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Hojun Lee,1 Itzhak Fouxon,1 and Changhoon Lee1,2,*

1Department of Computational Science and Engineering, Yonsei University, Seoul 03722, Korea
2Department of Mechanical Engineering, Yonsei University, Seoul 03722, Korea

(Received 30 November 2018; published 7 October 2019)

We report an extensive theoretical and numerical study of gravitational settling of small
particles in a stratified fluid at rest. The particle motion creates a flow that advects the
stratified agent, which in turn impacts the velocity by buoyancy. A peculiar insulation flow
also exists when a particle and fluid at infinity are at rest, screening the particle from the
outside gradients. We derive an integral representation for the linear coupled flow that
holds at low Reynolds and Péclet numbers. The representation demonstrates that the far
flow contains a previously unnoticed term that is produced by the thermal component of the
fundamental solution. We obtain nontrivial symmetry relations that constitute a form of the
Onsager reciprocal relations. Stratification is a singular perturbation: however small it is,
far from the particle the flow is fast decaying and does not obey the slow power-law decay
of the Stokes flow at zero stratification. We derive the enhancement of the drag force due to
the stratification by adopting the integral equation on the surface traction. This allows one
to find the force directly, circumventing finding the flow whose calculation demands the
matched asymptotic expansions that complicated previous studies. In this way we are able
to extend the domain of validity of the drag formula by orders of magnitude. We confirm
the predictions by numerical simulations at low Reynolds numbers. We also performed
simulations for a range of non-small Reynolds numbers where the flow is nonlinear, but the
Reynolds number is not too large. The considered range of parameters demonstrates that
inclusion of stratification might be necessary for correct prediction of the sedimentation
velocity of plankton particles and small organic particles of marine snow. We provide the
settling velocity of Volvox as an example. We sum up our observations by deriving an
empirical fitting formula for the drag coefficient. Finally, we discuss the observability of
the insulating flow around a floating body.
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I. INTRODUCTION

Frequently, sedimentation of heavy particles in the atmosphere or the ocean occurs in the
presence of stratification. The stratified regions where gradients of density hold (called pycnoclines
in the aquatic context) are created by gradients of temperature or salinity. This makes the calculation
of the settling velocity in the stratified fluid at rest a problem of great practical interest with a wide
range of engineering and environmental applications. The relevance of this problem is not changed
by the turbulence that is often present, despite the damping action of stratification. Indeed, for a
linear friction law, turbulence does not change the mean settling velocity at all if the mean turbulent
velocity in the particle frame is zero. This is readily seen by averaging the linear equation of motion.
The effects of preferential concentration can produce an order-of-one change in the mean settling
velocity [1]; however, a good starting approximation for the mean settling velocity in turbulence is
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still the settling velocity in the fluid at rest. The main application of the particle sizes considered
in this work is to nonswimming plankton particles and organic particles of marine snow that are
relevant in the oceanic carbon cycle; see, e.g., [2,3]. Besides practical applications, the problem
also presents a significant theoretical challenge even in the limit of small particles, where linear
equations apply. The flow is then described by a generalized bi-Helmholtz equation for which no
analytical solution is available. The difficulty can be demonstrated by considering the fundamental
solution, which is the flow driven by the point force; see List [4], Ardekani and Stocker [5], and also
Zvirin and Chadwick [6]. Its Fourier transform can be obtained in elementary functions; however,
the solution in real space cannot be written in closed form [4,5,7]. This implies that the more
complex solution with the no-slip boundary condition on the surface of the moving particle cannot
be obtained in closed form. Thus, the problem of finding the drag force on the particle sedimenting
in the stratified fluid requires a study of limiting cases where the smallness of some parameter would
allow the solution to be obtained. The most practical limit is that of weak stratification.

It could be thought that the impact of the stratification is small if the scale of density variations
is many orders of magnitude larger than the size of the particle, because then the density is almost
uniform on the scale of the particle. This is, however, not so because the scale L measuring the
strength of the effects of stratification is due to the coupling of the velocity and density [8]. The
parameters that enter this scale are similar to those in the Rayleigh-Bénard instability where instead
of instability, a strong stabilizing effect holds at scale L. This scale, called below “the Rayleigh
scale,” is typically of the order of millimeters [8]. The motion of fluid masses at scales larger than L
produces strong friction, described by the bi-Laplacian, and is damped [4,5,7,8]. Beyond the scale
of order L, the fluid is effectively at rest. In fact, for the order-of-magnitude estimates, the effect of
small stratification on particle translation in the fluid is similar to setting a rigid spherical wall of
radius L. The smallness of stratification corresponds then to the limit of the distant wall. Thus, for
a sphere with diameter d , the leading-order correction to the Stokes drag is of order d/L as in the
classical Lorentz results for plane walls [9]. This order of the correction holds in the limit where
the convection is negligible (low Reynolds and Péclet numbers), as was observed in [10]. These
authors assumed d/L � 1 and considered matching of the nearly Stokes flow holding at scales r
close to the particle, r � L, with the far flow at r � d describable by the point force solution. In this
work, we provide a simpler derivation without using the matched asymptotic expansions and series
expansions of generalized functions of [10]. We also provide higher-order corrections in d/L, which
significantly enlarges the range of parameters covered by the theory. In fact, the buoyancy enters the
equations with the prefactor (d/L)4 called below the Rayleigh number (it is the usual Rayleigh
number used in the theory of convection with the particle diameter instead of the system size). This
hints at the possibility of constructing a theory under the much less stringent condition (d/L)4 � 1.
In fact, the theory described in this paper works well until d ∼ L. This has practical relevance. A
millimeter-size particle that is slightly denser than water has a small Reynolds number. This particle
is in the domain of validity of the theory (the Péclet number is small also). Its sedimentation velocity
is changed by a factor of order 1 by stratification in comparison with the Stokes law estimate.

Previous theories used matched asymptotic expansions. The first treatment of the low-Reynolds-
number case using this method was performed in the regime where the convection of the stratified
agent is not small (finite Péclet number) [6]. Yick et al. [11] investigated the drag enhancement due
to stratification experimentally and numerically, and observed incomplete agreement with [6]. The
authors of [10], studying small Reynolds and Péclet numbers, besides deriving the d/L correction,
considered the history force relevant for the time-dependent motions of the settling particle. It is very
hard to see how their procedure can be extended to the case (d/L)4 � 1 where d can be comparable
with L, invalidating the separation into inner and outer regions. In this work, we use the integral
equation on the surface traction instead of using matched asymptotic analysis for the study of the
force. This approach involves only the properties of the flow near the particle surface and does not
need the far flow, which is nonperturbative. The equation is derived from an integral representation
of the solution that we obtain by generalizing similar representations for the Stokes flow [12,13].
The representation allows us to derive the far flow consistently. It was assumed that the impact of a
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particle on the flow can be represented by a point force only with the strength given by the Stokes
force of unstratified flow [10]. In fact, the complete drag force with the stratification corrections
must be used, and the far flow also includes the thermal component of the fundamental solution,
which is the flow caused by the point source of heat. These corrections could be neglected for the
lowest order [10]; however, they are necessary for higher-order studies. We derive the complete
fundamental solution of the problem that includes the heat source.

A full understanding of the structure of the stratified flow around the sedimenting particle
requires consideration of a flow component that was previously disregarded. This component is
quite unique. It also exists when both the particle and the fluid at infinity are completely at rest. We
call this flow “insulating” because its role is to screen the particle from the external gradients of
the density that do not fit the heat boundary condition on the particle’s surface. The insulating flow
applies zero force on the particle and provides a steady-state solution for neutrally buoyant particles.
This steady state appears to contradict the phenomenon of thermophoresis: a neutrally buoyant
particle must move at a constant drift velocity that is proportional to the temperature gradient.
Thermophoresis, however, is a kinetic phenomenon, and its description necessitates going beyond
the standard fluid mechanical description by introducing a finite slip in the boundary conditions
or otherwise; see [14,15] and the references therein. In this work, we confine the study to the
effects captured by the continuum hydrodynamic description with no-slip boundary conditions.
In the linear regime, thermophoretic correction of the settling velocity obtained in this way can
be included by superposition. For sedimenting particles that are not neutrally buoyant, the flow is a
superposition of the insulating flow and the flow caused by the finite settling velocity. Quantitatively,
the insulating flow is usually small, and it seems to be relevant only for neutrally buoyant particles.
Its most practical application can be to floating bodies, with appropriate changes necessitated by
the nonspherical shape of the immersed part. Qualitatively, recognition of the presence of this
component is necessary for completeness.

We confirmed our predictions at small Reynolds, Péclet, and up to order-1 Rayleigh numbers
by numerical simulations. We also used the simulations to study the range of parameters where
the equations are not linear and for which therefore no theory is available. We studied the range
of Reynolds numbers up to 10 and Rayleigh numbers up to 1, the choice being dictated by
the applications to the sinking of nonswimming plankton particles and organic particles of the
marine snow [2,3]. Though the precise numbers depend on the application, we think mainly
of particles with a size of the order of 1 mm or less. The Péclet number was fixed by using
three representative values of the Prandtl number, 0.72, 7, and 700, describing the cases where
the stratified agent is temperature. Despite the practical applicability of the considered range of
dimensionless parameters, it has not been studied much, as stressed in [10]; see also [16]. We
studied the drag force and the structure of the flow. Our numerical method is based on a monolithic
velocity component decoupled projection method (FDMPM-1P) for mixed convection problems in
a spherical coordinate system [17]. We compare the flow with the available previous numerical
results.

