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Energy cascades in active-grid-generated turbulent flows
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The energy cascade and diverse turbulence properties of active-grid-generated turbu-
lence were studied in a wind tunnel via hot-wire anemometry. To this end, two active grid
protocols were considered. The first protocol is the standard triple-random mode, where
the grid motors are driven with random rotation rates and directions, which are changed
randomly in time. This protocol has been extensively used due to its capacity to produce
higher values of Re; than its passive counterpart, with good statistical homogeneity and
isotropy. The second protocol was a static or open grid mode, where all grid blades were
completely open, yielding the minimum blockage attainable with our grid. Center-line
streamwise profiles were measured for both protocols and several inlet velocities. It
was found that the turbulent flow generated with the triple-random protocol evolved
in the streamwise direction consistently with an energy dissipation scaling of the form
e = C.u”®/L, with C, being a constant, L the longitudinal integral length scale, and u’ the
rms of the longitudinal velocity fluctuations. Conversely, for the open-static grid mode, the
energy dissipation followed a nonequilibrium turbulence scaling, namely, C, ~ Reg/Re,
where Reg is a global Reynolds number based on the inlet conditions of the flow and Re,, is
based on the local properties of the flow downstream the grid. Furthermore, this open-static
grid mode scaling exhibits important differences with other grids, as the downstream
location of the peak of turbulence intensity is a function of the inlet velocity; a remarkable
observation that would allow one to study the underlying principles of the transition
between equilibrium and nonequilibrium scalings, which are yet to be understood. It was
also found that a rather simple theoretical model can predict the value of C, based on the
number density of zero crossings of the longitudinal velocity fluctuations. This theory is
valid for both active grid operating protocols (and therefore two different energy cascades).

DOI: 10.1103/PhysRevFluids.4.104601

I. INTRODUCTION

Since the first active grid was proposed by Makita [1], active-grid-generated turbulence has
become a standard way to generate moderate-to-high Reynolds numbers in wind/water tunnels
[2]. They present several advantages over classical passive grids for wind/water tunnel research,
as bespoke nonstationary or inhomogeneous turbulence with relatively large values of Reynolds
numbers based on the Taylor microscale, Re;, and reasonable homogeneous isotropic turbulence
(HIT) conditions, can be generated with active grids. Their use has therefore become widespread in
several active research fields, such as two-phase [3,4] and atmospheric flows [5], wind energy [6],
and fundamental turbulence [7-10].

In many of these applications, these grids are used to “tune” the turbulence intensity and/or the
Reynolds number Re;. Several grid protocols are then available to explore the parameter space,
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but little or no attention has been paid yet to the consequences of them on the energy cascade.
For instance, some studies have focused on the characteristics of the turbulent flow for a given blade
geometry and initial conditions [11]. Furthermore, other studies have reported values of the turbulent
kinetic energy dissipation constant C, [12,13], primarily by employing one operating protocol with
subtle variations (the one defined as triple random below), with the intent to corroborate the validity
of the scalings derived from Kolmogorov’s 1941 theory (K41), also detailed below. C; is a key
parameter to understand these flows, as it can be used to determine the properties of the energy
cascade on them (for further details, we refer to the review from Vassilicos [14]).

Therefore, it remains unclear whether the nature of the energy cascade would remain unchanged
if strong changes were to be introduced in the grid controlling protocol. The traditional view, derived
from Kolmogorov’s scalings (and compatible with both of his 1941 and 1962 theories), is that the
turbulent kinetic energy dissipation follows the law ¢ = Cs%, where 1’ is the standard deviation of
streamwise velocity fluctuations u and L is the longitudinal integral length scale. C, is a constant that
may depend on the boundary conditions but remains constant for a fixed grid geometry. Recently,
several separate studies have reported that these scalings may also be fulfilled within a balanced
non-equilibrium cascade [15]. From now on, we will refer to these scalings as “standard” dissipation
scalings.

