocity u and buoyancy b is given as
follows:

∂

∂t
u + (u · ∇ )u = −∇p + bez + ν∇2u + f , (1a)

∇ · u = 0, (1b)

∂

∂t
b + (u · ∇ )b = −N2u · ez + κ∇2b. (1c)

The buoyancy b is given as b = −gθ ′/θ0 in atmospheric flows, for example, where g, θ ′, and θ0

are, respectively, the gravity acceleration, the temperature fluctuation, and the mean temperature.
The Brunt-Väisälä frequency N is assumed to be constant. The external force f is added to obtain
the nonequilibrium statistically steady state. The kinematic viscosity and the diffusion constant are,
respectively, denoted by ν and κ .

In this work, direct numerical simulations of Eq. (1) are performed in a periodic box with the
side 2π . The Fourier coefficients of the dependent variables appearing in Eq. (1), ũk, p̃k, and b̃k, are
used, and the tildes are omitted below.

The pseudospectral method with aliasing removal due to the phase shift is employed to evaluate
the nonlinear term. The Runge-Kutta-Gill method is used for the time integration. The external
force is added in the wave-number space to the wave-number mode in k f − 1/2 � |k| < k f + 1/2,
where the forced wave number k f is set to 4. The external force is generated by the Ornstein-
Uhlenbeck process [4] as follows. The colored noise f̂ k = ( f̂xk, f̂yk, 0), which consists of two
spatial components each having a complex value, is obtained for each wave number according to
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TABLE I. Parameters in the numerical simulations. Re, horizontal Reynolds number; Reb, buoyancy
Reynolds number; Fr⊥, horizontal Froude number; Fr‖, vertical Froude number; kO, Ozmidov wave number;
kb, buoyancy wave number. The root mean square of the horizontal velocity is denoted u⊥rms. The horizontal
and vertical integral length scales, �⊥ and �‖, are defined by transverse velocity correlations.

No. of γk Re≡ Reb ≡ Fr⊥ ≡ Fr‖ ≡ kO ≡ kb ≡
grid points u⊥rms�⊥/ν ε/(νN2) u⊥rms/(N�⊥) u⊥rms/(N�‖)

√
N3/ε N/u⊥rms

20483 0.5 7.7 × 104 2.1 9.0 × 10−3 0.80 490 27
10243 0.1 1.8 × 104 9.4 × 10−2 4.9 × 10−3 0.15 2300 76
10243 0.2 1.1 × 104 0.24 9.4 × 10−3 0.17 1200 57
10243 0.5 2.5 × 104 0.80 9.6 × 10−3 0.46 500 29
10243 1 4.1 × 104 1.9 1.4 × 10−2 1.6 260 15
10243 2 3.7 × 104 4.7 1.9 × 10−2 2.0 130 11
10243 5 2.2 × 104 18 3.5 × 10−2 1.0 53 8.2

the stochastic differential equation(
d f̂ k

d ĝk

)
= dt

(−α 1

0 −α

)(
f̂ k

ĝk

)
+

(
0

γkdW k

)
, (2)

where dW k represents the normal random variables with mean 0 and variance dt and has four
independent components. The correlation time of f̂ k is O(1/α), and α is set to be N in this paper.
Because 〈| f̂ k|2〉 = γ 2

k /α, γk is used to control the amplitude of the external force. Finally, the
Fourier coefficient of the external force is set as f k = f̂ k − k(k · f̂ k)/k2 to satisfy the divergence-
free condition.

The number of grid points used is up to 20483. Low-resolution simulations with 10243 grid
points are also used to examine the parameter dependence. The corresponding largest wave number
kmax is approximately 970 or 480. The Brunt-Väisälä frequency is set to N = 10. The Prandtl
number is set to be unity, i.e., ν = κ , and ν is chosen so that kmax/kη ≈ 1.2. Here, kη = (ε/ν3)1/4

is the Kolmogorov wave number, and ε denotes the mean dissipation rate of the kinetic energy.
The coefficient γk to control the amplitude of the external force is varied in the simulations with
10243 grids. The parameters in the numerical simulations and their definitions which follow those
in Ref. [29] are summarized in Table I.

The initial condition of a simulation is a statistically steady state of the lower-resolution
simulation. Therefore, small-wave-number modes are numerically integrated over a long time
as Nt = O(103). Because all the simulations relax to statistically steady states after some times
depending on the amplitudes of the external force, the growth without stationarity reported in
Ref. [30] was not observed in the simulations. Time averaging is performed to draw the spectra
for Nt = 100 with every 12.5 in the high-resolution simulation. It might be short to remove the
fluctuation at small wave numbers, but the results shown in this paper are confirmed to be unchanged
in the low-resolution simulations, where long-time averaging is performed.