Flows around a moving object in a stratified environment where the Reynolds number is nonsmall
have been studied by many researchers. Torres et al. [18,19] experimentally and numerically
observed the drag enhancement due to the stratification at Reynolds numbers larger than ten and
found a vertical jet structure behind the sphere. The rear jet formation process was investigated
intensely in [16,20–22]. It is stressed that the jet can attain velocities more than 5 times higher than
the velocity of the sphere itself [16]. The smallest Reynolds number in the study was close to 100.
Besides the case of a uniform density gradient considered in this paper, layered structures were
studied, stressing the effect of a density change. A particle in a sharp density interface of a two-layer
fluid was experimentally studied by Sridić-Mitrović et al. [23]. It was found that in a stably stratified
fluid for the low-Reynolds-number case (1.5 � Re � 15), the drag on a particle increased compared
to that of the homogeneous fluid case due to the dragging of a lighter fluid to the particle. Camassa
et al. [24,25] both experimentally and theoretically investigated undershoot of the terminal
velocity of the bottom layer for the low-Reynolds-number case. For moderate Reynolds numbers,
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Abaid et al. [26] observed an oscillation and levitation of a sphere after it crossed the density
interface. The settling process of a sphere in a sharp density interface [27] and a linearly stratified
fluid [28,29] is significantly affected by the presence of stratification. Similar configurations
with different particles (elongated particle [30], a pair of particles [31], drop [32,33], and porous
particle [34–36]) have been extensively studied. Recently, the inertial effect of stratification on
a settling sphere was investigated using an asymptotic expansion by considering the Oseen-type
correction [37], and the core mechanism of drag enhancement was numerically studied [38]. All
these and other works do not seem to provide the main result of our work at small-Reynolds-number
flow: accurate prediction of the enhancement of the drag coefficient as a function of Reynolds and
Rayleigh numbers.

The paper is organized as follows: In Sec. II, the governing equations in the particular choice
of moving frame and the numerical method adopted in our study are introduced. In Sec. III, the
solution for small parameters such as the Reynolds number and Rayleigh number is described using
an integral representation. The numerical results for nonsmall Reynolds numbers are provided with
confirmation of the theoretical prediction at low Reynolds numbers in Sec. IV. Section V concludes
the study.

II. FRAMEWORK

We consider motion at a constant velocity −U∞ẑ of an isolated sphere with diameter d in an
infinite fluid. The direction of the z axis is chosen as opposite to the direction of the gravitational
acceleration vector, g = −gẑ. The fluid is assumed to be stratified so that in the absence of the sphere
the temperature �∗ would have a constant derivative in the z direction, γ = ∂z�

∗ = Const . Here γ

is a positive constant corresponding to stratification with the colder and heavier fluid below. We
assume that the interaction of the flow velocity u∗ with the temperature can be described using the
Boussinesq approximation:

∂u∗

∂t
+ (u∗ · ∇ )u∗ = − 1

ρ
∇p∗ + ν∇2u∗ + βg�∗ẑ,

∂�∗

∂t
+ (u∗ · ∇ )�∗ = κ∇2�∗, ∇ · u∗ = 0, (1)

where p∗ is the pressure, and β, ν, κ , and ρ are the thermal expansion coefficient, kinematic
viscosity, thermal diffusivity, and fluid density, respectively. A variable with the superscript ∗ is
a dimensional variable. This system of equations is completed with the boundary conditions on the
surface S of the sphere and at infinity:

u∗|S = −U∞ẑ, ∂r�
∗|S = 0, u∗

∞ = 0, �∗
∞ = �∗

0 + γ z, (2)

where the first equation expresses the no-slip boundary condition. The asymptotic values of the
fields at infinity are designated by the subscript, and �∗

0 is a constant. We assume that the surface
of a particle is thermally insulated so that the heat flux through S is zero and the Neumann
boundary condition ∂r�

∗|S = 0 holds (this can also correspond to the impermeability condition if
�∗ describes the concentration). This boundary condition is usually used; see the discussion in [28].
The following calculations also usually apply to the Dirichlet boundary condition. For instance, the
reciprocal theorem that follows has the same form for both types of boundary conditions.

A. Dimensionless equations in moving frame

For numerical simulations, it is useful to pass to the frame of the particle where the particle
boundary is stationary. Thus, we pass to the frame that moves with the velocity of the particle,
−U∞ẑ. In this frame, Eqs. (1) hold with the boundary conditions u∗(r = d/2) = 0 and ∂r�

∗(r =
d/2) = 0 (we use the same notation for the fields in the moving frame, where no ambiguity
can arise). The conditions at infinity are u∗

∞ = U∞ẑ and �∗
∞ = �∗

0 + γ z − γU∞t . We introduce
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�∗′(x, t ) describing deviations from the behavior at infinity:

�∗(x, t ) = �∗
0 + γ z − γU∞t + �∗′(x, t ), (3)

where �∗′ vanishes at infinity. In terms of �∗′(x, t ), the equations in the moving frame are as
follows:

∂u∗

∂t
+ (u∗ · ∇ )u∗ = − 1

ρ
∇p′ + ν∇2u∗ + βg�∗′ẑ,

∂�∗′

∂t
+ (u∗ · ∇ )�∗′ + γ (u∗

z − U∞) = κ∇2�∗′
, ∇ · u∗ = 0, (4)

where p′, the modified pressure, is given by p∗ − ρβg�∗
0z − ρβγ gz2/2 + ργU∞tβgz. The corre-

sponding boundary conditions are time independent:

u∗
(

|x| = d

2

)
= 0, ∂r�

∗′
(

|x| = d

2

)
= −2γ z

d
, u∗

∞ = U∞ẑ, �∗′
∞ = 0, (5)

and therefore the time-derivative terms in the equations can be omitted after the transients. We pass
to dimensionless variables using

u
(

x
d

,
U∞t

d

)
= u∗(x, t )

U∞
, p

(
x
d

,
U∞t

d

)
= p′(x, t )

ρU 2∞
, T

(
x
d

,
U∞t

d

)
= �∗′(x, t )

γ d
. (6)

The dimensionless fields obey the following:

∂u
∂t

+(u · ∇ )u = −∇p + 1

Re
∇2u+ Ra

Re Pe
T ẑ,

∂T

∂t
+ (u · ∇ )T +uz − 1 = 1

Pe
∇2T, ∇ · u = 0.

(7)

The system is characterized by three dimensionless numbers: the Reynolds number Re, the Rayleigh
number Ra, and the Péclet number Pe, which are defined by

Re = U∞d

ν
, Ra = gβγ d4

κν
, Pe = U∞d

κ
, (8)

respectively. Other dimensionless numbers can be obtained as functions of the above three numbers.
The dimensionless Prandtl number Pr = ν/κ obeys Re Pr = Pe. The Richardson number [10] is
proportional to Ra/Pe.

The physical meaning of Re and Pe is well known: they measure the relative magnitude of the
nonlinear and the diffusion of the momentum or scalar terms in the momentum and scalar equations,
respectively. The Rayleigh number measures the ratio of the buoyancy and viscous friction forces
in the momentum equation. We observe that the role of the buoyancy term grows with the scale, and
the terms have the same order at the characteristic length:

L =
(

κν

N2

)1/4

, N2 = gβγ , (9)

where N is the Brunt-Väisälä frequency. The scale L, called the Rayleigh scale, is the crossover
length beyond which the buoyancy dominates the flow, and Ra = d4/L4 tells us whether this scale
is larger than d . Hereafter, the nondimensionalized Rayleigh scale L/d will be denoted by Ra−1/4.
At Ra1/4 � 1, the flow at 1/2 � r � Ra−1/4 is similar to the flow without buoyancy, except for the
special case U∞ = 0 considered in the next section (this scale separation used in [10] is a rather
stringent assumption). At low Reynolds numbers, the flow decays fast beyond L as compared with
the slow decay of the Stokes flow proportional to x−1: see [5,7] and below.

The boundary conditions on the dimensionless fields are as follows:

u
(

|x| = 1

2

)
= 0, ∂rT

(
|x| = 1

2

)
= −2z, u∞ = ẑ, T∞ = 0. (10)
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The rescaling that we used above is not suited for the insulating flow considered separately in
Sec. III A.

B. Numerical method

In the numerical part of the present study, an axisymmetric flow around a sedimenting sphere is
simulated in the spherical coordinate system by using a monolithic velocity component decoupled
projection method (FDMPM-1P) for mixed convection problems [17,39]. In this method, the
Crank-Nicolson scheme is employed for discretizing the buoyancy, nonlinear convection, and linear
diffusion terms in time by linearizing the nonlinear convection terms in both the momentum and
energy equations. The Crank-Nicolson time advancement is employed for both convection and
diffusion terms to avoid a severe Courant-Friedrichs-Lewy (CFL) time step restriction.