It has been known for some time that grids can generate a region where turbulence is at odds with
these laws, i.e., C, is not constant, but instead it goes as C, ~ Re{;/Re], where Reg is a Reynolds
number that depends on the inlet conditions and Rey, is a local, streamwise position-dependent one
[14]. The exponents n and m have been found to be very close to unity; m = n = 1 for large values
of Re;,.. For grid turbulence, Re¢ = MU /v, with M being the mesh spacing, U the inlet velocity,
and v the kinematic viscosity of the flow. The local Reynolds number is defined as Re;, = Lu//v.
These high Reynolds nonequilibrium scalings have been recovered in both regular and fractal grids,
at a range of downstream positions which starts close to the peak of turbulent kinetic energy and
extends well beyond it. Typically, this region spans xp,x < X < S5xpax, Where x is the downstream
coordinate from the grid and xp,x (see details below) can be predicted as the position where the
wakes of the grid bars meet, which hinges on the grid geometry.

The presence of diverse energy cascades would create limitations for the applicability of
active grids in some situations, as their respective consequences regarding scales separation, and
the number of degrees of freedom (quantified by L/X), would follow separate laws. “Standard”
scalings verify the relation L/X ~ C.Re,, while high Reynolds nonequilibrium scalings preserve
L/A ~ /Reg (where both formulas assume & ~ vu'>/A?). The latter are independent of Re; at fixed
RCG.

This work summarizes a series of experiments on active-grid-generated turbulence. We found
evidence that different operating protocols produce different energy cascades. Given the myriad
of possible operating protocols, we focused on two extreme cases: one where the grid was static
and fully opened, and the other where the grid moved randomly (via the triple-random protocol,
explained in the next section). Finally, we show that it is possible to check the consistency of the
values of C, obtained via an adaptation of the Rice theorem to turbulent flows.

II. EXPERIMENTAL SETUP

Experiments were conducted in the Lespinard wind tunnel at LEGI: a large wind tunnel with a
measurement section 4 m long and a square cross section of 0.75 x 0.75 m2. Turbulence is generated
with an active grid made of 16 rotating axes (eight horizontal and eight vertical, with a mesh size
M = 10 cm) mounted with coplanar square blades (with also a 10 cm side; see Fig. 1). Each
axis is driven independently with a step motor whose rotation rate and direction can be changed
dynamically. Two different protocols were tested: one where the blades move randomly and one
where they remain static. For the random mode (hereafter referred as active grid or AG), the motors
were driven with random rotation rates and directions, which were changed randomly in time (the
velocity was varied between 1 and 3 Hz, and changes for a lapse were between 1 and 3 s). This mode
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FIG. 1. Picture of the active grid used on the present work.

is of widespread use to generate moderate-to-high Re; with good HIT conditions and is usually
called the triple-random mode. The second protocol employed was the static open mode (referred
as open grid or OG), where the grid was completely open (thus minimizing blockage) and static
(and therefore generating low values of Re; ). More details on the active grid and the wind tunnel
can be found in a previous work [3].

All measurements were made by means of a single hot wire, using a Dantec Dynamics 55P01
hot-wire probe, driven by a Dantec StreamLine constant temperature anemometer (CTA) system.
The Pt-W wires were 5 um in diameter, 3 mm long, with a sensing length of 1.25 mm. Acquisitions
were made for 300 s at 25 and 50 kHz (while a low-pass filter was always set at 30 kHz to counteract
aliasing). It was checked that for all the data sets where C, results are reported we have at least
Kn = 27” fn =1 (with U the local mean velocity).

For each operating protocol, two different kinds of measurements were done: streamwise profiles
at constant inlet velocity U, and measurements at fixed streamwise positions (x = 150 and
x =300 cm) and varying Uy. The range of Uy, explored is imposed by the inherent instabilities
of the wind tunnel at low velocities, and by the fact that at high U, the grid motors do not have
enough power to compensate for the drag force of incoming wind, i.e., it impairs the randomness of
the active grid protocol and the closing of the open grid.

For AG (the active grid protocol), one streamwise profile at fixed inlet velocity was recorded at
Uy = 6.7 m/s between x = 45 cm and x = 325 cm. Next, profiles at fixed downstream position
were taken at five different values of Uy, (1.8, 2.6, 3.6, 5.2, and 6.8 m/s).