B. Ratios of time scales to find dominant physical mechanism

The Ozmidov wave number kO has been considered as a wave number which separates the
strongly anisotropic range and the isotropic range in the wave-number space. The Ozmidov wave
number is given as a wave number at which the Brunt-Väisälä period 1/N and the eddy-turnover
time of the 3D isotropic turbulence τk = 1/(ku) = (k2ε)−1/3 are comparable, i.e., kO =

√
N3/ε. It

should be noted that the Ozmidov wave number is independent of the direction of the wave number
vector, i.e., isotropic. The 3D isotropic Kolmogorov turbulence is expected to dominate at wave
numbers larger than kO, but kO does not necessarily determine the wave-number range where the
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weak gravity-wave turbulence is dominant because of the lack of the anisotropy. The buoyancy wave
number kb = N/u⊥rms is another wave number that characterizes the transition from the quasi-2D
turbulence to the 3D isotropic turbulence. The buoyancy wave number is also isotropic.

Owing to the anisotropy, the spectral structures in the wave-number space should be investigated
in the k⊥-k‖ space. The theory of the critical balance states that energy is transferred in the
transitional wave-number range between the wave-dominant range and the vortex-dominant range
[24]. In this theory, the wave period of the gravity wave given by the linear dispersion relation is
employed as the linear time scale instead of the Brunt-Väisälä period. Note that the linear dispersion
relation is anisotropic.

Because k⊥ � k‖ and hence |u⊥| � |u‖|, owing to the divergence-free condition, were assumed
in Refs. [24,31], the linear dispersion relation was rewritten as σ2Dk = Nk⊥/k‖, and the eddy-
turnover time of the 2D turbulence τ2Dk = 1/(k⊥u⊥) = (k2

⊥ε)−1/3 was used as the nonlinear time.
In the present work, since the strong turbulence is not only 2D but also 3D and k⊥ � k‖ does not
necessarily hold, the general linear dispersion relation σk = Nk⊥/k is used to evaluate the linear
time. Moreover, the eddy-turnover time of the 3D turbulence τk = (k2ε)−1/3 is used as the nonlinear
time. Then the nonlinearity is evaluated by χk = 1/(σkτk). The ratio of the gravity-wave period to
the 2D eddy-turnover time χ2Dk = 1/(σ2Dkτ2Dk) is also introduced for reference.

C. Decomposition of turbulent flow

To examine the idea of the critical balance, it is indispensable to identify the wave-dominant
range. The Craya-Herring (Cartesian) decomposition and the helical-mode decomposition are used
for the identification in this paper.

In the Craya-Herring decomposition [4,32], an orthonormal basis, e1 = k × ez/k⊥, e2 = k ×
e1/k, and e3 = k/k, is introduced. The two basis vectors e1 and e2 are defined only when k and ez are
not in parallel, that is, horizontal component of k, k⊥, is nonzero. The orthogonal basis decomposes
the velocity as

uk =
{

uve1 + uwe2 for k⊥ = 0,

us for k⊥ = 0.
(3)

The Fourier component of the velocity is given by the two components perpendicular to the wave-
number vector k because of the incompressibility k · uk = 0. When wave numbers with k⊥ = 0 are
included, such decomposition is called the Cartesian decomposition.

When the viscosity and the diffusion are neglected for k⊥ = 0, the governing equation, (1), can
be linearized as

∂uvk

∂t
= 0,

∂uwk

∂t
= −k⊥

k
bk,

∂bk

∂t
= N2 k⊥

k
uwk. (4)

This linear inviscid nondiffusive equation indicates that uv = iωz/k⊥ is a vortical mode that is
not affected by the linear buoyancy term, and uw = −kuz/k⊥ is a wave mode. Here, ωz denotes
the z component of the vorticity. The second equation and the third one in Eq. (4) give the
linear dispersion relation of the gravity waves: σk = Nk⊥/k. The velocity for k⊥ = 0, uskz =
u⊥, represents a vertically sheared horizontal flow. Namely, the Cartesian decomposition simply
represents the decomposition of the velocity into the vortices, the waves, and the shear flows at the
lowest order. The Cartesian decomposition is equivalent to the normal-mode decomposition [33].

The helical-mode decomposition has also been used for the decomposition of the velocity. In the
helical-mode decomposition, the basis h± = (e2 ∓ ie1)/

√
2 is the eigenvector for the curl operation,

ik × h± = ±kh±. Then the velocity is decomposed as u = ξ+h+ + ξ−h−, where ξ± = u · h∓ is the
helical-mode intensity. Note that h± · h± = 0 and h± · h∓ = 1.