We performed numerical simulations of the system of Eqs. (7) with appropriate modification of
the boundary conditions for the finite domain. In the spherical coordinate system, r, θ , and φ denote
the radial, polar, and azimuthal directions, respectively. Because a falling sphere and the flow around
the sphere in the low-Reynolds-number region has inherent axisymmetry, all azimuthal components
φ were not considered in this study. The Dirichlet boundary condition (u = ẑ and T = 0) was used
at the inflow boundary, and the convective boundary condition (∂ζ/∂t + c∂ζ/∂z = 0) was used
at the outflow boundary, where ζ = ux, uz, or T , and c is the space-averaged streamwise or axial
velocity at the exit. Here, the inflow and outflow boundaries denote regions with 0 � θ � π/2
and π/2 < θ � π , respectively. For the simulation of the insulating flow, we applied a different
boundary condition, u∞ = 0.

Simulations are carried out in the parameter regime 0.005 � Re � 10, 10−5 � Ra � 1, and
Pr = 0.72, 7, and 700. The Cartesian coordinate system (x, y, z) is also used to represent the
drag force and to implement the boundary condition at the outlet. The computational domain is
ri(=1/2) � r � ro(=30 for Re > 1 and 150 for Re � 1), 0 � θ � π . For accurate calculation of
drag modification at low Reynolds numbers, a relatively large domain is selected. In the radial
direction, the nonuniform grid points rm(m = 1, 2, ..., M ) are given by

rm = ri + (ro − ri)
sm−1 − 1

sM−1 − 1
, (11)

where s is the stretching ratio, and M is the number of radial grid points. The grids are constructed
uniformly in the θ direction. In this study, the grid points are generated with s = 1.072 411 5, M =
128 (for ro = 30) and s = 1.094, M = 128 (for ro = 150), and N = 256, where N is the number of
grid points in the θ direction. These domain sizes and grids were chosen so that the computed drag
is insensitive to them. For example, when M is increased from 128 to 384, the drag changes by less
than 0.02%, while when N is increased from 256 to 384, the drag changes by less than 0.02% for
Re = 0.01, Ra = 1, and Pr = 0.72, for which drag is most significantly modified by stratification
among all cases.

III. RECIPROCAL THEOREM AND INTEGRAL REPRESENTATION FOR SLOW MOTION

In this section, we consider the flow in the limit of the small particle velocity U∞, where Re
and Pe defined in Eq. (8) become much lower than 1. Remarkably, the flow remains nonzero even
at U∞ = 0. This peculiar limiting flow does not apply a force on the particle, which is necessary
for self-consistency. A discussion of this flow appears to be missing in the literature, despite the
fact that it is also present at a nonzero U∞ as a finite, though usually small, component of the total
flow. An understanding of this component is necessary for a consistent view of the solution of the
fluid mechanical equations. Thus, we start examining this flow in the following section. Then we
consider the complete flow for nonzero U∞ for the reciprocal theorem and the fundamental solution,
including the drag modification in the subsequent subsections.
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A. Insulating flow round a neutrally buoyant particle

The case of neutrally buoyant particles where the particle density ρp equals the fluid density
ρ f is a unique situation where the fluid at infinity and the particle are both at rest and yet there
is a flow. This flow is driven by the buoyancy force due to a nontrivial distribution of temperature
around the particle. That distribution cannot be reabsorbed in the pressure, in contrast with the
linear distribution of density, which holds without the particle. We call the arising flow “insulating”
because it originates in the nontrivial density distribution due to the insulating boundary condition.
It helps to screen the particle from the outside density gradients so that the gradients on the particle
surface have no radial component.

An understanding of the insulating flow is necessary for a complete understanding of the flow
around a sedimenting (not neutrally buoyant) particle, which is considered in the next section. This
is because this flow is a finite component of the total flow caused by the sedimenting particle.
This component is typically negligible, even for the particles that are almost neutrally buoyant. For
instance, this is the case of Volvox [40], which is reasonably well represented by the spherical shape
studied here, and has a ρp/ρ f − 1 of approximately 10−3; see [40] for the role of sedimentation in
Volvox’s motion. The situation can be different in the case of turbulence, where much larger density
gradients can occur. These gradients could make the insulating flow a non-negligible component
of the perturbation of the turbulent flow caused by the particle. The study of turbulence is left for
future work.

The insulating flow appears to be of practical interest only in the case of completely neutrally
buoyant particles at rest. One universal application is the case of floating bodies. Despite the fact that
these bodies are located at the surface and that the shape immersed in water is not a complete sphere,
as considered in this section, our solution provides a good reference point for the study of this flow.
The angular structure of our solution for a complete sphere probably applies in the case where the
immersed portion is a part of the sphere. This is because of the axial symmetry that holds in both
cases. For general immersed shapes, our solution can be used for order-of-magnitude estimates. The
insulating flow could also be relevant in the case of fish, which regulate their buoyancy by using a
swim bladder in order to achieve neutrality at different depths.

We consider a nontrivial equilibrium solution of the nonlinear fluid mechanical equations where
the particle does not move, U∞ = 0, despite the existence of local gradients. The force that the
fluid exerts on the particle is zero, which is necessary for the solution’s self-consistency. The
dimensionless variables introduced in Sec. II are not suitable for this study; therefore, we consider
the original Eqs. (1). It is simpler to demonstrate the existence of the insulating flow solution by
using �̃ = �∗ − �∗

0 and p̃ = p∗ − ρβg�∗
0z, that obey in the steady state,

(u∗ · ∇ )u∗ = − 1

ρ
∇ p̃ + ν∇2u∗ + βg�̃ẑ, (u∗ · ∇ )�̃ = κ∇2�̃, ∇ · u∗ = 0. (12)

The symmetry of the corresponding boundary conditions,

u∗|S = 0, ∂r�̃|S = 0, u∗
∞ = 0, �̃∞ = γ z, (13)

implies the symmetry of the solution: �̃ and u∗ are odd functions of r and p̃ is even. We find that
the σ̃ik component of the full stress tensor σ ∗

ik ,

σ ∗
ik = ρβg�∗

0zδik + σ̃ik, σ̃ik = −p̃δik + η(∇iu
∗
k + ∇ku∗

i ), (14)

is an odd function of r. Thus, the force
∫

r=a σ ∗
ikdSk that the fluid applies on the particle equals

the buoyancy force determined by the uniform component �∗
0 of �∗. We conclude that neutrally

buoyant particles will not move in the presence of stratification or stable heat conduction. If the
particle was moving initially, then this solution would apply after the transients.

It is useful to consider dimensionless fields and variables:

u∗(x, t ) = κ

d
ui

(
x
d

,
κt

d2

)
,

p̃(x, t )

ρ
− βγ gz2

2
= κ2

d2
pi

(
x
d

,
κt

d2

)
, �̃(x, t )−γ z=γ d Ti

(
x
d

,
κt

d2

)
,

(15)
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where the subscript i stands for “insulating.” The dimensionless fields obey

∂ui

∂t
+ (ui · ∇ )ui = −∇pi + Pr∇2ui + Ra Pr Tiẑ,

∂Ti

∂t
+ (ui · ∇ )Ti + (ui )z = ∇2Ti,

∇ · ui = 0, (16)

where we restored the time-derivative terms so that transients can be considered. In contrast with the
solution considered in the previous section, which depends on three dimensionless parameters, the
insulating flow solution depends only on two such parameters: Ra and Pr. The boundary conditions
are

ui

(
r = 1

2

)
= 0, ∂rTi

(
r = 1

2

)
= −2z, ui(∞) = 0, Ti(∞) = 0. (17)

We observe that at Ra � 1 the equations become linear, because the velocity ui becomes propor-
tional to the small parameter Ra in front of the source term in the momentum equation. In this
case, the terms of the scalar equation involving the velocity are small so that in the steady state Ti

obeys the Laplace equation. The solution is the harmonic function that fits the boundary condition
in Eq. (17),

Ti = z

16r3
, ∇2Ti = 0. (18)

The nonlinear term in the momentum equation is negligible and the velocity obeys

−∇p′
i + ∇2ui = −φ, φ = RaTiẑ = Razẑ

16r3
, ui

(
r = 1

2

)
= ui(∞) = 0, (19)

where p′
i = pi/Pr and ∇ · ui = 0. Thus, indeed, the velocity is proportional to Ra, which determines

the amplitude of the source. However, this approximation cannot be transformed into a globally
valid solution because the source decays at infinity only as r−2. The reason is that the Laplacian of
a function decaying at infinity decays faster than r−2; therefore, the equation on ui with the above
source cannot have a solution decaying at infinity (the pressure term cannot correct this because
the source is not potential). The other, more explicit way to see the difficulty is to write the formal
solution of Eq. (19) with the help of the fundamental Stokeslet solution of Stokes equations outside
a rigid sphere; see, e.g., [41] and the references therein:

ul (x) = Ra

128π

∫
|x′|>1/2

Glz(x, x′)z′

r′3 dx′, (20)

where Gik (x, x′) represents the solution of the linear Stokes equations with point force,