For OG (the open grid protocol), three streamwise profiles at fixed inlet velocity were recorded
on a similar range as for AG (Uy, = 8.6, 11.9, and 17.0 m/s). Likewise, the profiles for the fixed
downstream position were taken at five different values of Uy, (4.4, 7.0, 9.7, 12.2, and 14.7 m/s).

The registered time signals were subsequently converted into the spatial domain via the Taylor
hypothesis. To account for bias of this method, a modified Taylor hypothesis that takes into account
a local mean velocity of the flow [16] was also checked, giving almost identical results in both
cases. Figure 2 shows the velocity fluctuations’ power spectral density obtained for the whole range
of velocities—and modes—at the downstream position x = 300 cm. It can be observed that they
all exhibit a power law close to —5/3. Nevertheless, at low values of U, the OG has a less clear
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FIG. 2. Power spectral densities of velocity fluctuations obtained at x = 300 cm for different values of Uy,
for the open (a) and the active (b) modes. The black dashed line is a —5/3 power law.

—5/3 exponent, but its shape still remains very similar to other regular static grid spectra previously
reported [17].

Large-scale isotropy was quantified with a Cobra probe manufactured by TFI, which is able to
compute the three fluctuating velocity components with a resolution of ~500 Hz. Figure 3 shows
the ratios between the three components of the fluctuating velocity vector U’ = (u, v, w). The active
mode exhibits acceptable isotropy conditions, with ratios below 10% for moderate distances away
from the grid, i.e., x > 1 m. Surprisingly, the isotropy ratios for the open mode are larger (in the
order of 30%), and consistent with values reported for fractal grids in the range which comprises
nonequilibrium turbulence [18]. Hence, it is seen that reasonable isotropy conditions are found on
both modes. However, caution has to be taken when analyzing results coming from the open mode.
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FIG. 3. Ratios between the fluctuating velocity vector U = (u,v, w) components for the open (left) and
the active (right) modes. Measurements were taken at U,, = 11.5 m/s for the first mode and at Uy, = 4.9 m/s
for the latter modes.
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FIG. 4. (a) Estimation of ¢ via the dissipation spectra; the black dashed line corresponds to the modeled
frequencies. (b) Typical autocorrelation functions R,,, obtained for both operating modes. (c) Example of the
method applied to estimate L for the active mode.

There have been a few studies regarding the turbulence homogeneity in wind or water tunnels
employing active grids (see, for instance, [11,19] and the review [2]). Interestingly, Larssen and
Devenport ([20]) reported that the flow can be considered as homogeneous if the measuring station is
located at two integral length scales from the walls. Another proposed criterion to have homogeneity
at the center of the section is to have a mesh size M roughly equal to 10% of the tunnel width [2].
Our measuring station (75 x 75 cm?), and mesh size (~10 cm) fall within the limits of these criteria,
and we will therefore consider our flow to be close to a homogeneous state.

The turbulent dissipation rate ¢ was estimated via the dissipation spectrum. It was calculated
as & = f 15vk12E”dk1 where Ej (k) is the one-dimensional power spectrum, k; = 27 f /U is the
respective wave number, and f is the Fourier frequency in Hz. The latter involves assuming local,
small-scale isotropy and applying the Taylor hypothesis. The noise at high frequencies has been
removed and modeled as a power law, fitted for each time signal [Fig. 4(a)]. The Taylor microscale
has been obtained from & as A = /15v(u?)/s.

The integral length scale L was estimated via the streamwise velocity autocorrelation function
R, [Fig. 4(b)]. For OG, it was estimated as L = for“ R, dr, with ry being the smallest value at which
R,, = 0, and r estimated again via the Taylor hypothesis.

The estimation of L for the AG is more difficult, as the autocorrelation function has the pitfall
of not always crossing zero. Thus, it was estimated using a method proposed by Puga and LaRue
[13], which consists of dividing the velocity signal into small, not-converged segments, that present
a typical dispersion § in Ry, [Fig. 4(c)]. Therefore, L can be computed as L = for‘s R,.dr, where
now ry is the smallest value for which R, = §. This method, however, presents some ambiguity
regarding the absolute value of L, as it strongly depends on the length of the segments chosen to
estimate §. It can be appreciated in Fig. 4 that our choice of small segments yielded large values
of §. This choice reduces the dispersion of L between data sets, but it also reduces the value of L.
We have examined for biases with respect to this decision, and it was found that different averages
present the same trends.