A wave-number mode k has a total energy Ek, which is the sum of the kinetic energy
Kk = 〈|uk|2〉/2 and the potential energy Vk = 〈|bk|2〉/(2N2). The kinetic energy can be given by
the horizontal kinetic energy K⊥k = Kxk + Kyk = (〈|uxk|2〉 + 〈|uyk|2〉)/2 and the vertical kinetic
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energy K‖k = Kzk = 〈|uzk|2〉/2, focused in the direction of the velocity. Similarly, the Cartesian
decomposition defines the vortical kinetic energy Kvk = 〈|uvk|2〉/2 = 〈|ωzk|2〉/(2k2

⊥), the wave ki-
netic energy Kwk = 〈|uwk|2〉/2 = k2〈|uzk|2〉/(2k2

⊥), and the shear kinetic energy Kskz = 〈|uskz |2〉/2 =
〈|u⊥kz |2〉/2. Because the shear flow is defined only for k⊥ = 0, it depends only on kz. Moreover,
according to the helical-mode decomposition, the kinetic energy in the m direction, where m =
x, y and z, can be written as

Kmk = K (k)

8πk2

(
1 − k2

m

k2

)
+ 1

2

(
Kk − K (k)

4πk2

)(
1 − k2

m

k2

)
+ Re

[
Zkh2

+mk

]
. (5)

Here, K (k) is the one-dimensionalized energy spectrum, and Zk = 〈ξ+kξ
∗
−k〉 = Kwk − Kvk +

iRe〈u∗
vkuwk〉. The terms on the right-hand side of Eq. (5) represent the isotropic part, directional

anisotropic part with respect to the direction of k, and the polarization anisotropic part with respect
to the direction of u of the kinetic energy [34]. In this work, the vertical kinetic energy

Kzk = K‖k = K (k)

8πk2

(
k⊥
k2

)2

+ 1

2

(
Kk − K (k)

4πk2

)(
k⊥
k2

)2

+ 1

2
(Kwk − Kvk)

(
k⊥
k2

)2

(6)

and its polarization anisotropic part, KzPAk, which is the last term on the right-hand side of Eq. (6),
are used to quantify the anisotropy of a wave-number mode.

III. NUMERICAL RESULTS

A. Energy spectra

Spectra of the total kinetic energy K , the horizontal kinetic energy K⊥, the vertical kinetic energy
K‖, and the potential energy V obtained in the numerical simulation with 20483 grid points are
shown in Fig. 1. The 1D total kinetic-energy spectrum as a function of the horizontal wave numbers,
for example, is defined as

K (k⊥) = 1

�k⊥

∑
k′

⊥

′ ∑
k′
‖

1

2
〈|uk′

⊥,k′
‖
|2〉, (7)

where the summation
∑′

k′
⊥

is taken over ||k′
⊥| − k⊥| < �k⊥/2, and �k⊥ is the bin width to obtain

the spectrum. The summation
∑

k′
‖

is taken over all the vertical wave numbers. These 1D spectra are
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FIG. 1. Integrated energy spectra: total kinetic energy, horizontal kinetic energy, vertical kinetic energy,
and potential energy. (a) As functions of horizontal wave numbers integrated over the vertical wave numbers
and (b) as functions of vertical wave numbers integrated over the horizontal wave numbers. Green, blue, and
red dashed vertical lines, respectively, show the forced wave number k f , the buoyancy wave number kb, and
the Ozmidov wave number kO.
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referred to as integrated spectra in this paper. Figure 1(a) shows the energy spectra as functions of
the horizontal wave numbers integrated over the vertical wave numbers, while Fig. 1(b) shows these
as functions of the vertical wave numbers integrated over the horizontal wave numbers. Note that
although the forced wave number kf is marked for reference in the figures, the forced wave numbers
exist in the range k⊥ < k f and k‖ < k f because |k| = (k2

⊥ + k2
‖ )1/2. The buoyancy wave number kb

and the Ozmidov wave number kO have the same property. The integrated spectra show that the
kinetic energy comes mostly from the horizontal component, and the potential energy spectrum lies
between the horizontal and the vertical kinetic-energy spectra for all the wave numbers except for
the horizontal wave-number spectra at very large horizontal wave numbers.