−∇ps + ∇2us = −Fδ(x − x′), ∇ · us = 0, us

(
r = 1

2

)
= us(∞) = 0,

us(x) = Gik (x, x′)Fk

8π
. (21)

The fundamental solution Glz(x, x′) exhibits the same |x − x′|−1 behavior at large distances from
the source as the Stokeslet solution in the infinite space as given by the Oseen tensor [12,41].
Thus, the quadratic decay of Ti(x′) in the integrand in Eq. (20) is too slow, and the integral
diverges logarithmically (faster than quadratic decay would already give a global solution). This
demonstrates the insolvability of the problem set by Eq. (19). The origin of the problem is that the
velocity term in the scalar equation stops to be a small perturbation at large distances. The power
counting in Eq. (19) gives that the exponent providing the scaling of (ui )z in r is zero (the solution is
of logarithmic type). Correspondingly, the account of the (ui )z term in the heat equation induces the
correction in the temperature that behaves as r2 Ra. However, the ratio of this term to the zero-order
solution given by Eq. (18) grows with r as r4 Ra. Therefore this term becomes non-negligible at
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θ
θ

θθ

°

°

°
°
°
°

(c) (d)(a) (b)

FIG. 1. Streamlines of insulating flow for (a) Ra = 10−4 and (b) Ra = 10−2, and the compensated velocity
components, (c) uir/[RaP2(cos θ )] and (d) uiθ /(Ra sin θ cos θ ). In (a) and (b), the sphere is located at the origin.
The compensated velocity components are plotted for six different angles, 15, 30, 45, 60, 75, and 90◦, and
collapse on the same curve for moderate r/d . The vertical line indicates L/d = √

10 and 10 for Ra = 10−2 and
Ra = 10−4, respectively.

r determined by the condition r4 Ra ∼ 1, which in dimensional variables is the Rayleigh scale L
introduced in Eq. (9) of the previous section. The globally valid solution can be determined only by
solving the complete system

0 = −∇pi + Pr ∇2ui + Ra Pr Tiẑ, (ui )z = ∇2Ti, ∇ · ui = 0, (22)

where we retained the (ui )z term in Eqs. (16). The flow decays fast at r > L, as can be seen by
taking the Laplacian of the momentum equation and using the scalar equation [7]. This results in
the generalized bi-Helmholtz equation

∇∇2 p′ = Ra uzẑ + ∇4u, (23)

where p′ = pi/Pr. The right-hand side indicates exponential-type solutions that behave as
exp (−c Ra1/4|x|) with a positive constant c of order 1. Indeed, fast decay of the solution beyond the
Rayleigh scale L, given in dimensionless variables by Ra−1/4, is proved below using the fundamental
solution of Eq. (22). That solution can be derived, and its fast decay at r > Ra−1/4 was demonstrated
numerically in [5] and theoretically in [7]. Because the flow at r � Ra−1/4 is of order Ra and it
decays fast at r > Ra−1/4, at Ra � 1, the maximum of the flow magnitude is of order Ra. This
proves the self-consistency of neglecting in Eq. (22) the nonlinear terms of Eq. (16).

The angular structure of the flow can be obtained at Ra1/4 � 1, where there is a range of scales
r that are much smaller than the Rayleigh scale, r � Ra−1/4. We demonstrate in Sec. I of the
Supplemental Material [42] that various theoretical arguments point to the angular structure of the
flow given by

uir = Ra f (r)P2(cos θ ), uh
iθ = Ra h(r) sin θ cos θ, (24)

where P2(x) is a Legendre polynomial of the second order, and f and h are functions of r that
obey f (r = 1/2) = h(r = 1/2) = 0 and whose form is determined by the matched asymptotic study
of r ∼ Ra−1/4. To test these angular distributions of the velocity, we carried out a full numerical
simulation solving the complete governing equations with the nonlinear terms [Eqs. (16)] and the
boundary conditions [Eqs. (17)] in the domain 1/2 � r � 150, at Re = 0.01 and Ra = 10−4, 10−2.
Figure 1 demonstrates the streamline distribution of the resulting flow and the radial distribution of
the compensated velocity components. The sphere located at the origin through buoyancy creates
a circulatory motion that extends far from the sphere. The angular structure of Eq. (24) is indeed
confirmed in the region r < Ra−1/4 for each Rayleigh number by the numerical simulations.
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The characteristic value of the velocity of the insulating flow is seen to be κ Ra/d . We compare
this value with the characteristic value of the flow of a sedimenting (not neutrally buoyant)
particle. We demonstrate below that the drag force is of the order of the Stokes force at Ra � 1.
Thus, the typical velocity of the flow caused by the sedimentation has the usual Stokes’ value
(ρp − ρ f )d2/(18νρ f ). It is readily seen that except for the particles that are very close to being
neutrally buoyant, the latter value is much larger than the insulating flow. Below we consider the
case of particles that are not neutrally buoyant and assume U∞ > 0 with no loss, which is the case
with heavy particles. The solution for U∞ < 0 that is applicable to light particles or swimmers
can be found by transformation of the parameters of the solution for U∞ > 0; see Sec. II of the
Supplemental Material [42]. We will see that though the insulating flow contribution in the total
flow is small, it is necessary for a conceptual understanding of the solution.

B. Sedimentation

From this point on we consider the flow induced by a sphere that sediments in stratified fluid at
a finite velocity. We assumed in the previous section that at the considered Ra and Pr the insulating
flow can be described by Eqs. (22), which are linear. Here, we assume that the sedimentation
velocity provides for Re and Pe much smaller than 1. Under these assumptions, the flow around the
sedimenting particle is well described by linear fluid mechanics. We use the fluid frame of reference
for the study considering Eqs. (1). We neglect the left-hand side of the first of Eqs. (1) using Re � 1.
In contrast, we cannot neglect the left-hand side of the second of Eqs. (1) using Pe � 1, because
�∗ contains the linear term γ z, which does not contribute to the Laplacian of �∗ but does produce
a non-negligible contribution in the convective term (u∗ · ∇ )�∗. To utilize the smallness of Pe, we
introduce θ∗ = �∗ − �∗

0 − γ z, where ∂rθ
∗ on the surface of the sphere is −2γ z/d . The system of

Eqs. (1) becomes

∇P = ν∇2u∗ + βgθ∗ẑ, ∂tθ
∗ + (u∗ · ∇ )θ∗ + γ u∗

z = κ∇2θ∗, ∇ · u∗ = 0, (25)

where P∗ = p∗/ρ − βg�∗
0z − βγ gz2/2. Here we can already use Pe � 1 and neglect ∂tθ

∗ + (u∗ ·
∇ )θ∗ in the second equation in comparison with the Laplacian term, γ u∗

z ≈ κ∇2θ∗. We introduce
dimensionless variables that are somewhat different from Eq. (6):

u∗ = U∞u
(

x
d

)
, P = νU∞

d
p

(
x
d

)
, θ∗ = γU∞d2

κ
θ

(
x
d

)
, (26)

cf. [10]. The system of Eqs. (25) becomes

∇p = ∇2u + Raθ ẑ, uz = ∇2θ, ∇ · u = 0, u
(

|x| = 1

2

)
= v, ∂rθ

(
|x| = 1

2

)
= − 2z

Pe
,

(27)

with both fields vanishing at infinity. The boundary condition corresponding to the sedimentation
is v = −ẑ. Here, we included the horizontal motions of the particle by allowing an arbitrary v.
The Rayleigh number is a coupling constant so that the velocity decouples from the scalar at
Ra = 0. The construction of the perturbation theory in Ra that starts with the Stokes flow as the
zero-order solution is not trivial, though. This theory is not analytic, because different signs of γ

correspond to different physics, and Ra = 0 is a singular point when the solution’s dependence on
Ra is considered. Indeed, it is seen below that the expansion parameter is Ra1/4, which is ill-defined
at Ra < 0. Moreover, as described in the previous section, the flow beyond the Rayleigh scale Ra−1/4

is fast decaying, so that the correction to the Stokes flow, decaying only as a power law, is not small.
The solution of Eqs. (27) is a superposition of the solutions caused by the boundary conditions

on u and θ separately:

u = u1 + u2, p = p1 + p2, θ = θ1 + θ2, (28)
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where both ui and θi vanish at infinity and obey

∇p1 = ∇2u1 + Raθ1ẑ, u1z = ∇2θ1, ∇ · u1 = 0,

u1

(
|x| = 1

2

)
= v, ∂rθ1

(
|x| = 1

2

)
= 0,

∇p2 = ∇2u2 + Raθ2ẑ, u2z = ∇2θ2, ∇ · u2 = 0,

u2

(
|x| = 1

2

)
= 0, ∂rθ2

(
|x| = 1

2

)
= − 2z

Pe
. (29)

We see that u2 is the insulating flow considered previously, which is rescaled because different
dimensionless parameters are used. Because this flow applies no force on the particle, for the
purpose of finding the force on the particle, we may concentrate on the flow u1 in the first line
of Eqs. (29). This form of the problem of finding the force seems to be the simplest.