The previous discussions show that both C, and L were estimated without assuming any K41
scalings. Thus, it is possible to compute C, = eL/u”® without any assumptions except for the
presence of local homogeneity, which would allow a cascade to operate without interference of
one-point flow statistics gradients. The range of turbulence parameters obtained for each operating
protocol is shown in Table I. Considering that we have ensured that all our turbulent quantities
have reached statistical convergence (as stated, signals were acquired for 300 s), the main error on
these parameters comes from the measurement of U, during the calibration of the hot wire (and the
subsequent use of the Taylor hypothesis) and from the temperature oscillations (that influence v).
We estimate those errors are roughly £0.2 m/s for Uy, and £0.5 °C (due to possible temperature
fluctuations between different calibrations).
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TABLE I. Typical turbulence parameter ranges for the open (OG) and active (AG)
modes: inlet velocity Uy, turbulence intensity #'/(u), Reynolds number based on the
Taylor microscale Re;, Taylor microscale A, Kolmogorov length scale n = (v3/g)'/4,
and streamwise integral lengthscale L.

Parameter oG AG
U, (m/s) 4.4-17.0 1.8-6.8
u'/{u) (%) 2.0-10.0 12.5-45.0
Re, 50-200 200-950
A (mm) 3.0-8.0 7.0-14.0
n (um) 100-400 100-500
L (cm) 1.0-3.0 5.0-13.0
III. RESULTS

A. Active grid mode

In this section we present results for the grid operated in the active, triple-random, mode. Figure 5
shows different turbulence parameters obtained for the measured streamwise profiles. No peak was
observed for the turbulence intensity, including previous measurements done at distance much
closer to the grid (x ~ 10 cm, not shown here). It can be observed that turbulence intensity has
a considerable magnitude, and therefore the Taylor hypothesis should be used with care. Hence,
we will only show results in the following for x > 130 cm, where the turbulence intensity remains
below 25%, similar to results reported in other works [8]. However, the validity of this approach
(using the Taylor hypothesis under these conditions) remains an open question and the validity of
the use of this hypothesis on active-grid-generated turbulence should be addressed in detail in future
works.

From the figures, it can be seen that, first, the magnitude of Re; is considerable, and it
significantly changes during the downstream evolution of the flow, the latter being an important
requirement to disentangle standard from nonequilibrium energy cascade scalings. Second, the
length scale L estimated via the method detailed in the previous section is smooth and slightly
decreases with x (a surprising result, but similar trends for L have been reported by Thormann and
Meneveau for fractal active grids at large x/M [12]). Finally, all parameters from Fig. 5 are quite
sensitive to Us, even the turbulence intensity (that usually remains constant at fixed x for static
grids) and A and 1 (not shown in the figure). This phenomenon was also reported in a previous work
[11].

The properties of the energy cascade were studied for x > 1.3 m (for the reasons previously
explained). Figure 6(a) shows C; vs Re;. There, it can be observed that for all conditions studied C,
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FIG. 5. Streamwise evolution of Re; (a), turbulence intensity (b), and integral length scale L (c) for all
results obtained for the active mode (AG).
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FIG. 6. (a) Plot of C. vs Re;. (b) L/A vs Re;. Results correspond to all data sets obtained for the active
mode.

remains constant: C; ~ 0.30 &£ 0.03. This is consistent with standard dissipation scalings and with
the relation L/A ~ C.Re;, that also matches our data [Fig. 6(b)]. The robustness of this outcome
validates the use of the Taylor hypothesis in this study and the assumption that the turbulent flow is
approximately close to HIT conditions.

Our results, however, differ from those from Puga and LaRue [13] in two ways. First, we do not
observe any variation of C, with Re;, (while in the cited work the correlation C, = 2¢~0-0108Rex .
0.647 is proposed). Second, we find smaller values of C,. The discrepancy in the magnitudes of C,
can be attributed to the underestimation of L, as previously detailed. Thus, an alternative method
that allows one to check the validity and consistency of the values is required. This will be covered
in Sec. III C.