The horizontal wave-number spectra have a relatively steep spectrum close to k−2
⊥ at small

horizontal wave numbers and a less steep spectrum that is approximately k−5/3
⊥ at large horizontal

wave numbers. The transition is observed approximately at the buoyancy wave number as reported
in Ref. [21]. However, the energy spectrum at the large k⊥ in Fig. 1(a) is much steeper than that
reported in Ref. [21], where the Kelvin-Helmholtz billows are supposed to generate the bump at
the large horizontal wave numbers. It is worth pointing out that the computational box is flatter
and that the hyperviscosity and the hyperdiffusion are used in the simulation in Ref. [21]. Because
of the flat computational box, the bump consists of the large vertical wave-number modes. The
less steep energy spectra appear near the dissipation range in the inertial subrange, and they are
due to the so-called bottleneck effect. Hyperviscosity and hyperdiffusion are known to enhance
the bottleneck effect. One may observe that this horizontal wave-number spectrum is proportional
to k−5/3

⊥ in all the inertial subrange without any transition, but there actually exists a transition
as shown below. A similar transition was observed in Refs. [4,35]. Note that the range of the 3D
Kolmogorov turbulence is too small to observe in the spectrum because the buoyancy Reynolds
number is evaluated as approximately 2.1. The vertical wave-number spectra are also nonuniform,
and the power laws at the small wave numbers and the large wave numbers are close to those in
Refs. [9] and [6], respectively. Similarly to the horizontal wave-number spectra, a gradual transition
is observed roughly at the buoyancy wave number. The steep spectra similar to k−3

‖ in the range
kb < k‖ < kO are due to balance between the inertia and the buoyancy [23,36]. It is evident in
these integrated spectra that the energy distribution is not scale invariant and the energy spectra in
the 2D domain spanned by the horizontal and vertical wave numbers show anisotropy. It must be
emphasized that these power laws of the integrated spectra consisting of the various slopes do not
necessarily reflect the spectral structures unaffected by the boundary conditions. The anisotropic
energy distribution is directly investigated below.

The coexistence of the different power-law exponents in the energy spectra, where the transition
is observed approximately at the buoyancy wave number, is also observed in the horizontal
wave-number spectra of the vortical kinetic energy and the wave kinetic energy [Fig. 2(a)]. While
the vortical energy spectrum and the wave kinetic energy spectrum are, respectively, close to k−3

⊥
and k−2

⊥ at the small horizontal wave numbers, both energy spectra have approximately k−5/3
⊥ at

the large horizontal wave numbers. The vertical wave-number spectra in Fig. 2(b) also exhibit the
coexistence; rather flat spectra appear at the small vertical wave numbers, and steep spectra similar
to the saturation spectrum k−3

‖ at the large vertical wave numbers. These energy spectra are similar
to those in Ref. [4]. The shear energy is defined only for k⊥ = 0, but it is large. In fact, the kinetic
energies of the vortical, wave, and shear flows integrated over all the wave numbers are roughly
4 × 10−2, 4 × 10−2, and 8 × 10−2, respectively. The largest energy appears at k⊥ = 0 and k‖ = 4,
which can be directly excited by the external force, as the shear energy. Note that although the
external force excites both waves and vortices as well as the shear flows at a wave-number mode,
their amplitudes depend on the wave-number mode as recognized from the energies at the forced
wave numbers in Fig. 2.

The nonuniformity of the horizontal wave-number spectra of the energies shown in Fig. 1(a)
indicates the existence of an inner structure in the vertical wave-number spectra drawn in Fig. 1(b),
and vice versa. The same applies to the vortical kinetic energy and the wave kinetic energy in
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FIG. 2. (a) Horizontal wave-number spectra and (b) vertical wave-number spectra of vortical kinetic
energy, wave kinetic energy, and shear energy. The abscissa is scaled linearly for k⊥, k‖ � 1 and logarithmically
for k⊥, k‖ � 1. See also the caption to Fig. 1 for the vertical lines.

Fig. 2. The horizontal wave-number spectra of the energies shown in Fig. 1(a) are obtained by
the integration over the vertical wave numbers, and the energy spectra without the integration are
required to observe the inner structure. Such a non-integrated kinetic-energy spectrum for each k‖
as a function of k⊥ is defined as

Kk‖ (k⊥) = 1

�k⊥

∑
k′

⊥

′ 1

�k‖

∑
k′
‖

′ 1
2
〈|uk′

⊥,k′
‖ |2〉. (8)

The nonintegrated kinetic-energy spectrum for each k⊥ as a function of k‖ is similarly defined.
The nonintegrated kinetic-energy spectra are drawn in Fig. 3. The kinetic-energy spectra as

functions of k⊥ for k‖ � 32 shown in Fig. 3(a) are not so different from each other, since the
vertical-energy spectra are the rather flat spectra as k−1

‖ as shown in Fig. 1(b). Nevertheless, we can
observe that the energy spectra at the small horizontal wave numbers become less steep, roughly
from k−3

⊥ to k−2
⊥ . As k‖ increases further, the maximal wave number moves to larger k⊥. Most of the

kinetic energy at small k‖ exists in k⊥ � 2 as shown in Fig. 3(b). The integrated energy spectra as
functions of the vertical wave numbers shown in Fig. 1(b) consist of the corresponding nonintegrated
energy spectra in k⊥ � 2. It is consistent with the fact that the horizontal wave-number spectra
uniformly and rapidly decrease as shown in Fig. 1(a). Moreover, in the range 30 � k‖ � 500, the