The flow determined by Eqs. (29) is quite complex and probably cannot be solved completely.
Nevertheless, much progress is possible. We introduce an integral representation of the solution that
we derive from a modified Lorentz identity [9] and a reciprocal theorem. The identity is found by
observing that if ũ and θ̃ provide another solution of Eqs. (27) with the stress tensor σ̃ik , then

∇k (uiσ̃ik ) − Ra ∇ · (θ∇ θ̃ ) = ∇k (ũiσik ) − Ra ∇ · (θ̃∇θ ), (30)

which can be confirmed by differentiation, using Eqs. (27) and standard transformations [12]. By
integrating this equation over the volume of the flow outside the sphere, we find the reciprocal
theorem ∫

uiσ̃ikdSk − Ra
∫

θ∂r θ̃dS =
∫

ũiσikdSk − Ra
∫

θ̃∂rθdS, (31)

where dSk points in the radial direction: cf. [9,12]. A version of this identity with the reciprocal flow
given by the fundamental solution leads to the integral representation.

We introduce the fundamental Stokeslet solution of our equations,

∇p′ = Ra θ ′ẑ + ∇2u′ + gδ(x − x0), u′
z = ∇2θ ′ + sδ(x − x0), (32)

where g and s are constant vector and scalar quantities, respectively, cf. Eq. (21). We will
demonstrate that, as in other linear fluid mechanical problems [12], this solution provides the far
field form of the solution of Eqs. (27). It is the result of rigorous calculations below that the effect
of the insulating boundary condition on the particle surface on the fluid mechanical fields at large
distances is equivalent to that of a heat source. This necessitates the introduction of the s term in
Eqs. (32). In fact, an example was already provided in the previous section: it is seen readily that the
solution given by Eq. (18), when extended to the interior of the particle, obeys the Laplace equation
with the source proportional to ∇zδ(x).

Fundamental solution with s in Eqs. (32) set to zero was introduced in [5], where it was solved in
Fourier space. The inverse Fourier transform performed numerically demonstrated that the solution
decays fast beyond the Rayleigh scale Ra−1/4. A quantitative description was given in [7], where it
was demonstrated that the decay at large distances r from the origin is not slower than r−9.

The fundamental solution is a function of x − x0 so we set x0 = 0 with no loss of generality. The
solution can be represented as

u′
i(x) = Gik (x)gk

8π
+ G̃i(x)s

8π
, θ ′(x) = �k (x)gk

8π
+ �̃(x)s

8π
, p′(x) = Pk (x)gk

8π
+ P̃(x)s

8π
, (33)

where G, G̃, �, �̃, P̃i, and P̃ are independent of g and s. We used the linearity of the equations and
provided definitions similar to those for unstratified flows [9,12,13]. The introduced functions obey
reciprocal relations that are derived in the same way as for unstratified flows [13]:

Gik (x) = Gki(−x), G̃(x) = − Ra �(−x) : �̃(x) = �̃(−x), (34)
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see Sec. III of the Supplemental Material [42]. The first of the above relations also holds for the
Green function of the unstratified Stokes equation [13]. The reciprocal relation in the stratified case
is considerably more informative; it tells that the ith component of flow caused at x by a unit point
source of heat at the origin equals the product of minus Ra and the temperature at −x caused by
a unit force in the ith direction at the origin. These relations are a form of the Onsager reciprocal
relations for small deviations from the equilibrium stratified state.

The Lorentz-type identity for a solution of Eqs. (27) and the fundamental solution takes the form

Ra sθδ(x′ − x) − u · gδ(x′ − x) = ∇′
k (uiσ

′
ik ) − ∇′

k (u′
iσik ) − Ra ∇′ · (θ∇′θ ′) + Ra ∇′ · (θ ′∇′θ ),

(35)

where we use x as the position of the source of the fundamental solution and x′ as the spatial
variable. The derivatives with respect to x′ are designated by primes. We consider the source position
x outside the sphere and perform spatial integration over x′ outside the sphere. Upon the use of the
reciprocal relations, this leads to the integral representations

u1i(x) = vz

8π

∫
r<1/2

G̃i(x − x′)dx′ − ∇ ·
∫

r=1/2
r̂′θ1(x′)G̃i(x − x′)

dS′

8π

−
∫

r=1/2
Gik (x − x′)σ1kr (x′)

dS′

8π
,

θ1(x) = − 1

8π

∫
r=1/2

�i(x − x′)σ1ir (x′)dS′ + vz

8π

∫
r<1/2

�̃(x − x′)dx′ − 1

8π
∇

·
∫

r=1/2
r̂′θ1(x′)�̃(x − x′)dS′, (36)

and

u2i(x) =
∫

r′=1/2
G̃i(x − x′)

ẑ′ · dS
8πPe

− ∇ ·
∫

r=1/2
r̂′θ2(x′)G̃i(x − x′)

dS′

8π

−
∫

r=1/2
Gik (x − x′)σ2kr (x′)

dS′

8π
,

θ2(x) =
∫

r′=1/2
�̃(x − x′)

ẑ′ · dS
8πPe

−
∫

r=1/2
�i(x − x′)σ2ir (x′)

dS′

8π
− ∇

·
∫

r=1/2
r̂′θ2(x′)�̃(x − x′)

dS′

8π
; (37)

see the derivation in Sec. IV of the Supplemental Material [42]. (We keep the arbitrary value of vz

in the formulas for stressing the dependence on v in the boundary condition on velocity in Eq. (27).
This can be set to minus 1; see the remark after Eq. (27). We keep the general vz for making
the dependence on it, which would hold in dimensional variables, transparent.) The boundaries
represent distributed sources of the momentum and scalar similarly to unstratified flow [12]. In
contrast to that flow, the interior of the sphere also provides scalar sources, because the source
applies a finite force on a volume that does not enclose it:∫

r=1/2
σ ′

ir (x′ − x)dS = −Ra δiz

∫
r<1/2

θ ′(x′ − x)dx′, (38)

as can be seen from ∇kσik = − Ra θ ′ẑ. The velocity, besides the surface integral of the stress tensor
similar to unstratified flow [12], includes contributions from the stratified agent. These contributions
are both a surface and a volume integral.

104101-12



SEDIMENTATION OF A SMALL SPHERE IN STRATIFIED …

C. Fundamental solution

In this section, we derive the Fourier transform of the fundamental solution and its asymptotic
form at small distances. The Fourier transform of Eq. (32) gives (x0 = 0),

ikp′ = Ra θ ′ẑ − k2u′ + g, u′
z = −k2θ ′ + s. (39)

We multiply the first equation by k and use the incompressibility condition k · u′ = 0 to eliminate
the pressure:

p′ = − i Ra θ ′kz

k2
− ik · g

k2
. (40)

Introducing k̂ ≡ k/k and the projection matrix �(k) leads to

k2u′ = Ra θ ′�(k)ẑ + �(k)g, �i j (k) = δi j − k̂ik̂ j . (41)

Plugging u′
z from the above formula into the equation on θ ′ and using k2

⊥ = k2 − k2
z , we find

u′
i = �ik (k)gk

k2
− Ra �iz(k)�zk (k)gk

k6 + Ra k2
⊥

+ k2s Ra �iz(k)

k6 + Ra k2
⊥

,

θ ′ = − k2�zl (k)gl

k6 + Ra k2
⊥

+ k4s

k6 + Ra k2
⊥

. (42)

This solution for s = 0 was derived in [4,5]; see also [7]. By comparing Eqs. (42) with Eqs. (33),
we have for the components of the Green function of the velocity,

Gik (k)

8π
= G0

ik (k)

8π
− Ra �iz(k)�zk (k)

k6 + Ra k2
⊥

,
G̃i(x)

8π
= k2 Ra �iz(k)

k6 + Ra k2
⊥

,

�̃(k)

8π
= 1

k2
− Ra k2

⊥
k2(k6 + Ra k2

⊥)
, (43)

where we wrote the solution as the solution at zero Rayleigh number and the correction due to finite
Ra. The Green function Gik at Ra = 0 is the Oseen tensor G0

ik that obeys G0
ik (k)/(8π ) = �ik (k)/k2;

see, e.g., [12]. Similarly, the Fourier transform k−2 of the fundamental solution of the Laplace
equation determines �̃(k) at Ra = 0. There is no need for a separate consideration of � because
that is given by the reciprocal relation �i(x) = −G̃i(−x)/Ra. We find by considering the inverse
Fourier transform that the components of the Green function have a self-similar scaling dependence
on the Rayleigh number (which is obeyed also by the Ra = 0 part of the solution):