B. Open grid mode

The results for the grid operated in open static mode (OG) are presented below. This case presents
important differences with respect to the AG results: for instance, lower values of Re; [Fig. 7(a)]
and L and much lower values of turbulence intensity. Interestingly, and contrary to the AG, a peak
in the downstream evolution of the intensity of the turbulence intensity was captured.

Previous works by Mazellier and Vassilicos [21] and refinements by Gomes-Fernandes and
collaborators [22] (for both regular and fractal grids) proposed that the location of turbulence
intensity peak could be obtained via the wake interaction length x,. This model assumes that the
maximum of turbulence intensity is a consequence of the interaction between plane wakes, and its
downstream location can be therefore modeled, for regular grids, as x, ~ M?/(C,t), with ¢ being the
thickness of the bars and C, their respective drag coefficient. The value of x, depends only on the
geometry of the grid and is independent of Uy, for either regular or fractal grids at large Reynolds
numbers.

Conversely, our results with the OG hint that x, is an increasing function of Uy, [Fig. 7(d)]. This
is an important difference from previous results in static grids, as it suggest an alternative turbulence
generation mechanism not explained by the interaction between wakes, possibly coming from
interactions between laminar boundary layers or laminar shear layers, which grow on the surface of
the grid blades pointing streamwise. To disentangle the underlying physics of this phenomenon, a
broader range of Uy, should be explored (not currently possible with the present wind tunnel and
current grid) in conjunction with a particle image velocimetry (PIV) study close the grid or in the
lee of it.
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FIG. 7. Streamwise evolution of Re; (a), turbulence intensity (b), and integral length scale L (c) for all
results obtained for the open mode. (d) Downstream position of the turbulence intensity maximum X,,x VS Uyo.

The criterion of Gomes-Fernandez and Vassilicos [22] for the intensity peak is independent of
Uw; it is a consequence of the streamwise scalings of turbulent plane wakes [23,24]. On the other
hand, our results exhibit a clear dependence on the inlet velocity, suggesting that the turbulent flow is
not entirely (if at all) a result of the interactions between wakes. At our facility, reliable experiments
cannot be performed for U,, > 17 m/s. A broader range of velocities would help to verify how
this phenomenon scales with U, and relate it with other mechanisms that may generate turbulent
flows, such as laminar and/or turbulent boundary or shear layers interactions. Moreover, it will be
very interesting to see how far downstream the peak of turbulence intensity can be shifted (with
the consequence that C, # constant), and whether or not its downstream location continues to grow
with Uy, or if it has a dependence on the grid or blade parameters. These experiments are of foremost
importance, taking into account the research of Mazellier and Vassilicos [25], which cast doubt on
the universality of C, and its strongly dependence on the flow initial conditions.

As our data for the active mode only exhibit decaying turbulence, we will focus on the same
regime for the open mode. We therefore report data only downstream the turbulence intensity peak.
Figure 8(a) illustrates that C, is a function that varies with Res/Re; (and ultimately with Re;).
Furthermore, at low values of Reg/Re it collapses to a straight line, consistent with the high
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FIG. 8. (a) Plot of C, vs Reg/Re;. (b) L/A vs Re; . Results correspond to all data sets obtained for the open
mode.

Reynolds nonequilibrium scalings. We also observe that L/A approaches a constant [Fig. 8(b), the
constant having a trend consistent with /Res] at large Re;, (i.e., low Reg/Rey). On the other hand at
large Reg/Re; we note that C, becomes constant with Re,, and that L/A ~ C;Re;, consistent with
standard dissipation scalings. These figures, similar to those reported by Valente and Vassilicos
[26], provide evidence of the presence of both scalings (in separate regions of the flow), i.e., high
Reynolds nonequilibrium scalings close downstream from the kinetic energy peak and standard ones
after a transition region downstream. The outstanding fact of this transition (previously observed
for fractal and regular static grids [26] and in direct numerical simulations of periodic turbulence
[15]) is that it occurs at relatively large values of x (while in standard static grids it happens a few
cm from the grid ), allowing one to capture both regimes in the same experiment. Moreover, the
unfixed position of x, implies that the open mode can be used to tailor the crossover downstream
position between the two scalings. However, the presence of relatively large anisotropy values on
the transition downstream position (visible in Fig. 3) suggests that the latter result may not be
conclusive. Despite this, and given that the anisotropy barely changes in magnitude for different
streamwise positions, the values of C, estimated with the full kinetic energy instead of 1’ follow a
similar trend. Further studies on a larger wind tunnel (or with a grid with smaller M) may help to
shed light on this phenomenon.