10−10

10−8

10−6

10−4

10−2

1

1 101 102 103

k⊥

k−3
⊥

k
−5/3
⊥

K
k

(k
⊥

)

k = 0
1
2

4
8

16
32
64

128
256

10−10

10−8

10−6

10−4

10−2

1

1 101 102 103

k

k
−1/2

k−4

K
k
⊥

(k
)

k⊥ = 0
1
2

4
8

16
32
64

128
256

)b()a(

FIG. 3. Kinetic energy spectra (a) for each k‖ as a function of k⊥ and (b) for each k⊥ as a function of k‖.
See also the caption to Fig. 1 for the vertical lines.
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FIG. 4. Two-dimensional spectra of (a) total kinetic energy, (b) vortical energy, (c) wave kinetic energy,
and (d) potential energy. Contours are drawn for 10−12, 10−10, . . . , 10−4. The critical wave number at which
χk = 1/3 and that at which χk = 1 are represented by the thick and thin green curves, respectively. The 2D
critical wave number at which χ2Dk = 1/3 and that at which χ2Dk = 1 are represented by the thick and thin
yellow curves, respectively. The buoyancy wave number and the Ozmidov wave number are, respectively,
represented by the blue and the magenta curves.

relatively flat spectrum close to k−1/2
‖ extends to the large k‖ as k⊥ increases. Then the large k⊥’s

have larger energy at large k‖ than the small k⊥’s have [36]. Thus, the integration over k⊥ makes the
saturation spectrum complex in the large-k‖ range. The saturation spectrum is considered to consist
of the breaking of the internal gravity waves [37]. Since the integrated spectra of the kinetic energy
shown in Figs. 1(a) and 1(b) are, respectively, obtained by summation of the nonintegrated spectra
shown in Figs. 3(a) and 3(b), the integrated spectra are determined mostly by the nonintegrated
spectra in the few small codimensional wave numbers. In this sense, the integrated spectra cannot
properly reflect the energy distribution at the moderate wave numbers unaffected by the boundary
conditions. Moreover, the identification of the dominant physical mechanism by the integrated
spectra requires a careful inspection.

To observe the anisotropic structures of the energy spectra, the 2D spectra for total, vortical,
wave kinetic, and potential energies in the horizontal and vertical wave-number domain are drawn
in Fig. 4, which provides an overview of the energy spectra. The 2D spectrum is defined as

K (k⊥, k‖) = 1

2πk⊥

1

�k⊥

∑
k′

⊥

′ 1

�k‖

∑
k′
‖

′ 1
2
〈|uk′

⊥,k′
‖
|2〉, (9)

where the normalizing constant, 1/(2πk⊥), is introduced for the contours of the energy spectra to
be compared easily with the completely isotropic ones.

All the energies shown in Fig. 4 accumulate at small k⊥. It is consistent with the large energies at
small k⊥ in the integrated and nonintegrated spectra shown in Figs. 1–3. The energies drawn as the
2D spectra obviously show the anisotropy in the small k⊥ and k‖. As |k| = (k2

⊥ + k2
‖ )1/2 becomes
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FIG. 5. (a) Ratio of the wave kinetic energy to the total kinetic energy Kwk/Kk, (b) relative difference
between the wave kinetic energy and the potential energy (Kwk − Vk )/(Kwk + Vk ), and (c) ratio of the
polarization anisotropic part to the kinetic energy KzPAk/Kk. Contours are drawn for every 0.2 in (a) and (c) and
for every 0.1 in (b). The critical wave number at which χk = 1/3, the 2D critical wave number at which
χ2Dk = 1/3, the buoyancy wave number, and the Ozmidov wave number are represented by the green, yellow,
blue, and magenta curves, respectively.

large, the contours of each energy are more similar to the isotropic curves which show the buoyancy
wave number and the Ozmidov wave number. This fact indicates that the anisotropy that exists at
the small k gradually decreases and the flow at these scales is closer to the 3D isotropic Kolmogorov
turbulence, as k becomes large. Note that even at the Ozmidov wave number the energy in k⊥ < k‖
is larger than that in k⊥ > k‖, and the energy spectra are still weakly anisotropic.

It is not clear in Fig. 4 where the wave kinetic energy and the potential energy are larger than
the vortical energy. Furthermore, the four 2D energy spectra may appear close enough. However,
by careful observation, we can find that the spectra of the wave kinetic energy [Fig. 4(c)] and the
potential energy [Fig. 4(d)] are similar, but the vortical-energy spectrum [Fig. 4(b)] is different from
these.