Gik (x) = δik

x
+ xixk

x3
− Ra1/4G′

ik (Ra1/4x), G̃i(x) = Ra3/4G̃′
i(Ra1/4x),

�̃(x) = 2

x
− Ra1/4�̃′(Ra1/4x), (44)

where we introduced

G′
ik (x) =

∫
�iz(q)�zk (q)

q6 + q2
⊥

exp (iq · x)dq
π2

, G̃′
i(x) =

∫
q2�iz(q)

q6 + q2
⊥

exp(iq · x)dq
π2

,

�̃′(x) =
∫

q2
⊥

q2(q6 + q2
⊥)

exp(iq · x)dq
π2

, (45)

with k = Ra1/4q. The asymptotic series for the solution at distances from the source much smaller
than the Rayleigh scale, Ra1/4x � 1, is obtained by the Taylor expansion of G′

ik (x), G̃′
i(x) and �̃′(x)
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at x = 0. Calculations performed in Sec. V of the Supplemental Material [42] give

Gik (x) = δik

x
+ xixk

x3
− Ra1/4λiδik − Ra3/4

2
xlxr

∂2G′
ik

∂xl∂xr
(x = 0) + O(Ra5/4x4), (46)

where the coefficients can be written with the help of the beta function B(x, y) as

λz = 8B

(
9

4
,

9

4

)
, λx,y = 1

2
√

2
B

(
5

4
,

3

2

)
, ∇2G′

zz(0) = −16B

(
11

4
,

11

4

)
,

∇2G′
xx,yy(0) = − 1

2
√

2
B

(
7

4
,

3

2

)
. (47)

We see that the leading-order correction to the Oseen tensor for Gik (x) is a constant diagonal
matrix [7,10]. The higher-order correction provided here is needed for the calculation of the drag in
the next section, for which we need only the coefficients of the diagonal matrix ∇2Gik (0). We have
for the other components of the fundamental solution:

G̃i(x) = 4Ra3/4δizB

(
7

4
,

7

4

)
+ O(Ra5/4x2), �̃(x) = 2

x
− 2Ra1/4B

(
5

4
,

5

4

)
+ O

(
Ra3/4x2), (48)

with the corresponding expansion for �i(x) = −G̃i(−x)/Ra; see details in Sec. V of the
Supplemental Material [42].

In the case we are interested in, the particle moves vertically, and the g relevant for the flow
description in the later section is directed along the z axis. We can consider with no loss g = gẑ in
Eq. (32). The flow in this case is axisymmetric and can be derived from the stream function that in
cylindrical coordinates (ρ, z) obeys

u′
z = 1

ρ

∂ψ

∂ρ
, u′

ρ = − 1

ρ

∂ψ

∂z
, ψ =

∫ ρ

0
ρ ′u′

z(ρ ′, z)dρ ′, (49)

where u′
ρ = (xu′

x + yu′
y)/

√
x2 + y2. The derivation in Sec. VI of the Supplemental Material [42]

yields

ψ = ρ

Ra3/4

∂

∂ρ
(g∇2 − s Ra)I (Ra1/4r), I (x) =

∫
exp (iq · x)

q6 + q2
⊥

dq
(2π )3

. (50)

This is a compact formula for the description of the axisymmetric component of the fundamental
solution. Computed stream function distributions using the formula [Eq. (32) given in Section VI
of Supplemental Material [42]] for Ra = 0.001, 0.01, 0.1, and 1 are compared with the numerical
solution around a finite-size sphere obtained at Re = 0.01 and Pr = 0.72 in Fig. 2. According to the
far flow approximation given in Sec. VII of the Supplemental Material [42], g = F (drag force of the
corresponding flow) and s = πvz/6 = −π/6 are adopted in the computation of the stream function.
As Ra increases toward 1, the vertical motion tends to be constrained in both the fundamental and
numerical solutions, and agreement between the two solutions becomes poor since the Rayleigh
scale Ra−1/4 decreases toward 1. It is noted that although the Reynolds number is as low as 0.01 for
the numerical solution, the up-down symmetry is a little broken.

D. Force

In this section, we derive the limiting form of the force on the particle at small Rayleigh numbers
up to the order Ra5/4. The previous studies by [10] assumed a scale separation of Ra−1/4 � 1,
relying on matching of the Stokes flow around the particle that holds at x � Ra−1/4 with the far
field Stokeslet approximation that holds at x � 1. The inequality x � 1 allowed the point force
approximation of the particle to be used, and x � Ra−1/4 allowed the small argument asymptotic
form of the Green function considered in the previous section to be used. The flow at 1 � x �
Ra−1/4 is the Stokes flow with a constant correction. This situation is similar to the classical Lorentz
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(a) (b)

(c) (d)

FIG. 2. Stream function distribution of the fundamental solution compared with numerical solution which
was obtained for Re = 0.01 and Pr = 0.72.

treatment of the correction to the Stokes drag due to the far wall, where the flow induced by the
image at the position of the particle is approximately constant [9]. There is a good reason for that:
the stratification acts as an effective wall at a scale of order Ra−1/4 because the flow falls off rapidly
beyond that scale. Thus, proceeding as in the wall problem, the correction to the Stokes drag is
obtained [10]. It is, however, not so obvious how corrections to this procedure, and thus also the
domain of its validity, could be derived: when Ra1/4 ∼ 1, the situation is similar to the transition
from the case of the far wall to the case of the wall at a distance of order 1. Thus, we introduce here
a different procedure that relies on the integral equation on the surface traction.

The force is determined by u1, which obeys the integral representation given by Eq. (36). We
take in this representation the limit of x tending to the surface of the sphere. This limit is regular
due to the regular behavior of G̃i at small distances; see Eq. (48). Using the boundary condition, we
find the integral equation on the surface traction σkr :

−8πvi =
∫

r=1/2
Gik (x − x′)σkr (x′)dS′ − vz

∫
r<1/2

G̃i(x − x′)dx′ −
∫

r=1/2
θ (x′)∇′

rG̃i(x − x′)dS′,

(51)

where we do not write the index of the solution in this section as we are working with u1 only. This
equation must hold for all x on the sphere surface, and its solution determines σkr ; see, e.g., [12].
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Using Eq. (46), we have in the leading nontrivial order in Ra that

−8π

(
vi − Ra1/4λiFi

8π

)
=

∫
r=1/2

G0
ik (x − x′)σkr (x′)dS′, (52)

where there is no summation over the repeated indices. We found the equation on the surface traction
for a particle that moves in an unstratified fluid with a velocity given by vi − Ra1/4MiiFi/(8π );
cf. [12]. We conclude that the force and the surface traction obey

Fi = −3π

(
vi − Ra1/4λiFi

8π

)
, σir (x) = Fi

π
= −3

(
vi − Ra1/4λiFi

8π

)
, (53)

where 3π is the Stokes force FSt in our dimensionless variables, and we use the fact that the surface
traction of the Stokes flow around the translating particle is uniform (the surface area is π ). We find
that

Fi = −3πvi

(
1 − 3Ra1/4λi

8

)−1

≈ −3πvi

(
1 + 3Ra1/4λi

8

)
. (54)

We obtain, using the formulas for λi, that (we write Fst in the answer and not 3π since in this form
the formula is also valid in dimensional variables)

Fz ≈ FSt

[
1 + 3Ra1/4B

(
9

4
,

9

4

)]
; Fx,y ≈ FSt

[
1 + 3Ra1/4

16
√

2
B

(
5

4
,

3

2

)]
, (55)

where we also provide the answers for the case of horizontal motion beyond the considered
sedimentation problem. These answers agree with [10]. We consider higher-order corrections using
Eqs. (46)–(48):

−8πvi =
∫

r=1/2
G0

ik (x − x′)σkr (x′)dS′ − Ra1/4λiFi − Ra3/4

2

∂2G′
ik

∂xl∂xr
(x = 0)

×
∫

r=1/2
(x − x′)l (x − x′)rσkr (x′)dS′ − 2πvzRa3/4δiz

3
B

(
7

4
,

7

4

)
. (56)

In the last term on the right-hand side of the first line, we can take for the surface traction σkr (x′) its
value −3vk at Ra = 0; see Eq. (53). We observe that∫

r=1/2
(x − x′)l (x − x′)rdS′ = πxlxr + πδlr

12
, (57)

where we used
∫

r=1/2 x′
l x

′
rdS′ = πδlr/12. We conclude that in the considered order the surface

traction obeys

−8π

[
vi − Ra1/4λiFi

8π
− vzRa3/4δiz

12
B

(
7

4
,

7

4

)
+ 3vkRa3/4

16

∂2G′
ik (0)

∂xl∂xr
xlxr + vkRa3/4

64

∂2G′
ik (0)

∂xl∂xl

]

=
∫

r=1/2
G0

ik (x − x′)σkr (x′)dS′. (58)

This is the equation on the surface traction of a particle that moves in an unstratified flow with
a nontrivial velocity distribution on the surface given by the coefficient of −8π in the first line.
The force is the superposition of the Stokes force F ′

0, determined by the coordinate-independent
component of the velocity distribution, and the force F0 caused by the term proportional to xlxr .
The force component F0 can be found using the standard reciprocal theorem for the Stokes flows,
see, e.g., [9,12]. Applying the theorem for the Stokes flow with velocity V and the flow determined
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by the boundary condition’s term proportional to xl xr gives

V · F0 = −Vi
9vkRa3/4

16

∂2G′
ik (0)