At present, our data suggests that the active grid, depending on the operating protocol selected,
will produce different energy cascades, with important consequences for several applications. For
instance, apart from the number of degrees of freedom and scale separation, the nature of the cascade
will be related to or affected by the persistence of coherent large-scale structures and the turbulent
kinetic energy budget, and these will have consequences in terms of turbulence modeling [14,15].
This reinforces the idea to develop an alternative method that allows one to estimate and validate
the values of C, here obtained.

C. Estimation of ¢ via the zero crossings of the streamwise velocity fluctuations

Lieppman [27] noticed that the Rice theorem could be applied to the zero crossings of velocity
fluctuations to estimate the Taylor microscale A in turbulent flows. In particular, he mathematically
proved that A is proportional to the average distance / between zero-crossings points: / = BA. The
constant B is also defined as B = Cm, where C is a constant that quantifies the non-Gaussianity of
velocity derivatives (du/dx), where C = 1 for a Gaussian distribution and C > 1 for an intermittent
turbulent flow.
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However, a theory that allows one to relate C, to the number density of zero crossings, ny,
was recently developed by Mazellier and Vassilicos (see [25] for more detailed explanations). This
theory relies on the expectation that n; is a power-law function of L /7, (as proposed by Sreenivasan
and collaborators [28] and by Davila and Vassilicos [29]), n; being computed after low-pass filtering
the turbulent signal with a cutoff frequency 27 /n. (1. being the length scale of the filter, not to be
confused with the Kolmogorov length scale ). Hence,

_G 2/3
ng = L(L/nc) , (D

with C; a dimensionless constant that characterizes the large scales. The 2/3 exponent is a
consequence of the —5/3 power-law decay of the power spectral density of the streamwise velocity
fluctuations [29]. The constant C; also should not be confused with the intermittency constant C
(we use the exact same notation and definitions of constants from the seminal work of Mazellier
and Vassilicos [25]).

By combining Eq. (1) and the relations ¢ = Cs% and A =
computed as

15vu?

o) the value of C, can be

/

c\3
_ 213/2 s
C. = (158%) (m) ; (2)

with A = n,/n. n, is the value of 5, that corresponds to the intersection of the 2/3 power law
and the value In; = 1. At large values of Re;, it was found [25] that the latter expression goes as
C. ~ C?, which in turn implies that dissipation is controlled by the large scales of the flow. We
remark that in the deduction we never required that C, be constant (or dependent on Reg/Re; ), and
therefore Eq. (2) remains valid for any energy cascade (within only approximate HIT conditions, as
Mazellier and Vassilicos used the model even for measurements at the center line of a round jet),
and in particular for our results for both the open and active modes.

To check the previous prediction, we first checked whether the number density of zero crossings,
n,, followed a 2/3 power law when u was low-pass filtered with different cutoff wave numbers
21 /.. Figure 9(a) shows that indeed the law was recovered by our data set. As the 2/3 power law
has been shown to be a consequence of the —5/3 spectrum [30], Fig. 9(a) supports the validity of
the results for the OG, that do not clearly follow a power law close to the —5/3 law of the velocity
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FIG. 10. (a) Comparison of the values C;“"de' obtained using equation (2) (star symbols) and the experi-
mental ones C*P = gL /u” (filled symbols). Value of A (b), C/ (c) and the intermittency constant C (d) vs Re;
for all data sets.

power spectral density (Fig. 2). Furthermore, Fig. 9(b) shows that C; is properly defined within the
region that follows the power law. The value of C, presents a maximum instead of a plateau for
the open mode, a consequence of the low values of Re; (also observed in previous regular grid
measurements at similar values of Re, [25]). Therefore, we took the maximum values of C; for the
open mode.