B. Distribution of turbulence indices in wave-number space

It is indispensable to separate the wave-number space based on the dominant physical mech-
anisms of turbulence. In particular, the theory of the critical balance requires separation of the
wave-dominant range. To quantitatively discuss whether the balance between linear and nonlinear
time scales can identify the wave-dominant range, the energy decomposition written in Sec. II C is
employed for the definition.

The difference of the vortical energy from the wave kinetic energy and the potential energy, and
the similarity of the wave kinetic energy and the potential energy, can be used to characterize the
wave turbulence and the strong turbulence. In the wave-dominant range, the wave kinetic energy
is postulated to be much larger than the vortical energy. The weak nonlinearity assumes that the
wave kinetic energy is also expected to be close to the potential energy in the same range. Since
the energies are not uniform in the wave-number space, a normalization of the energy is required
to characterize each range; the ratios of the energies are drawn in Fig. 5 to quantify the dominance
of the weak-wave turbulence. For example, the ratio of the wave kinetic energy to the total kinetic
energy is used instead of direct comparison between the wave kinetic energy and the vortical energy.

The ratio of the wave kinetic energy to the total kinetic energy

Kwk

Kk
= Kwk

Kvk + Kwk + Ksk
(10)

is drawn in Fig. 5(a). Note that the shear kinetic energy is defined only on k⊥ = 0, and it does not
appear in Fig. 5(a). The weak turbulence theory requires that the linear time scale is much shorter
than the nonlinear time scale, and the ratios of the nonlinear time scale to the linear time scale χk are
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usually O(0.1). See Ref. [18], for example. It was reported for magnetohydrodynamic turbulence
that the wave numbers at which the ratio of the nonlinear time scale to the linear time scale χk = 1/3
are the critical wave numbers separating the weak and strong turbulence [27]. Note that the value 1/3
is introduced as a rough indication because the transition between the wave-dominant range and the
vortex-dominant range is gradual. In the present numerical simulation, the contour of Kwk/Kk = 0.6
is close to the curve of χk = 1/3. The wave kinetic energy is dominant in the total kinetic energy
over the vortical energy at the wave numbers where χk � 1/3. Note that the range of k⊥, k‖ < 5 is
directly affected by the external force and is not considered here.

The dominance of the wave-kinetic energy does not always result in the weak-wave turbulence
[38]. In the weak-wave turbulence, the wave-number modes must have the wave kinetic energy close
to the potential energy. The relative difference between the wave kinetic energy and the potential
energy

Kwk − Vk

Kwk + Vk
(11)

is drawn in Fig. 5(b). In the weak-wave turbulence, Kw ≈ V , i.e., it is anticipated that the relative
difference is close to 0 because of the weak nonlinearity. In fact, −0.2 < (Kwk − Vk)/(Kwk + Vk) <

0.1 in the range where χk � 1/3. Therefore, the wave-number modes where the wave-kinetic energy
is dominant over the vortical energy coincide with the modes which have the relative difference
between the wave kinetic energy and the potential energy close to 0, namely, the wave-number
modes where χk � 1/3 is in the weak-wave turbulence.

Moreover, in Fig. 5(c), the ratio of the polarization anisotropic part to the total kinetic energy

KzPAk

Kk
= Kwk − Kvk

2Kk

(
k⊥
k

)2

(12)

is drawn. Here, KzPAk = Re[Zkh2
+zk] = (k⊥/k)2(Kwk − Kvk )/2 represents the polarization

anisotropic part of the vertical kinetic energy according to the helical-mode decomposition.
Equation (12) indicates the direct relation between the anisotropy and the dominance of the
wave-kinetic energy over the vortical energy given by Eq. (10). In fact, the wave-number modes
in the weak-wave turbulence, where χk � 1/3, has KzPAk/Kk > 0.2. The weak-wave turbulence of
internal gravity waves has the strong anisotropy.

The ratio of the gravity-wave period to the eddy-turnover time χk well separates the weak-wave
turbulence also from the horizontally long waves k⊥ ≈ 1 and k‖ ∼ O(10). The 2D ratio χ2Dk

also does it if χ2Dk = 1/3 is selected as a threshold, though χ2Dk cannot separate the weak-wave
turbulence from the 3D isotropic Kolmogorov turbulence by definition.