∂xl∂xr

∫
r=1/2

xl xrdS = −Vi
3πvkRa3/4

64

∂2G′
ik (0)

∂xl∂xl
, (59)

where we used the surface traction of the Stokes flow, −3V . We conclude that F0i is the coefficient
of Vi in the last term. We find summing F ′

0 and F0,

Fi = −3π

[
vi − Ra1/4λiFi

8π
− vzRa3/4δiz

12
B

(
7

4
,

7

4

)
+ vkRa3/4

64

∂2G′
ik (0)

∂xl∂xl

]
− 3πvkRa3/4

64

∂2G′
ik (0)

∂xl∂xl
,

where ∇2G′
ik (0) is the diagonal matrix; see Sec. V of the Supplemental Material [42]. Solving with

respect to Fi gives

Fi = FSt

[
1 − 3Ra1/4λi

8

]−1[
1 − Ra3/4δiz

12
B

(
7

4
,

7

4

)
+ Ra3/4

32

∂2G′
ii(0)

∂xl∂xl

]
, (60)

or in components

Fz

FSt
=

[
1 − 3Ra1/4B

(
9

4
,

9

4

)]−1[
1 − Ra3/4

12
B

(
7

4
,

7

4

)
− Ra3/4

2
B

(
11

4
,

11

4

)]
,

Fx,y

FSt
=

[
1 − 3Ra1/4

16
√

2
B

(
5

4
,

3

2

)]−1[
1 − Ra3/4

64
√

2
B

(
7

4
,

3

2

)]
, (61)

with the corresponding formula for Fx,y. The corrections to these formulas are of order Ra5/4;
therefore, the formulas apply at Ra5/4 � 1, which is a much less stringent condition than Ra1/4 � 1
in [10]. The difference from the formulas of [10] would be large when Ra3/4 ∼ 1 in the range of
applicability Ra5/4 � 1. Later, this formula for the corrected drag of the sedimenting sphere, which
is one of our main results, will be compared with the numerical estimation as well as with the
prediction by [10].

Finally, the integral representations given by Eqs. (36) and (37) can be used in the standard
way [12,13] to derive the multipole expansion of the solution that describes the flow at large
distances from the particle. Similarly to unstratified flow, this term is determined by a point force
approximation with the force that was studied in the previous section. However, the particle also
produces a source in the heat equation whose contribution to the flow is of comparable magnitude
with the point force contribution at Ra3/4 � 1. This term was disregarded in previous studies. A
detailed derivation of the far field flow is provided in Sec. VII of the Supplemental Material [42].

IV. NUMERICAL RESULTS

In the previous section, we obtained an analytic solution of the stratified flow around a
sedimenting sphere in the small-Reynolds-number and small-Rayleigh-number limits, which is
valid only for the Stokes flow regime. In this section, we numerically investigate the same problem
for finite Reynolds and Rayleigh numbers solving the full equations [Eq. (4)] in the moving
frame using the numerical method explained in Sec. II B. The considered parameter ranges are
0.005 � Re � 10 and 10−4 � Ra � 1.5 for the three values Pr = 0.72, 7.0, and 700 corresponding
to air, water, and seawater, respectively. The numerical results of drag modification for the smallest
Re will be compared with the analytic prediction.

A. Drag modification

Figures 3 and 4 show the drag enhancement normalized by the drag of unstratified flow
computed from our simulations for Pr = 0.72, 7, and 700 in the linear-linear scale and the log-log
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(c)

(a) (b)

FIG. 3. Enhanced drag normalized by the drag of unstratified flow as a function of Ra and Re for (a) Pr =
0.72, (b) 7, and (c) 700 in linear-linear scale. Symbols denote computed data, and lines represent the fitting
equation, Eq. (62).

scale, respectively, for the ranges of Re = 0.005 ∼ 10 and Ra = 10−4 ∼ 1.5. When Re = 0.01,
stratification increases the drag of a sedimenting sphere by up to 40% at Ra = 1, equally for Prandtl
numbers 0.72 and 7. However, even when Re = 0.005, the drag enhancement at Ra = 1 for Prandtl
number 700 is about 35%. As the Reynolds number increases, the effect of stratification becomes
weaker. For example, when Re = 10, the drag is hardly modified by stratification for Pr = 0.72 and
7. For Pr = 700, the drag is not influenced by stratification when Re = 1. It can be seen from the
log-log plot of the drag enhancement that when the Reynolds number is low, the drag enhancement
increases with the Rayleigh number as ∼Raα , with α = 1/4 ∼ 1/3, while it increases linearly with
the Rayleigh number for high Reynolds numbers. α tends to 1/3 as the Rayleigh number increases.
From these observations, we provide a new formula for the drag enhancement:

CD

CD,0
= 1 + Ra

a + bRa1/3 + cRa2/3 , for Ra � 1.5, Re � 10, (62)
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(a) (b)

(c)

FIG. 4. Enhanced drag normalized by the drag of unstratified flow as a function of Ra and Re for (a) Pr =
0.72, (b) 7, and (c) 700 in log-log scale. The lines represent Eq. (62). The solid symbols denote computed data.

where CD,0 is the drag coefficient for the unstratified case for all Reynolds numbers, small or finite,
and a, b, and c are the functions of Pr and Re:

Pr = 0.72 :

⎧⎨
⎩

a = 0.017 97 − 0.037 28 Re + 0.348 22 Re2

b = −0.063 29 + 0.214 78 Re + 0.956 46 Re2

c = 2.414 16 + 3.9022(1 − exp(−0.3594 Re))
, (63)

Pr = 7 :

⎧⎨
⎩

a = 0.007 52 − 0.020 49 Re + 2.009 36 Re2

b = −0.211 54 + 0.561 02 Re + 0.493 02 Re2

c = 2.569 21 + 4.6469(1 − exp(−0.179 07 Re))
, (64)

Pr = 700 :

⎧⎨
⎩

a = 0.002 51 − 0.083 24 Re + 46.2 Re2

b = −0.013 121 + 19.696 13 Re + 1.167 95 Re2

c = 2.594 08 + 104.528 88(1 − exp(−0.400 65 Re))
. (65)

This equation [Eq. (62)] fits the computed data very well, as shown in Figs. 3 and 4.
Now we test our theoretical prediction of drag enhancement against the numerical result for

low Reynolds numbers. Candelier et al. [10] derived the following correction of the drag under the
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FIG. 5. Drag enhancement as a function of Rayleigh number Ra for Prandtl numbers 0.72 and 7 at Re =
0.01 compared with our theoretical prediction, Eqs. (67) and (66) from [10] in log-linear scales. The case for
Pr = 700 and Re = 0.005 is also presented for comparison. Simulation data by Yick et al. [11] and Zhang
et al. [38] are included as well.

Stokes flow assumption:

CD

CD,0
= 1 + 0.3311 Ra1/4, (66)

where CD,0 is the Stokes drag coefficient in an unstratified medium, while our prediction with higher-
order corrections is obtained from Eq. (61) after evaluating the β function:

CD

CD,0
= (1 − 0.3311 Ra−1/4)−1 × (1 − 0.045 89 Ra3/4)or

= 1 + 0.3311 Ra1/4 + 0.1096 Ra1/2 − 0.009 60 Ra3/4. (67)

We can immediately see that our higher-order terms are not negligible near an order-1 Rayleigh
number. Figure 5 shows the drag enhancement as a function of the Rayleigh number Ra at Re = 0.01
for Prandtl numbers 0.72 and 7 compared with our theoretical prediction, Eqs. (67) and (66)
from [10] in log-linear scales. The drag enhancement for both Prandtl numbers collapses very well
at this Reynolds number, as predicted by small Reynolds and Péclet number limits. However, the
drag enhancement for Pr = 700 and Re = 0.005 shows deviation from our theoretical prediction
and Candelier’s prediction because even for the smallest Reynolds number of 0.005, the Péclet
number becomes 3.5, which violates the small Péclet number condition Pe � 1 for theory. It
also indicates that the effect of inertia suppresses the stratification effect in enhancing drag. Our
theoretical prediction, Eq. (67), clearly matches numerical data better than Eq. (66) for the range
Ra > 0.05, confirming that the higher-order corrections are indeed not negligible. The simulation of
Yick et al. [11] slightly overpredicts the enhancement, possibly due to their insufficient domain size
(80d × 40d compared to our domain size of 300d × 300d). Recent simulation by Zhang et al. [38]
clearly matches our theoretical prediction better than Candelier’s prediction, although differences
are small.