The results reported here correspond to an antialiasing finite impulse response low-pass filter.
We found that the parameter n, depends on the properties and type of filter used, affecting the
values of both A and C;. Nevertheless, for all cases, the values of C, deduced are very robust [as the
dependence on 7, is canceled in Eq. (2)].

Once these requirements were verified, the validity of Eq. (2) could be assessed. The value of C
could, in principle, be deduced from the velocity derivatives. However, as the active mode has large
values of Re;,, the convergence of the probability density function of du/dx was not completely
achieved. Instead, we took this value as C = ﬁ

Figure 10(a) shows streamwise profiles of C, for our experimental data and computed from

C:P = eL/u” and from Eq. (2) (C™%!) for every inflow conditions. The model predictions have
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good agreement with all values for the whole range of Re; . This remarkable result is an observation
of the validity of this model for nonequilibrium turbulence, and, more importantly, it confirms the
consistency of the values C; " here obtained.

Figures 10(b)-10(d) show the values of A, C;, and C, respectively. It can be clearly seen that these
values strongly depend on the operating mode (OG or AG). The intermittency (indirectly quantified
by C) increases with Re; and seems to reach a constant value of C ~ 1.2 for the active grid mode.
As A and B tend toward constant values at large Re;, we confirm the prediction that C, ~ Cf for
large Re;..

IV. CONCLUSIONS

We present a systematic study of the streamwise evolution of active-grid-generated turbulence for
two paradigmatic operating modes: a high Re; active and random mode and a low Re;, static one. We
found clear evidence that the energy cascade may be strongly influenced by the operating protocol.
This outcome has important consequences for active-grid-related research, e.g., the interaction of
wind turbines with background turbulence, the formation and development of clusters of inertial
particles [31], and other phenomena that rely on the nature of a given energy cascade.

We corroborated previous experimental measurements, which showed that C, is constant for
active-grid turbulence in the triple-random mode (and therefore consistent with both the Richardson-
Kolmogorov cascade and a balanced nonequilibrium energy cascade). On the other hand, we
observed that, in a region close downstream the turbulent kinetic energy peak, the open mode
followed recently proposed high-Reynolds-number nonequilibrium scalings. Furthermore, this
mode seems to be generating a particular type of turbulence (not observed before), which is possibly
controlled by the boundary and/or shear layers at the blades of the grid, as the wake interaction
length (as defined) is an increasing function of the inlet velocity and is not only dependent on the
grid geometry.

Furthermore, we find that the mesh size of the grid is no longer a good estimation of L for any
of the tested operating modes. The active mode produces integral length scales on the order of the
measurement section (as proposed already in [1]). On the other hand, the open mode has an integral
scale of around 1/5 the mesh size. Remarkably, the same relation between L and M is reported by
Mazellier and Vassilicos [21] for fractal-grid-generated nonequilibrium turbulence. Although more
studies are needed, this coincidence may point towards a general law relating these two length scales
of the flow.

Further studies of intermediate protocols, between the static and random ones, could shed light
on underlying mechanics behind the transition from standard to nonequilibrium cascades. Our
results seem to agree with the suggestion that nonequilibrium turbulence is related to the presence
of large-scale coherent structures [15], as the active mode may destroy them very fast while it
could be expected that they are more persistent for the open one. Interestingly, in this work the
nonequilibrium energy cascade occurs for the flow at globally lower Re;, while for a fixed grid
geometry these type of cascade occur close downstream from the grid (and therefore where Re;, is
larger). This is consistent with the findings from [15]: nonequilibrium turbulence does not seem to
be a phenomenon that depends uniquely on the Reynolds number of the flow.

Finally, we verified that the model developed by Mazellier and Vassilicos [25] extends to
nonequilibrium scalings. This theoretical model, that predicts the value of C, from the zero crossings
of velocity fluctuations, is a powerful tool to assess the validity of the results obtained when different
operating protocols are employed.
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