The wave-number range of the anisotropic weak-wave turbulence is smaller than the inner range
of the Ozmidov wave number. The transient wave-number range from the anisotropic weak-wave
turbulence to the 3D isotropic Kolmogorov turbulence appears in the middle of the two turbulence
range, where the quasi-2D turbulence is dominant. In this transient range, the eddy-turnover time of
the wave-number mode is larger than the Brunt-Väisälä period and is smaller than 1/3 of the linear
wave period of the mode, i.e., 1/N � τk � 3/σk, and the range is noticeable at the small horizontal
and large vertical wave numbers. Wave-breaking is known to occur mainly at the small horizontal
and large vertical wave numbers [39]. The saturation spectrum K (k‖) ∝ k−3

‖ is observed in this range
as shown in Fig. 1(b).

In the wave-number range k⊥ � k‖, Kw = (k/k⊥)2K‖ ≈ K‖, and Kv ≈ K⊥. Therefore, the
horizontal energy spectrum K⊥ ∝ k−5/3

⊥ shown in Fig. 1(a) results mainly from the vortical mode.
The fact that Kw > Kv indicates that K‖ > K⊥ in the wave-number range, which is confirmed by
drawing K‖/K , though the figure is omitted. The weak-wave turbulence is stronger than the quasi-2D
turbulence in the range where χk � 1/3. In addition, the quasi-2D turbulence, i.e., the pancake
turbulence [23], is dominant in the small-k⊥ and large-k‖ range where χk � 1/3 and k < kO.
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FIG. 6. Ratio of the wave kinetic energy to the total kinetic energy Kwk/Kk. (a) γk = 0.1, (b) γk = 0.2,
(c) γk = 0.5, (d) γk = 1, (e) γk = 2, and (f) γk = 5. See also the caption to Fig. 5 for the curves.

The wave period given by the linear dispersion relation characterizes the weak-wave turbulence
better than the the Brunt-Väisälä period as shown in Fig. 5. To confirm it, the ratios of the wave
kinetic energy to the total kinetic energy for different amplitudes of the external force are drawn
in Fig. 6. The numerical simulations to draw Fig. 6 are performed by using 10243 grid points. The
amplitude of the external force γk is varied from 0.1 to 5 in the low-resolution simulations for
comparison with γk = 0.5, which is used to draw Figs. 1–5.

The range of the weak-wave turbulence is the largest when the external force is the smallest
[Fig. 6(a)], and the range becomes smaller as the external force increases [Figs. 6(b)–6(e)]. This
results from the fact that the eddy-turnover time becomes smaller as the turbulent fluctuation is
more excited. The threshold χk = 1/3 well separates the weak-wave turbulence independently of the
buoyancy Reynolds number and the vertical Froude numbers considered here. For γk = 1, the wave-
number range of χk � 1/3 and hence the number of the wave-number modes are small [Fig. 6(f)].
Then the weak-wave turbulence cannot be organized because the resonant interactions are rare.
Such divergence in the simulation with this large external force is consistent with the break in
the monotonicity of the Reynolds number and the vertical Froude number in Table I. It is derived
from the limitation of numerical simulations due to the discretization and the periodic boundary
condition. The wave-dominant range should exist even for this buoyancy Reynolds number and the
Froude number, if simulations in a much larger computational domain, which provides denser grid
points in the wave-number space, were performed.

C. Distribution of deviation from linear dispersion relation in wave-number space

It has been exhibited in the previous subsection that the ratios of the nonlinear time scale to
the linear time scale χk, i.e., the characteristic times, can successfully separate the wave-dominant
range by using the Cartesian decomposition and the helical-mode decomposition. To observe that
the dominance of the waves in the range where χk � 1/3 in another way, a frequency deviation
from the linear dispersion relation is evaluated. It is convenient to introduce a complex amplitude
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FIG. 7. Relative frequency deviation δσk/σk for k = (kx, ky, kz ) = (0, 2p, 2q ), where p, q = 0, 1, 2, . . . .
Contours are drawn for 1 and 10. See also the caption to Fig. 5 for the curves.

used in the weak turbulence theory [40]. The complex amplitude in the present system is defined as

ak = 1√
2σk

(
uzk − i

N
bk

)
. (13)

Because the linear inviscid nondiffusive equation, (4), can be rewritten as ∂ak/∂t = −iσkak, the
frequency spectrum of ak has a value only at −σk = −Nk⊥/k in the linear inviscid nondiffusive
limit. The minus sign in front of the frequency comes from the conventional expression of the
canonical equation in the weak turbulence theory. A frequency deviation is defined as

δσk =
(∑

σ (σ + σk)2 |̃ak,σ |2∑
σ |̃ak,σ |2

) 1
2

, (14)

where ãk,σ denotes the Fourier coefficient obtained from the time series of ak(t ). The relative
frequency deviation, δσk/σk, is employed for the measure of the wave nature of a wave-number
mode in this paper. When the weakly nonlinear wave mode is dominant at a wave-number mode,
the frequency spectrum is narrow-band, it has a peak at the frequency given by the linear dispersion
relation, and the relative frequency deviation of the wave-number mode is small. Conversely, when
the nonlinearity is not weak owing to the vortical mode and/or other wave-number modes, the
frequency spectrum is broad-band or it has peaks away from the linear frequency [38], and the
relative frequency deviation is large. Note that the nonlinearity changes the frequency spectrum in
two ways: one is the excitation of frequencies which do not satisfy the dispersion relation due to the
nonlinear interactions among wave-number modes, and the other is the frequency shift due to the
small-wave-number flows such as the Doppler effect.