Enhanced drag by stratification obviously indicates retardation of the settling motion of particles.
We consider as an example the settling velocity of a Volvox for the typical value of the Rayleigh
scale L = 1 mm [8]. The density offset ρp/ρ f − 1 depends on the micro-organism’s radius, since
Volvox becomes more hollow at increasing size. The data of [40], for most points (the density offset
is not a unique function of size due to biological diversity), can be fit by the linear law for density
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(a) (b)

FIG. 6. Settling velocity of Volvox us (solid line) whose diameter is d in stratified fluid at rest as compared
with that in unstratified fluid us,0 (dash-dot-dot line). (a) us as a function of diameter at a fixed Rayleigh scale
L = 1 mm. (b) us of a Volvox with diameter d = 1.2 mm as a function of the Rayleigh scale. The inset shows
the ratio us/us,0.

offset as a function of diameter d (mm): ρp/ρ f − 1 = 0.001 × [2 − (d − 0.4)/0.8]. It is found that
the settling velocity in a stratified fluid at rest decreases by as much as 25% as compared with that
in an unstratified fluid, see Fig. 6(a). For a Volvox of diameter d = 1.2 mm, the settling velocity
as a function of the Rayleigh scale is also given in Fig. 6(b). As the stratification intensifies (or, L
decreases toward the scale of the Volvox), the settling velocity decreases rapidly. Here, the settling
velocity us is determined from

CD
1

2
ρ f u2

s

πd2

4
− (ρp − ρ f )g

4π

3

(
d

2

)3

= 0, (68)

where CD/CD,0 is given by Eq. (62) for Pr = 7, and the drag coefficient in an unstratified fluid CD,0

is calculated by [43]

CD,0 = 24

Rep

(
1 + 0.15 Re0.687

p

)
, (69)

with Rep = usd/ν.

B. Flow characteristics

The effect of Ra and Re on the modification of the streamlines in the absolute frame of reference
and the normalized temperature distribution is demonstrated in Fig. 7 at Pr = 7. When the Reynolds
number is low (Re = 0.1), compared with the streamlines in an unstratified medium, which are close
to those of Stokes flow, the streamlines of the flow for finite Rayleigh numbers (Ra = 0.001, 0.1)
retain the fore-and-apt symmetry but tend to close near the sphere due to suppression of the vertical
motion. The center of the closed streamlines is found to be approximately horizontally cL off from
the center of the sphere with c ∼ 2. As the Reynolds number increases, the flow loses symmetry and
the effect of stratification becomes weaker because the nonlinear advection dominates the buoyancy
as well as the diffusion process. Despite the drastic change in the streamlines at low Reynolds
numbers, the temperature distribution is hardly modified by the stratification strength. Deflection
from the vertically increasing distribution of temperature is noticeable only when the Reynolds
number is not small. Although we have not shown the streamlines for Pr = 0.72 and the temperature
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FIG. 7. Modification of streamlines and dimensionless temperature field in the wake of a settling sphere
due to the stratification and Reynolds number at Pr = 7 (Ra = 10−3, 10−2, and 10−1 and Re = 0.1, 1.0, and
10).

distribution, the streamline pattern is similar, while the normalized temperature distribution exhibits
less deviation from the horizontally uniform distribution.

Finally, Fig. 8 demonstrates the magnitude of the vertical velocity uz normalized by the
nondimensional Rayleigh scale L/d (=Ra−1/4) along the normalized distance in both axes (a) x and
(b) z. The lines represent the value of the vertical velocity for Pr = 0.72, and the symbols represent
those of the Pr = 7 case. Along the horizontal x axis, the normalized vertical velocity for both
Prandtl numbers and all Rayleigh numbers considered collapses to one line. One local minimum
point is found at Ra1/4x ≈ 3, indicating a sign change. The decaying behavior with a constant rate
of −1, similar to that of the Stokeslet [7], is observed for Ra1/4x � 1 or x � L/d .

Along the vertical z axis, the vertical velocity for both Prandtl numbers shows oscillatory
decaying behavior for all the Rayleigh numbers considered. For the Pr = 7 case, all local minimum
points for every Rayleigh number collapse well. However, the local minimum point does not match
between the two Prandtl number cases. As with the distribution along the horizontal direction, a
good collapse with a decay rate of 1 is observed for Ra1/4z � 1 or z � L/d , and the velocity decays
faster for z > L/d .
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FIG. 8. Normalized vertical velocity |uz|Ra−1/4 along (a) the horizontal axis x and (b) the vertical axis z for
Pr = 0.72 and 7.

V. CONCLUSIONS

In this paper, we conducted an extensive study of the sedimentation of small particles in a
stratified fluid. Our main theoretical result is the formula for the drag force at small Reynolds and
Péclet numbers that holds under the condition Ra5/4 � 1. This significantly increases the range of
validity of previous studies, which was limited to Ra1/4 � 1. Other results include the derivation of
an integral representation of the flow, reciprocal relations and a modified Lorentz identity, and a full
fundamental solution with a heat source and a description of the previously disregarded insulating
component of the flow. So as not to overwhelm the text with details, we put the derivation of the far
field form of the flow in the last section of the Supplemental Material [42]. That form demonstrates
that the sedimenting insulating particle looks at large distances as both the point force and the point
source of heat. The far field coincides with

∇p1 = Ra θ1ẑ + ∇2u1 − Fδ(x), u1z = ∇2θ1 + πvzδ(x)

6
. (70)

In contrast, with previous approaches the force F can be significantly different from the Stokes
force in unstratified fluid and there is a heat source term in the last equation. The adiabatic surface
changes the temperature distribution around the particle, and at large distances this change “looks”
as if there is a heat source (or sink) at the particle’s position. The amplitude of the source of heat
is proportional to the velocity of the sedimenting particle, which depends on Ra nontrivially for
stationary sedimentation. The heat source is negligible at Ra1/2 � 1; however, at Ra1/2 ∼ 1, covered
by the present theory also, this term theoretically must give an order-1 contribution in the far flow,
see the details in the Supplemental Material [42]. We find, however, that the numerical factors cause
this term not to make any noticeable difference in the far flow even for Ra = 1.

We briefly consider the possibility of observing the insulating flow whose characteristic value is
κRa/d . We have, assuming L = 1 mm and κ ∼ 10−6 m2/s (corresponding to a Prandtl number of
order 1), that particles with a size of order 1 mm induce a flow of approximately 1 mm/s. This flow
extends over a spatial scale of 1 mm (d ∼ L) and displaces a nearby tracer by 1 mm in 1 s. This
seems to be an observable phenomenon.

Our theoretical approach uses integral representation of the flow and finds the force directly,
circumventing the study of the spatial structure of the flow. This is the key to the efficiency of this
approach, which is well suited for the regime where the nonlinear terms in the fluid mechanical
equations are negligible. The approach can be extended to include the time-derivative unsteady
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term in the equations [12]. The inclusion of the nonlinear terms in the equations demands other
approaches, such as the matched asymptotic expansions [6,37]. These approaches so far took the
Stokes flow around particle moving in fluid at rest as the zero-order approximation. It is of interest to
see if the calculations can also be done starting from a finite-Reynolds-number flow as the zero-order
approximation.

We performed a detailed numerical study of the flow at Reynolds numbers smaller than 10 and
Rayleigh numbers smaller than 1 using an FDMPM-1P. This allowed us to investigate the flow
structures and temperature around the sphere. We considered two values of Prandtl number, 0.72
and 7. The results showed that the flow depends on the Reynolds, Rayleigh, and Prandtl numbers.
The modified flow by the particle in a stably stratified fluid inhibits the vertical motion of the flow.
The enhancement of the drag coefficient linearly increases with Ra for very low Ra and increases
with the 1/3 power of Ra for large Ra. We derived a fitting formula that captures the numerical
results describing the drag over the whole range of the considered Reynolds and Rayleigh numbers.
The vertical velocity (uz) normalized by the length scale ratio d/L(=Ra1/4) along the normalized
distance for both horizontal and vertical directions collapses on one line for x � L/d and z � L/d .

Our results are ready for application to plankton and marine snow particles and can become a
relevant tool in the study of the motion of these particles, which play a key role in the oceanic carbon
cycle. It is estimated that the settling velocity of Volvox with d = 1.2 mm in stratified fluid with
L = 0.5 mm is twice smaller than that in unstratified fluid. A particle that sediments in the presence
of stratification would drag with it small tracer particles located on the closed streamlines of the
flow. Thus, stratification brings about the qualitative effect of possible mass drag by sedimenting
particles, an effect that does not exist for the open streamlines of Stokes flow in the unstratified
case.

Finally, the effect of the presence of turbulence on the settling velocity of sedimenting particles
is negligible as long as the turbulence is weak, and therefore the linear drag law produces almost
the same settling velocity as that in the fluid at rest. However, when the turbulence is strong,
the perturbed temperature gradient due to the turbulence could produce a nonlinear effect. The
nondimensional parameter called the Cox number, defined as Co = 〈(∇T ′)2〉/γ 2, which measures
such effects, can be as large as 290 in the ocean [44], and this clearly amplifies the local Rayleigh
number. Strong turbulence can also cause a preferential concentration of particles that might modify
the mean settling velocity of particles in stratified flow. Indeed, in the limit of small particle
inertia a Maxey-type formula can be developed [45], giving the particle’s velocity as the local
incompressible turbulent flow plus a space-dependent correction due to a finite space-dependent
Rayleigh number. This formula implies multifractal steady-state distribution of the particles; see,
e.g., [46]. The consistent study of the behavior of the sedimenting particles in stratified turbulence
could be performed in the future.
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