The relative frequency deviation is drawn in Fig. 7. The frequency spectra are obtained from the
time series of ak, where k = (kx, ky, kz ) = (0, 2p, 2q) and p, q = 0, 1, 2, . . . , in the high-resolution
simulation. The relative frequency deviation is small in the range where χk � 1/3 and shows a
similarity to χ , becoming large as χ increases. This results from the increase in the band width
of the frequency spectrum due to the nonlinearity. One may notice that the difference between the
contours of the relative frequency deviation and χ at the large horizontal wave numbers where
ky = 32 and 64 and kz � 16 is relatively large. The difference can be interpreted by the Doppler
shift due to the horizontal flows with the small horizontal wave numbers including the vertically
sheared horizontal flows having most of the total energy in the flow field as recognized in Figs. 1–3.
Then the dominance of the weakly nonlinear wave mode in the range where χk � 1/3 is supported
by the frequency deviation of the wave-number modes.
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IV. CONCLUDING REMARK

In this paper, direct numerical simulations of strongly stratified turbulence where internal gravity-
wave turbulence and strong turbulence coexist have been performed. The energies accumulate at
small horizontal wave numbers, and the energies at the small vertical wave numbers are also large.
Then the 1D spectra, which are obtained by integration over the horizontal or vertical wave numbers
or by use of the norm of the wave-number vector, mask the inner structures and do not appropriately
represent the critical wave numbers separating the wave-number range of the weak-wave turbulence.
The nonintegrated spectra and the 2D spectra drawn in the horizontal and vertical wave-number
domain reveal the inner structures of the anisotropic turbulence. The results show that the power
laws observed in the 1D spectra are superpositions of various distributions of the spectral amplitude.
Therefore, much care should be taken when the spectra are compared with the experimentally
observed spectra, which are mostly obtained from 1D time series.

Following the premise that the wave kinetic energy is much larger than the vortical energy,
and is close to the potential energy in the range of the weak-wave turbulence, nondimensional
indices based on the energies, Eqs. (10) and (11), were proposed to determine the range in the
wave-number space. It was also clarified by another nondimensional index based on the energies,
Eq. (12), that the polarization anisotropy in the range is large, resulting from the wave kinetic energy
being larger than the vortical energy. These nondimensional indices proposed in this paper show
a similar distribution, which confirms the appropriateness of the indices for the identification of
the range of the anisotropic weak-wave turbulence. The dominance of the waves in the range is
also verified by the frequency spectra having peaks at the frequency given by the linear dispersion
relation.

From the distributions of the nondimensional indices in the horizontal and vertical wave-number
domain, it was found that the range, which emerges at the small horizontal and vertical wave
numbers, is anisotropic and smaller than the inner range of the Ozmidov wave number. The
wave-number modes in the weak-wave turbulence have the linear time scale given by the linear
dispersion relation smaller than 1/3 of the nonlinear time scale, which is the eddy-turnover time.
In other words, the critical wave number which separates the weak-wave turbulence has a ratio of
the linear time scale to the nonlinear one of 1/3. In most anisotropic turbulence systems, we have
some options for linear and nonlinear time scales. The present results show that the range of the
anisotropic weak-wave turbulence in the wave-number space can be identified when the appropriate
time scales are selected in consideration of the anisotropy of the flow field.

The difference between the linear period given by the linear dispersion relation and the isotropic
Brunt-Väisälä period is large in the range where the horizontal wave numbers are small and the
vertical wave numbers are relatively large. The dynamics in the wave-number range is determined
neither by the weak-wave turbulence nor by the 3D isotropic Kolmogorov turbulence. Wave-
breaking is dominant in this wave-number range [41], and it is consistent with the saturation
spectrum in Fig. 1(b). The critical balance states the energy transfer from the waves to the eddies
in this range. In this sense, the coexistence of the waves and eddies might play an important
role in the energy spectrum [33,42]. The critical balance is the energy transfer in this transitional
wave-number range between the wave-dominant and the vortex-dominant ranges. The separation of
the weak-wave turbulence in the present paper suggests that the critical balance should appear in the
wave-number range 1/N � τk � 3/σk. The energy transfer in the transitional wave-number range
will be reported elsewhere.
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